Fluctuations and deviations in MFG

Ki-Net Conference Maryland

$$
\text { 18-21 April } 2017
$$

François Delarue (Nice - J.-A. Dieudonné)

April 19th 2017

Joint works: Cardaliaguet, Lasry and Lions; Carmona; Lacker and Ramanan

Part I. Motivation

N-Particle System

- N interacting controlled players (state in \mathbb{R}^{d})
- dynamics of player number $i \in\{1, \ldots, N\}$

$$
d X_{t}^{i}=\alpha_{t}^{i} d t+d W_{t}^{i} \quad, \quad X_{0}^{i}=x_{0}, t \in[0, T]
$$

- independent noises W^{1}, \ldots, W^{N},

० choose control $\underbrace{\alpha_{t}^{i}}_{\text {at any } t}=$ prog. meas. w.r.t. $\sigma\left(W^{1}, \ldots, W^{N},\right)$

N-Particle System

- N interacting controlled players (state in \mathbb{R}^{d})
- dynamics of player number $i \in\{1, \ldots, N\}$

$$
d X_{t}^{i}=\alpha_{t}^{i} d t+d W_{t}^{i}+\sqrt{\eta} d B_{t}, \quad X_{0}^{i}=x_{0}, t \in[0, T]
$$

- independent noises $W^{1}, \ldots, W^{N}, B, \eta>0$
o choose control $\underbrace{\alpha_{t}^{i}}_{\text {at any } t}=$ prog. meas. w.r.t. $\sigma\left(W^{1}, \ldots, W^{N}, B\right)$

N－Particle System

－N interacting controlled players（state in \mathbb{R}^{d} ）
－dynamics of player number $i \in\{1, \ldots, N\}$

$$
d X_{t}^{i}=\alpha_{t}^{i} d t+d W_{t}^{i}+\sqrt{\eta} d B_{t}, \quad X_{0}^{i}=x_{0}, t \in[0, T]
$$

○ independent noises $W^{1}, \ldots, W^{N}, B, \bar{\mu}_{t}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{t}^{j}}$
－choose control $\alpha_{t}^{i}=\alpha^{i}\left(t, X_{t}^{1}, \cdots, X_{t}^{N}\right) \leadsto$ implicit formulation

N-Particle System

- N interacting controlled players (state in \mathbb{R}^{d})
- dynamics of player number $i \in\{1, \ldots, N\}$

$$
d X_{t}^{i}=\alpha_{t}^{i} d t+d W_{t}^{i}+\sqrt{\eta} d B_{t}, \quad X_{0}^{i}=x_{0}, t \in[0, T]
$$

○ independent noises $W^{1}, \ldots, W^{N}, B, \bar{\mu}_{t}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{t}^{j}}$

- choose control $\alpha_{t}^{i}=\alpha^{i}\left(t, X_{t}^{1}, \cdots, X_{t}^{N}\right) \sim$ implicit formulation
- Willing to minimize cost $J^{i}\left(\alpha^{1}, \ldots, \alpha^{N}\right)$ with mean-field interaction

$$
J^{i}(\ldots)=\mathbb{E}\left[g\left(X_{T}^{i}, \bar{\mu}_{T}^{N}\right)+\int_{0}^{T} f\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{i}\right) d t\right]
$$

○ $g(x, \mu)$ and $f(x, \mu, \alpha)$ with $x \in \mathbb{R}^{d}, \mu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ and $\alpha \in A \subset \mathbb{R}^{k}$

- f convex in $\alpha \leadsto$ typical instance $f(x, \mu, \alpha)=f(x, \mu)+\frac{1}{2}|\alpha|^{2}$

Nash equilibrium

- If each particle / player decides in its own way to minimize

$$
J^{i}\left(\boldsymbol{\alpha}^{1}, \ldots, \boldsymbol{\alpha}^{N}\right)
$$

\circ depends on the others! \Rightarrow consensus? \leadsto Nash equilibrium

- N-tuple $\left(\boldsymbol{\alpha}^{1, \star}, \ldots, \boldsymbol{\alpha}^{N, \star}\right)=$ equilibrium if no incentive to quit
\circ if unilateral change $\alpha^{i, \star} \leadsto \alpha^{i} \Rightarrow J^{i} \nearrow$

$$
J^{i}\left(\alpha^{1, \star}, \ldots, \alpha^{i, \star}, \ldots, \alpha^{N, \star}\right) \leq J^{i}\left(\alpha^{1, \star}, \ldots, \alpha^{i}, \ldots \alpha^{N, \star}\right)
$$

- Meaning of the freezing $\boldsymbol{\alpha}^{1, \star}, \ldots, \boldsymbol{\alpha}^{i-1, \star}, \boldsymbol{\alpha}^{i+1, \star}, \boldsymbol{\alpha}^{N, \star}$?
- closed loop control $\sim \alpha_{t}^{i}=\alpha^{i}\left(t, X_{t}^{1}, \ldots, X_{t}^{N}\right) \leadsto$ players choose their strategy depending on the states of the others \sim SDE
- freezing means freezing the functions $\alpha^{\star, 1}, \ldots, \alpha^{\star, N}$ and not the processes
- N-particle system $\sim N$-player game

Nash System

- N fixed $\leadsto N$ player game equilibrium described by PDE system
- unique Markovian equilibrium with bounded feedback function \leadsto given by $N \times(N d)$ Nash system $\leadsto v^{N, i}$ value function to player i

$$
\begin{aligned}
& \partial_{t} v^{N, i}(t, \boldsymbol{x})+ \frac{1}{2} \\
& \sum_{j} \Delta_{x_{j}} v^{N, i}(t, \boldsymbol{x})+\frac{\eta}{2} \sum_{j, k} \operatorname{Tr} \partial_{x_{j}, x_{k}}^{2} v^{N, i}(t, \boldsymbol{x}) \\
&-\sum_{j \neq i} \partial_{x_{j}} v^{N, j}(t, \boldsymbol{x}) \cdot \partial_{x_{j}} v^{N, i}(t, \boldsymbol{x}) \\
&-\frac{1}{2}\left|\partial_{x_{i}} v^{N, i}(t, \boldsymbol{x})\right|^{2}+f\left(x_{i}, \bar{\mu}_{x}^{N}\right)=0
\end{aligned}
$$

- mean field $\bar{\mu}_{\boldsymbol{x}}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{x_{j}} \quad \boldsymbol{x}=\left(x_{1}, \cdots, x_{N}\right) \in\left(\mathbb{R}^{d}\right)^{N}$
- boundary condition $v^{N, i}(T, \boldsymbol{x})=g\left(x_{i}, \bar{\mu}_{x}^{N}\right)$
- $v^{N, i}(t, \boldsymbol{x})=$ equilibrium cost to player i when
the system starts from \boldsymbol{x} at time t

Nash System

- N fixed $\leadsto N$ player game equilibrium described by PDE system
- unique Markovian equilibrium with bounded feedback function \leadsto given by $N \times(N d)$ Nash system $\leadsto v^{N, i}$ value function to player i

$$
\begin{aligned}
& \partial_{t} v^{N, i}(t, \boldsymbol{x})+ \frac{1}{2} \\
& \sum_{j} \Delta_{x_{j}} v^{N, i}(t, \boldsymbol{x})+\frac{\eta}{2} \sum_{j, k} \operatorname{Tr} \partial_{x_{j}, x_{k}}^{2} v^{N, i}(t, \boldsymbol{x}) \\
&-\sum_{j \neq i} \partial_{x_{j}} v^{N, j}(t, \boldsymbol{x}) \cdot \partial_{x_{j}} v^{N, i}(t, \boldsymbol{x}) \\
&-\frac{1}{2}\left|\partial_{x_{i}} v^{N, i}(t, \boldsymbol{x})\right|^{2}+f\left(x_{i}, \bar{\mu}_{x}^{N}\right)=0
\end{aligned}
$$

\circ mean field $\bar{\mu}_{x}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{x_{j}} \quad \boldsymbol{x}=\left(x_{1}, \cdots, x_{N}\right) \in\left(\mathbb{R}^{d}\right)^{N}$

- boundary condition $v^{N, i}(T, \boldsymbol{x})=g\left(x_{i}, \bar{\mu}_{x}^{N}\right)$
- Trajectories at equilibrium

$$
d X_{t}^{i}=-\partial_{x_{i}} v^{N, i}\left(t, X_{t}^{1}, \cdots, X_{t}^{N}\right) d t+d W_{t}+\sqrt{\eta} d B_{t}
$$

Nash System

- N fixed $\sim N$ player game equilibrium described by PDE system
- unique Markovian equilibrium with bounded feedback function \leadsto given by $N \times(N d)$ Nash system $\leadsto v^{N, i}$ value function to player i

$$
\begin{aligned}
\partial_{t} v^{N, i}(t, \boldsymbol{x})+\frac{1}{2} & \sum_{j} \Delta_{x_{j}} v^{N, i}(t, \boldsymbol{x})+\frac{\eta}{2} \sum_{j, k} \operatorname{Tr} \partial_{x_{j}, x_{k}}^{2} v^{N, i}(t, \boldsymbol{x}) \\
& -\sum_{j \neq i} \partial_{x_{j}} v^{N, j}(t, \boldsymbol{x}) \cdot \partial_{x_{j}} v^{N, i}(t, \boldsymbol{x}) \\
& -\frac{1}{2}\left|\partial_{x_{i}} v^{N, i}(t, \boldsymbol{x})\right|^{2}+f\left(x_{i}, \bar{\mu}_{x}^{N}\right)=0
\end{aligned}
$$

\circ mean field $\bar{\mu}_{x}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{x_{j}} \quad \boldsymbol{x}=\left(x_{1}, \cdots, x_{N}\right) \in\left(\mathbb{R}^{d}\right)^{N}$

- boundary condition $v^{N, i}(T, \boldsymbol{x})=g\left(x_{i}, \bar{\mu}_{x}^{N}\right)$
- Well-posed system with bounded gradient and solution is symmetric

$$
\begin{gathered}
v^{N, i}(t, \boldsymbol{x})=v^{N}\left(t, x_{i},\left(x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots\right)\right) \\
v^{N}(\cdot, \cdot) \text { symmetric in the second argument }
\end{gathered}
$$

Nash System

- N fixed $\sim N$ player game equilibrium described by PDE system
- unique Markovian equilibrium with bounded feedback function \leadsto given by $N \times(N d)$ Nash system $\leadsto v^{N, i}$ value function to player i

$$
\begin{aligned}
& \partial_{t} v^{N, i}(t, \boldsymbol{x})+ \frac{1}{2} \\
& \sum_{j} \Delta_{x_{j}} v^{N, i}(t, \boldsymbol{x})+\frac{\eta}{2} \sum_{j, k} \operatorname{Tr} \partial_{x_{j}, x_{k}}^{2} v^{N, i}(t, \boldsymbol{x}) \\
&-\sum_{j \neq i} \partial_{x_{j}} v^{N, j}(t, \boldsymbol{x}) \cdot \partial_{x_{j}} v^{N, i}(t, \boldsymbol{x}) \\
&-\frac{1}{2}\left|\partial_{x_{i}} N^{N, i}(t, \boldsymbol{x})\right|^{2}+f\left(x_{i}, \bar{\mu}_{x}^{N}\right)=0
\end{aligned}
$$

- mean field $\bar{\mu}_{x}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{x_{j}} \quad \boldsymbol{x}=\left(x_{1}, \cdots, x_{N}\right) \in\left(\mathbb{R}^{d}\right)^{N}$
- boundary condition $v^{N, i}(T, \boldsymbol{x})=g\left(x_{i}, \bar{\mu}_{x}^{N}\right)$
- Guess is $v^{N, i}(t, \boldsymbol{x}) \approx \mathcal{U}\left(t, x_{i}, \bar{\mu}_{x}^{N}\right)$ with $\mathcal{U}:[0, \mathrm{~T}] \times \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$
- $\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i}}$ should be close the empirical distribution of

$$
d \hat{X}_{t}^{i}=-\partial_{x} \mathcal{U}\left(t, \hat{X}_{t}^{i}, \frac{1}{N} \sum_{i=1}^{N} \delta_{\hat{X}_{t}^{i}}\right) d t+d W_{t}^{i}+\sqrt{\eta} d B_{t}
$$

Part II．Master equation

Differential calculus on Wasserstein space

- Goal is to write a PDE for \mathcal{U} by plugging $u^{N, i}(t, \boldsymbol{x})=\mathcal{U}\left(t, x_{i}, \bar{\mu}_{x}^{N}\right)$ as nearly solution of Nash
- use differential calculus on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \sim$ Lions' approach
- Given $\mathcal{U}: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R} \leadsto$ define lifting of \mathcal{U}

$$
\hat{\mathcal{U}}: L^{2}(\Omega, \mathbb{P}) \ni X \mapsto \mathcal{U}(\mathcal{L}(X)=\operatorname{Law}(X))
$$

- \mathcal{U} differentiable if $\hat{\mathcal{U}}$ Fréchet differentiable
- Differential of $\mathcal{U} \leadsto$ Fréchet derivative of $\hat{\mathcal{U}}$

$$
D \hat{\mathcal{U}}(X)=\partial_{\mu} \mathcal{U}(\mu)(X), \quad \partial_{\mu} \mathcal{U}(\mu): \mathbb{R}^{d} \ni x \mapsto \partial_{\mu} \mathcal{U}(\mu)(x) \quad \mu=\mathcal{L}(X)
$$

- derivative of \mathcal{U} in $\mu \sim \partial_{\mu} \mathcal{U}(\mu) \in L^{2}\left(\mathbb{R}^{d}, \mu ; \mathbb{R}^{d}\right)$
- Finite-dimensional projection

$$
\partial_{x_{i}}\left[\mathcal{U}\left(\frac{1}{N} \sum_{j=1}^{N} \delta_{x_{j}}\right)\right]=\frac{1}{N} \partial_{\mu} \mathcal{U}\left(\frac{1}{N} \sum_{j=1}^{N} \delta_{x_{j}}\right)\left(x_{i}\right), \quad x_{1}, \ldots, x_{N} \in \mathbb{R}^{d}
$$

- Example: $U(\mu)=\int_{\mathbb{R}^{d}} h(y) d \mu(y) \Rightarrow \partial_{\mu} U(\mu)(v)=\nabla h(v)$

Second-order differentiability

- Need for existence of second-order derivatives
- asking the lift to be twice Fréchet is too strong
- only discuss the existence of second-order partial derivatives
- Requires
- $\partial_{\mu} \mathcal{U}(\mu)(v)$ is differentiable in v and μ

$$
\partial_{\nu} \partial_{\mu} \mathcal{U}(\mu)(v) \quad \partial_{\mu}^{2} \mathcal{U}(\mu)\left(v, v^{\prime}\right)
$$

- $\partial_{\nu} \partial_{\mu} \mathcal{U}(\mu)(v)$ and $\partial_{\mu}^{2} \mathcal{U}(\mu)\left(v, \nu^{\prime}\right)$ continuous in $\left(\mu, v, v^{\prime}\right)$ (for W_{2} in μ) with suitable growth
- Finite-dimensional projection

$$
\begin{aligned}
\partial_{x_{i} x_{j}}^{2}\left[\mathcal{U}\left(\frac{1}{N} \sum_{k=1}^{N} \delta_{x_{k}}\right)\right]= & \frac{1}{N} \partial_{v} \partial_{\mu} \mathcal{U}\left(\frac{1}{N} \sum_{k=1}^{N} \delta_{x_{k}}\right)\left(x_{i}\right) \delta_{i, j} \\
& +\frac{1}{N^{2}} \partial_{\mu}^{2} \mathcal{U}\left(\frac{1}{N} \sum_{k=1}^{N} \delta_{x_{k}}\right)\left(x_{i}, x_{j}\right)
\end{aligned}
$$

Connection with the master equation

- Strategy is to regard $u^{N, i}(t, \boldsymbol{x})=\mathcal{U}\left(t, x_{i}, \bar{\mu}_{x}^{N}\right)$ as nearly solution
- First-order terms

$$
\partial_{x_{j}} u^{N, i}(t, \boldsymbol{x})=\begin{aligned}
& \partial_{x} \mathcal{U}\left(t, x_{i}, \bar{\mu}_{x}^{N}\right)+O\left(\frac{1}{N}\right) \quad \text { if } j=i \\
& \frac{1}{N} \partial_{\mu} \mathcal{U}\left(t, x_{i}, \bar{\mu}_{x}^{N}\right)\left(x_{j}\right) \quad \text { if } j \neq i
\end{aligned}
$$

- Hamiltonian

$$
\begin{aligned}
& -\frac{1}{2}\left|\partial_{x_{i}} u^{N, i}(t, \boldsymbol{x})\right|^{2}+f\left(x_{i}, \bar{\mu}_{x}^{N}\right)=-\frac{1}{2}\left|\partial_{x} \mathcal{U}\left(t, x_{i}, \bar{\mu}_{x}^{N}\right)\right|^{2}+f\left(x_{i}, \bar{\mu}_{x}^{N}\right)+O\left(\frac{1}{N}\right) \\
& \quad \circ \text { drift terms }
\end{aligned}
$$

$$
\begin{aligned}
& -\sum_{j \neq i} \partial_{x_{j}} u^{N, j}(t, \boldsymbol{x}) \cdot \partial_{x_{j}} u^{N, i}(t, \boldsymbol{x}) \\
& \quad=-\frac{1}{N} \sum_{j \neq i} \partial_{x} \mathcal{U}\left(t, x_{j}, \bar{\mu}_{x}^{N}\right) \cdot \partial_{\mu} \mathcal{U}\left(t, x_{i}, \bar{\mu}_{x}^{N}\right)\left(x_{j}\right)+O\left(\frac{1}{N}\right) \\
& \quad=-\int_{\mathbb{R}^{d}} \partial_{x} \mathcal{U}\left(t, v, \bar{\mu}_{x}^{N}\right) \cdot \partial_{\mu} \mathcal{U}\left(t, x_{i}, \bar{\mu}_{x}^{N}\right)(v) d \bar{\mu}_{x}^{N}(v)+O\left(\frac{1}{N}\right)
\end{aligned}
$$

- up to $O\left(\frac{1}{N}\right) \leadsto$ yields first order terms of a $\mathrm{PDE}_{\mathrm{f}}$ for \mathcal{U}

Form of the master equation

- Treat second order terms in the same way and get that \mathcal{U} should satisfy Master equation at order 2

$$
\begin{aligned}
& \partial_{t} \mathcal{U}(t, x, \mu)-\int_{\mathbb{R}^{d}} \partial_{x} \mathcal{U}(t, v, \mu) \cdot \partial_{\mu} \mathcal{U}(t, x, \mu, v) d \mu(v) \\
& \quad-\frac{1}{2}\left|\partial_{x} \mathcal{U}(t, x, \mu)\right|^{2}+f(x, \mu)+\frac{1}{2}(1+\eta) \operatorname{Trace}\left(\partial_{x}^{2} \mathcal{U}(t, x, \mu)\right) \\
& \quad+\frac{1}{2}(1+\eta) \int_{\mathbb{R}^{d}} \operatorname{Trace}\left(\partial_{v} \partial_{\mu} \mathcal{U}(t, x, \mu)(v)\right) d \mu(v) \\
& \quad+\eta \int_{\mathbb{R}^{d}} \operatorname{Trace}\left(\partial_{x} \partial_{\mu} \mathcal{U}(t, x, \mu)(v)\right) d \mu(v) \\
& \quad+\frac{1}{2} \eta \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \operatorname{Trace}\left(\partial_{\mu}^{2} \mathcal{U}(t, x, \mu)\left(v, v^{\prime}\right)\right) d \mu(v) d \mu\left(v^{\prime}\right)=0
\end{aligned}
$$

- Not a proof of existence of a smooth solution!
- This should be proved first

Connection with the MFG system $(\eta=0)$

- Regard \mathcal{U} as the generalized value function of the MFG system

$$
\circ \mathcal{U}\left(t_{0}, x_{0}, \mu^{0}\right)=u^{\mu: \mu_{0}=\mu^{0}}\left(t_{0}, x_{0}\right)
$$

- Optimization in environment $\left(\mu_{t}\right)_{t \in[0, T]} \leadsto$ HJB equation
- $u(t, x)=$ minimal cost under $\left(\mu_{t}\right)_{t \in[0, T]}$ when $X_{t}=x \in \mathbb{R}^{d}$

$$
\begin{aligned}
& \partial_{t} u(t, x)+\frac{1}{2} \Delta u(t, x)-\underbrace{\frac{1}{2}\left|\partial_{x} u(t, x)\right|^{2}}_{\inf _{\alpha}\left[\alpha \cdot \partial_{x} u(t, x)+\frac{1}{2}|\alpha|^{2}\right]}+f\left(x, \mu_{t}\right)=0 \\
& u(T, x)=g\left(x, \mu_{T}\right)
\end{aligned}
$$

- Dynamics of $\left(\mu_{t}\right)_{t \in[0, T]}$
- Fokker-Planck with optimal feedback is $\alpha^{\star}(t, x)=-\partial_{x} u(t, x)$

$$
\partial_{t} \mu_{t}-\frac{1}{2} \Delta \mu_{t}-\operatorname{div}\left(\mu_{t} \partial_{x} u(t, x)\right)=0 \quad\left\{\begin{array}{l}
t \in[0, T] \\
\mu_{0}=\delta_{x_{0}}
\end{array}\right.
$$

- marginal law of diffusion process

$$
d X_{t}^{\star}=-\partial_{x} u\left(t, X_{t}^{\star}\right) d t+d W_{t}=-\partial_{x} \mathcal{U}\left(t, X_{t}^{\star}, \mathcal{L}\left(X_{t}^{\star}\right)\right) d t+d W_{t}
$$

Connection with the MFG system $(\eta>0)$

- Regard \mathcal{U} as the generalized value function of the MFG system

$$
\circ \mathcal{U}\left(t_{0}, x_{0}, \mu^{0}\right)=u^{\mu: \mu_{0}=\mu^{0}}\left(t_{0}, x_{0}\right)
$$

- Optimization in environment $\left(\mu_{t}\right)_{t \in[0, T]} \leadsto$ HJB equation
- $u(t, x)=$ minimal cost under $\left(\mu_{t}\right)_{t \in[0, T]}$ when $X_{t}=x \in \mathbb{R}^{d}$

$$
\begin{aligned}
& \partial_{t} u(t, x)+\frac{1}{2} \Delta u(t, x)-\underbrace{\frac{1}{2}\left|\partial_{x} u(t, x)\right|^{2}}_{\inf _{\alpha}\left[\alpha \cdot \partial_{x} u(t, x)+\frac{1}{2}|\alpha|^{2}\right]}+f\left(x, \mu_{t}\right)=0 \\
& u(T, x)=g\left(x, \mu_{T}\right)
\end{aligned}
$$

- Dynamics of $\left(\mu_{t}\right)_{t \in[0, T]}$
- Fokker-Planck with optimal feedback is $\alpha^{\star}(t, x)=-\partial_{x} u(t, x)$

$$
\partial_{t} \mu_{t}-\frac{1}{2} \Delta \mu_{t}-\operatorname{div}\left(\mu_{t} \partial_{x} u(t, x)\right)+\sqrt{\eta} \operatorname{div}\left(\mu_{t} \frac{d B_{t}}{d t}\right)=0
$$

- marginal law of diffusion process

$$
d X_{t}^{\star}=-\partial_{x} \mathcal{U}\left(t, X_{t}^{\star}, \mathcal{L}\left(X_{t}^{\star} \mid B\right)\right) d t+d W_{t}+\sqrt{\eta} d B_{t}
$$

Solving the master equation

- Well posedness of \mathcal{U} requires \exists ! for MFG system
- Need additional monotonicity condition to prevent shocks
- Lasry-Lions monotonicity in direction μ (same with g)

$$
\int_{\mathbb{R}^{d}}\left(f(x, \mu)-f\left(x, \mu^{\prime}\right)\right) d\left(\mu-\mu^{\prime}\right)(x) \geq 0
$$

- Example: let L be \nearrow and ρ be even and set

$$
h(x, \mu)=\int_{\mathbb{R}^{d}} L(\rho \star \mu(z)) \rho(x-z) d z
$$

- Linearization \leadsto differentiability in $\mu^{0} \leadsto$ use convex perturbation
- requires smooth coefficients with bounded derivatives

$$
\begin{aligned}
& \left.\frac{d}{d \varepsilon} \right\rvert\, \varepsilon=0+u^{(1-\varepsilon) \mu+\varepsilon \mu^{\prime}}\left(t_{0}, \cdot\right)=\left.\frac{d}{d \varepsilon}\right|_{\mid \varepsilon=0+} \mathcal{U}\left(t_{0}, \cdot,(1-\varepsilon) \mu+\varepsilon \mu^{\prime}\right) \\
&=\int_{\mathbb{R}^{d}} \mathcal{V}\left(t_{0}, \cdot, \mu\right)(y) d\left(\mu^{\prime}-\mu\right)(y) \\
& \circ \partial_{y} \mathcal{V}\left(t_{0}, \cdot, \mu\right)(y)=\partial_{\mu} \mathcal{U}\left(t_{0}, \cdot, \mu\right)(y)
\end{aligned}
$$

Part III. Convergence

Connection Nash system/master equation

- Now it makes sense to let $u^{N, i}(t, \boldsymbol{x})=\mathcal{U}\left(t, x_{i}, \bar{\mu}_{x}^{N}\right)$
- Using smoothness of \mathcal{U} at order $2 \sim$ we show

$$
\begin{array}{rl}
\partial_{t} u^{N, i}(t, \boldsymbol{x})+ & \frac{1}{2}
\end{array} \sum_{j} \Delta_{x_{j}} u^{N, i}(t, \boldsymbol{x})+\frac{\eta}{2} \sum_{j, k} \operatorname{Tr} D_{x_{j}, x_{k}}^{2} u^{N, i}(t, \boldsymbol{x}) ~ 子{ }_{j \neq i} \partial_{x_{j}} u^{N, i}(t, \boldsymbol{x}) \cdot \partial_{x_{j}} u^{N, j}(t, \boldsymbol{x}) \quad 1 \quad \underbrace{r^{N, i}(t, \boldsymbol{x})}_{\left|r^{N, i}\right| \leq C / N})=0
$$

○ with $\bar{x}^{N}=\frac{1}{N} \sum_{j=1}^{N} x_{j}$

- Propagation of reminder $O(1 / N)$ among N players?

Comparison of value functions

- Equilibrium trajectories of the N player game

$$
d X_{t}^{N, i}=-\partial_{x_{i}} v^{N, i}\left(t, X_{t}^{N, 1}, \cdots, X_{t}^{N, N}\right) d t+d W_{t}^{i}+\sqrt{\eta} d B_{t}
$$

- Value processes

$$
\begin{array}{ll}
Y_{t}^{N, i}=v^{N, i}\left(t, X_{t}^{N, 1}, \cdots, X_{t}^{N, N}\right), & Z_{t}^{N, i, j}=\partial_{x_{j}} \nu^{N, i}\left(t, X_{t}^{N, 1}, \cdots, X_{t}^{N, N}\right) \\
\hat{Y}_{t}^{N, i}=u^{N, i}\left(t, X_{t}^{N, 1}, \cdots, X_{t}^{N, N}\right), & \hat{Z}_{t}^{N, i, j}=\partial_{x_{j}} u^{N, i}\left(t, X_{t}^{N, 1}, \cdots, X_{t}^{N, N}\right)
\end{array}
$$

- Itô's formula

$$
\begin{aligned}
& d Y_{t}^{N, i}=-\left(\frac{1}{2}\left|Z_{t}^{N, i, i}\right|^{2}+f\left(X_{t}^{N, i}, \bar{\mu}_{t}^{N}\right)\right) d t+\sum_{j} Z_{t}^{N, i, j} \cdot\left(d W_{t}^{j}+\sqrt{\eta} d B_{t}\right) \\
& d \hat{Y}_{t}^{N, i}=-\left(\frac{1}{2}\left|\hat{Z}_{t}^{N, i, i}\right|^{2}+f\left(X_{t}^{N, i}, \bar{\mu}_{t}^{N}\right)+r^{N, i}\left(t, X_{t}^{N, i}\right)\right) d t \\
& \quad+\sum_{j} \hat{Z}_{t}^{N, i, j} \cdot\left(\hat{Z}_{t}^{N, j, j}-Z_{t}^{N, j, j}\right) d t+\sum_{j} \hat{Z}_{t}^{N, i, j} \cdot\left(d W_{t}^{j}+\sqrt{\eta} d B_{t}\right)
\end{aligned}
$$

with $Y_{T}^{N, i}=g\left(X_{T}^{i}, \bar{\mu}_{T}^{N}\right)$ and $\hat{Y}_{T}^{N, i}=g\left(X_{T}^{i}, \bar{\mu}_{T}^{N}\right)$, and $\bar{\mu}_{t}^{N}=\frac{1}{N} \sum_{j} \delta_{X_{t}^{N, j}}$

Stability argument

- Difference between two dynamics

$$
\begin{aligned}
& d\left(\hat{Y}_{t}^{N, i}-Y_{t}^{N, i}\right) \\
&=-[\frac{1}{2}\left|\hat{Z}_{t}^{N, i, i,}\right|^{2}-\frac{1}{2}\left|Z_{t}^{N, i, i,}\right|^{2}+\underbrace{r^{N, i}\left(t, X_{t}^{N, i}\right)}_{\sim C / N}] d t \\
&+\sum_{j} \underbrace{\hat{Z}_{t}^{N, i, j}}_{\leq C N}\left(\hat{Z}_{t}^{N, j, j}-Z_{t}^{N, j, j}\right) d t \\
&+\sum_{j}\left(\hat{Z}_{t}^{N, i, j}-Z_{t}^{N, i, j}\right) \cdot d W_{t}^{j}+\left(\sum_{j} \hat{Z}_{t}^{N, i, j}-\sum_{j} Z_{t}^{N, i, j}\right) \cdot \sqrt{\eta} d B_{t}
\end{aligned}
$$

- Observe that $\hat{Y}_{T}^{N, i}=Y_{T}^{N, i}$
- if no $d t$ terms except $O(1 / N)$

$$
\begin{aligned}
& \hat{Y}_{t}^{N, i}-Y_{t}^{N, i} \\
& +\int_{t}^{T} \sum_{j}\left(\hat{Z}_{t}^{N, i, j}-Z_{t}^{N, i, j}\right) \cdot d W_{s}^{j}+\left(\sum_{j} \hat{Z}_{t}^{N, i, j}-\sum_{j} Z_{t}^{N, i, j}\right) \cdot \sqrt{\eta} d B_{s}=O\left(\frac{1}{N}\right)
\end{aligned}
$$

Stability argument

- Difference between two dynamics

$$
\begin{aligned}
& d\left(\hat{Y}_{t}^{N, i}-Y_{t}^{N, i}\right) \\
&=-[\frac{1}{2}\left|\hat{Z}_{t}^{N, i, i,}\right|^{2}-\frac{1}{2}\left|Z_{t}^{N, i, i,}\right|^{2}+\underbrace{r^{N, i}\left(t, X_{t}^{N, i}\right)}_{\sim C / N}] d t \\
&+\sum_{j} \underbrace{\hat{Z}_{t}^{N, i, j}}_{\leq C N}\left(\hat{Z}_{t}^{N, j, j}-Z_{t}^{N, j, j}\right) d t \\
&+\sum_{j}\left(\hat{Z}_{t}^{N, i, j}-Z_{t}^{N, i, j}\right) \cdot d W_{t}^{j}+\left(\sum_{j} \hat{Z}_{t}^{N, i, j}-\sum_{j} Z_{t}^{N, i, j}\right) \cdot \sqrt{\eta} d B_{t}
\end{aligned}
$$

- Observe that $\hat{Y}_{T}^{N, i}=Y_{T}^{N, i}$
- if no $d t$ terms except $O(1 / N)$
$\mathbb{E}\left[\left|\hat{Y}_{t}^{N, i}-Y_{t}^{N, i}\right|^{2}\right]$

$$
+\mathbb{E} \int_{t}^{T} \sum_{j}\left|\hat{Z}_{t}^{N, i, j}-Z_{t}^{N, i, j}\right|^{2}+\eta \mathbb{E} \int_{t}^{T}\left|\sum_{j} \hat{Z}_{t}^{N, i, j}-\sum_{j} Z_{t}^{N,, i, j}\right|^{2} d s=O\left(\frac{1}{N^{2}}\right)
$$

Stability argument

- Difference between two dynamics

$$
\begin{aligned}
& d\left(\hat{Y}_{t}^{N, i}-Y_{t}^{N, i}\right) \\
&=-[\frac{1}{2}\left|\hat{Z}_{t}^{N,, i, i}\right|^{2}-\frac{1}{2}\left|Z_{t}^{N, i, i}\right|^{2}+\underbrace{r^{N, i}\left(t, X_{t}^{N, i}\right)}_{\sim C / N}] d t \\
&+\sum_{j} \underbrace{\hat{Z}_{t}^{N, i, j}}_{\leq C / N \text { if } i \neq j}\left(\hat{Z}_{t}^{N, j, j}-Z_{t}^{N, j, j}\right) d t \\
&+\sum_{j}\left(\hat{Z}_{t}^{N, i, j}-Z_{t}^{N, i, j}\right) \cdot d W_{t}^{j}+\left(\sum_{j} \hat{Z}_{t}^{N, i, j}-\sum_{j} Z_{t}^{N, i, j}\right) \cdot \sqrt{\eta} d B_{t}
\end{aligned}
$$

- Do as if $|\cdot|^{2}$ is Lipschitz \leadsto take the square and \mathbb{E}

$$
\begin{aligned}
& \mathbb{E}\left[\left|\hat{Y}_{t}^{N, i}-Y_{t}^{N, i}\right|^{2}+\int_{t}^{T} \sum_{j=1}^{N}\left|\hat{Z}_{s}^{N, i, j}-Z_{s}^{N, i, i,}\right|^{2} d s\right] \\
& \leq \frac{C_{\epsilon}}{N^{2}}+\epsilon \mathbb{E} \int_{t}^{T}\left|\hat{Z}_{s}^{N, i, i}-Z_{s}^{N, i, i}\right|^{2} d s+\frac{\epsilon}{N} \sum_{j} \mathbb{E} \int_{t}^{T}\left|\hat{Z}_{s}^{N, j, j}-Z_{s}^{N, j, j}\right|^{2} d s
\end{aligned}
$$

Stability argument

- Difference between two dynamics

$$
\begin{aligned}
& d\left(\hat{Y}_{t}^{N, i}-Y_{t}^{N, i}\right) \\
&=-[\frac{1}{2}\left|\hat{Z}_{t}^{N, i, i,}\right|^{2}-\frac{1}{2}\left|Z_{t}^{N, i, i}\right|^{2}+\underbrace{r^{N, i}\left(t, X_{t}^{N, i}\right)}_{\sim C / N}] d t \\
&+\sum_{j} \underbrace{\hat{Z}_{t}^{N, i, j}}_{\leq C / N \text { if } i \neq j}\left(\hat{Z}_{t}^{N, j, j}-Z_{t}^{N, j, j}\right) d t \\
&+\sum_{j}\left(\hat{Z}_{t}^{N, i, j}-Z_{t}^{N, i, j}\right) \cdot d W_{t}^{j}+\left(\sum_{j} \hat{Z}_{t}^{N, i, j}-\sum_{j} Z_{t}^{N, i, j}\right) \cdot \sqrt{\eta} d B_{t}
\end{aligned}
$$

- To handle the square \leadsto exponential transform \Rightarrow final result

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|\hat{Y}_{t}^{N, i}-Y_{t}^{N, i}\right|^{2}\right]+\mathbb{E} \int_{0}^{T}\left|\hat{Z}_{t}^{N, i, i}-Z_{t}^{N, i, i,}\right|^{2} d t \leq \frac{C}{N^{2}}
$$

- Inserting in the forward equation

$$
\begin{aligned}
d X_{t}^{N, i} & =-Z_{t}^{N, i, i} d t+d W_{t}^{i}+\sqrt{\eta} d B_{t} \\
& \approx-\hat{Z}_{t}^{N, i, i} d t+d W_{t}^{i}+\sqrt{\eta} d B_{t}
\end{aligned}
$$

Part IV. Rate of convergence

Fluctuations

- Equilibrium trajectories of the N player game

$$
\begin{aligned}
d X_{t}^{N, i} & =-\partial_{x_{i}} v^{N, i}\left(t, X_{t}^{N, 1}, \cdots, X_{t}^{N, N}\right) d t+d W_{t}^{i}+\sqrt{\eta} d B_{t} \\
& =-\left[\partial_{x} \mathcal{U}\left(t, X_{t}^{N, i}, \frac{1}{N} \sum_{j=1}^{N} \delta_{X_{t}^{N, j}}\right)+O\left(\frac{1}{N}\right)\right] d t+d W_{t}^{i}+\sqrt{\eta} d B_{t}
\end{aligned}
$$

- Compare with

$$
d \hat{X}_{t}^{N, i}=-\partial_{x} \mathcal{U}\left(t, \hat{X}_{t}^{N, i}, \frac{1}{N} \sum_{j=1}^{N} \delta_{\hat{X}_{t}^{N, j}}\right) d t+d W_{t}^{i}+\sqrt{\eta} d B_{t}
$$

- get $\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|\hat{X}_{t}^{N, i}-X_{t}^{N, i}\right|^{2}\right] \leq \frac{C}{N^{2}}$
\circ and $\mathbb{E}\left[\sup _{0 \leq t \leq T} W_{2}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{\hat{X}_{t}^{N, i}}, \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{N, i}}\right)^{2}\right] \leq \frac{C}{N^{2}}$
- Limit is $\partial_{t} \mu_{t}-\frac{1}{2} \Delta \mu_{t}-\operatorname{div}\left(\mu_{t} \partial_{x} \mathcal{U}\left(t, \cdot, \mu_{t}\right)\right)+\sqrt{\eta} \operatorname{div}\left(\mu_{t} \dot{B}_{t}\right)=0$

