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The midges (Chironomidae) 

• Non-biting midges  
 

• Only male swarm (mating ritual) 

• How many ? 
 

• Where ? 
 

• When ? 

10−104 
 

stream edges 
 

dawn and dusk 

1−100 
 

Black felt “swarm markers” 
 

Overhead light source – ON/OFF 

nature lab 

The midges and the swarm 



 

Method: 
 
- High-speed stereo-

imaging using three 
synchronized cameras 

     (100 fps) 
- Automated motion 

tracking algorithm 
 
 

Trajectories of  midges vs. time 

Measurement: 
 
Kinematics – 
 
r (𝑡), v(𝑡), 𝑎 (𝑡)  
 
 

In the lab (Stanford U.) :  

The midges and the swarm 



 
In the lab (Stanford U.) : 

Nick Ouellette - PI  

Rui Ni 
(Post-doc) 

James Puckett 
(Post-doc) 

• Long-range  
Interaction (“force”) 
• Swarm in the dark 
• Not influenced by 
 chemical signals 

The midges and the swarm 
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Assumptions: 
• Long range interaction 
• Pairwise interaction 
• uniform density 
• spherical symmetry 
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Linear restoring force  
– effective spring constant 

Isotropic Harmonic Oscillator 
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The only possible force: 

The Adaptive Gravity Model 



The Model 
• Acoustic attraction – Johnston’s organ 

The Adaptive Gravity Model 

𝟏

𝒓𝟐 

    Acceleration towards the source 𝒂~
𝟏

𝒓𝟐 

• “Acoustic Gravity” 

• Flight sound intensity decays as    

 



 Another feature (in the lab): 

The linear force decreases for 
larger swarms 

𝑥 (𝑚𝑚)  

What is missing ? 

A model of the acoustic interactions 

sR



 
 

• A typical feature of sensory systems  

       

 

 

 

 

 

 

Adaptivity (as a part of the Fold Change Detection Mechanism) 

The Adaptive Gravity Model 

Scalar symmetry For any two stimuli        and                            the output is the same 

   
S ( 0)p S p 

Sensitive to directionality but not to the overall amplitude ! 

   

Acoustic input Output 
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Motsch & Tadmor 2011 
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with adaptivity 
Isotropic Harmonic Oscillator 

F Kr

effective spring constant 

The Adaptive Gravity Model 

Uniform density  
& spherical symmetry 
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Adaptive Gravity – Evidence 
Supported by data – 122 swarms ! 

Black – raw data 
Red – Binned average 
Blue – (-1) slope (spherical) /(-2) slope (cylindrical) 
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Large swarms  
are elongated 
along  the vertical  
axis 

The Adaptive Gravity Model 



Dependence of The Effective Force on The Density (Uniform) 

density 
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At the center: 
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Adaptive forces  
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Increasing 
density 

 
 

Stronger pull 

Increasing 
density 

 
 

Weaker pull 

Marginal 

density 



density 





 

Jeans Instability (Gravity) 

sR

• Balance: gravitational pull    random velocities  

•                       collapse  (minimal density for collapse)  

• If  

G
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Escape time 
(random 
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Jeans Instability ( Adaptive Gravity) 

sR

•   No critical density                ! 

• If  
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Jeans Instability ( Adaptive Forces                ) 

sR

• Stabilization at a particular density 

• If  

A
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• Midge swarm dynamics is 
dominated by long range 
acoustic interactions 

• The interactions are adaptive -  
weaker when the background 
intensity is higher. 

• Adaptivity, for general power-
law interactions, stabilizes the 
swarm against collapse 

• A prediction: A Selection of a 
particular density for higher 
power law interactions  

Conclusions 
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Some Results... 

 (mm) 

2r
Extended Virial Theorem 

2 0T W pr ds  
Surface Pressure  

– keeps the swarm together 

Density profile 

Theoretical Data 

Poisson-Boltzmann equation 
w/ cut-off 

Ellipsoidal Approximation 

Boundary closer to the center  
– Stiffer effective spring 



 


