Log-log blow up solutions at m points

Chenjie Fan

Department of Mathematics Massachusetts Institute of Technology

Young Researchers Workshop: Stochastic and deterministic methods in kinetic theory

ヘロト 人間 ト ヘヨト ヘヨト

Conservation law and Symmetry Basic questions in the field

Focusing mass critical nonlinear Schrodinger equations.

$$\begin{cases} iu_t + \Delta u = -|u|^{4/d} u, \\ u(0) = u_0, \end{cases}$$
(1)

We will focus on the case d = 2.

Model

Physical interest: many body quantum system; optical collapsing.

For mathematicians: an important model for dispersive equations.

ヘロト ヘアト ヘビト ヘビト

Conservation law and Symmetry Basic questions in the field

Conservation law

Mass:

$$M(u(t,x)) := \int |u(t,x)|^2 dx,$$
 (2)

• Energy:

$$E(u(t,x)) := \frac{1}{2} \int |\nabla u(t,x)|^2 dx - \frac{1}{2 + \frac{4}{d}} \int |u(t,x)|^{2 + \frac{4}{d}} dx,$$
(3)

Momentum:

$$P(u(t,x)) := \Im(\int \nabla u(t,x)\overline{u(t,x)})dx, \qquad (4)$$

ヘロト 人間 とくほとくほとう

Symmetry

Conservation law and Symmetry Basic questions in the field

- Space-time translation: $u(t, x) \Longrightarrow u(t t_0, x x_0)$
- Phase transformation: $u(t, x) \Longrightarrow u(t, x)e^{i\theta_0}$
- Galilean transformation: If $u(t, x) \Longrightarrow u(t, x \beta t)e^{i\frac{\beta}{2}(x \frac{\beta}{2}t)}$
- Scaling: $u(t,x) \longrightarrow u_{\lambda}(t,x) := \frac{1}{\lambda^{\frac{d}{2}}} u(\frac{t}{\lambda^2}, \frac{x}{\lambda})$
- Pseudo-conformal transformation: $u(t, x) \Longrightarrow \frac{1}{t^{\frac{d}{2}}} \bar{u}(\frac{1}{t}, \frac{x}{t}) e^{j \frac{|x|^2}{4t}}$

・ロト ・ 理 ト ・ ヨ ト ・

Basic questions

- Local theory : classical unless you want to work on (**very**) low regularity initial data.
- Is the solution global?
- If the solution is global, what is the asymptotic behavior in long time ?
- If the solution is not global (i.e. the solution blows up in finite time), what is the mechanism for singularity formation?

ヘロト 人間 ト ヘヨト ヘヨト

Defocusing vs Focusing Blow up results on focusing problems

Defocusing vs Focusing

- Defocusing problem finally turns out to be linear. (Dodson)
- Easy to see nonlinear objects for focusing problem (solitary wave Qe^{it}, Q is the ground state).
- Exists blow up dynamic for focusing problem
 - The dynamic is very rich
 - Very few can be said for general data

ヘロト ヘ戸ト ヘヨト ヘヨト

Defocusing vs Focusing Blow up results on focusing problems

Blow up solution exists!

There are a lot of blow up solutions for focusing problem. Existence of blow up solutions: Virial identity (Glassey)

$$\partial_t^2 \int |x|^2 |u|^2 = 4 \partial_t \Im(\int x \nabla u \bar{u}) = 16 E(u_0).$$
 (5)

- Good, but has limit, does not directly explain the mechanism of singularity formation.
- Still, almost every long time results for mass critical problem somehow relies on this.

ヘロン 人間 とくほ とくほ とう

Defocusing vs Focusing Blow up results on focusing problems

Explicit blow up solutions

Explicit blow up solution given by pesudocomformal symmetry

$$S(t,x) := \frac{1}{|t|^{\frac{d}{2}}} Q(\frac{x}{t}) e^{-\frac{i|x|^2}{4t} + \frac{i}{t}}.$$
 (6)

- minimal mass blow up solution
- no blow up below $||Q||_2$, (Weinstein, Dodson)
- the only minimal mass blow up (Merle)
- the blow up rate is 1/t
- btw, E(S) > 0, cannot be understood as an example of Virial Identiy

ヘロト ヘアト ヘビト ヘビト

Defocusing vs Focusing Blow up results on focusing problems

Log-log blow up solutions

There are solutions with different blow up rates.

$$u(t,x) \sim \frac{1}{\lambda^{d/2}(t)} (Q+\epsilon) (\frac{x-x(t)}{\lambda(t)}) e^{i\gamma(t)},$$

$$\frac{1}{\lambda(t)} \sim \sqrt{\frac{\ln \ln(T-t)}{T-t}}$$
(7)

Landman, Papanocolaou, Sulem, Sulem Perelman Merle and Raphael, and many others.

ヘロト ヘアト ヘビト ヘビト

Defocusing vs Focusing Blow up results on focusing problems

Solutions blow up at more than one point

In 1990, Merle constructed k points blow up solutions.

$$u(t,x) \sim \sum_{i=1}^{k} S(\frac{t-T}{\lambda_{i}^{2}}, \frac{x-x_{i}}{\lambda_{i}}), \lambda_{i} > 0, x_{i} \neq x_{j}, \forall i \neq j.$$
 (8)

- Note infinity speed of propagation of the system, unlike wave.
- Two difficulty: decouple the bubbles and prescribe the blow up points.
- Idea: integration from infinity, relying on infinity decay.
- This idea later have been applied to construct blow up solution on torus (note no Virial identity on torus.)

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Main Results Ideas for Proofs

Log-log blow up solution at *m* points

Our theorem in words.

Theorem (Fan)

We construct log-log blow up solutions blow up at m prescribed points.

This should be understood as an analogue of Merle's result. The difference is that we use log-log blow up solutions rather than minimal mass blow up solutions as basic building blocks.

ヘロト ヘ戸ト ヘヨト ヘヨト

Main Results Ideas for Proofs

Log-log blow up solution at *m* points

Precise statement.

Theorem (Fan)

For d = 1, 2, for each positive integer m, and given any m different points $x_{1,\infty}, ... x_{m,\infty}$ in \mathbb{R}^d , there exists a solution u blows up in finite time T, and for t close enough to T,

$$u(t,x) = \sum_{j=1}^{m} \frac{1}{\lambda_{j}^{\frac{d}{2}}(t)} Q(\frac{x - x_{j,\infty}}{\lambda_{j}(t)}) e^{-i\gamma_{j}(t)} + \Xi(t,x).$$
(9)

where, for j = 1, ..., m,

$$\frac{1}{\lambda_j(t)} \sim \sqrt{\frac{\ln|\ln T - t|}{T - t}}, \quad \text{and} \quad \lambda_j \|\Xi(t)\|_{H^1} \xrightarrow{t \to T} 0, \quad (10)$$

メロシト イヨト イヨト

Main Results Ideas for Proofs

A few remarks

- Since the *m* given points are arbitrary, the solutions do not necessarily have any symmetry restriction.
- The construction also works on \mathbb{T}^d , d = 1, 2.
- The construction gives example of log-log blow up solutions with large mass.
- The construction in 1d essentially gives examples of the so-called multiple-standing ring blow up solution.

ヘロン 人間 とくほ とくほ とう

More remarks

- We evolve data forward rather than integrate from infinity, due to the remainder term Ξ.
- And the remainder term cannot vanish asymptotically in *L*² due to blow up mechanism of log-log blow up.
- The point of the Theorem is not only construct solution blow up simultaneously according to the log-log law, but also prescribe the blow up point.
- The current construction needs the data to be very smooth.

ヘロン 人間 とくほ とくほ とう

Main Results Ideas for Proofs

General strategy

- Modulation analysis: reduce the PDE problem into the evolution of the parameters
- Use conservation law to control interaction
- Idea behind: Elliptic PDEs and ODEs are well studied, we want use them to analyze dispersive system

ヘロト ヘアト ヘビト ヘビト

Main Results Ideas for Proofs

Difficulties and solutions

- decouple different bubbles ---- use extra regularity
- balance different bubbles to make them blow up simultaneously
- And furthermore, prescribe the blow up points—- use soft topological argument

ヘロト 人間 とくほ とくほ とう

Main Results Ideas for Proofs

Decouple the bubbles

- Log-log blow up solutions propagate out partial regularity, (Raphael-Stzeftel, see also Zwiers, Holmer-Roudenko)
- Log-log blow up solutions finally falls into some trapping set, (Merle-Raphael)
- A good bootstrap structure for the evolution of data in the trapping set, (Raphael-Planchon)

ヘロト ヘアト ヘビト ヘビト

Main Results Ideas for Proofs

Formal loop argument

- Prepare *m* separate bubbles
- If those *m* bubbles does not see each other, they blow up according to log-log law
- For each bubble, since it blows up according to log-log law, it propagate out partial regularity
- Thus, the interaction between different bubbles are not strong enough to change the log-log dynamic
- Thus, those *m* bubble "does not see each other", they blow up according to log-log law

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Main Results Ideas for Proofs

Balance different bubbles

- It is known topological argument can help, (Merle; Raphael-Planchon; Cote-Martel-Merle)
- All topological argument finally reduce to homology group of *S*^{*n*}, which is well-known
- Different problems needs different topological argument
- Making bubbles blow up simultaneously are relatively easy
- Prescribing blow up points are more tricky, relies on sharp dynamic of log-log blow up

ヘロン 人間 とくほ とくほ とう

Main Results Ideas for Proofs

Thanks!

Chenjie Fan Log-log blow up solutions at m points

ヘロト 人間 とくほとくほとう