Fluctuations and deviations in MFG

Ki-Net Conference Maryland

18-21 April 2017

François Delarue (Nice – J.-A. Dieudonné)

April 19th 2017

Joint works: Cardaliaguet, Lasry and Lions; Carmona; Lacker and Ramanan

Part I. Motivation

- *N* interacting controlled players (state in \mathbb{R}^d)
 - ∘ dynamics of player number $i \in \{1, ..., N\}$

$$dX_t^i = \alpha_t^i dt + dW_t^i \qquad , \quad X_0^i = x_0, \ t \in [0,T]$$

- \circ independent noises W^1, \ldots, W^N ,
- \circ choose control $\underbrace{\alpha_t^i}_{\text{at any }t}$ = prog. meas. w.r.t. $\sigma(W^1,\ldots,W^N,\)$

- *N* interacting controlled players (state in \mathbb{R}^d)
 - ∘ dynamics of player number $i \in \{1, ..., N\}$

$$dX_t^i = \alpha_t^i dt + dW_t^i + \sqrt{\eta} dB_t, \quad X_0^i = x_0, \ t \in [0, T]$$

- \circ independent noises $W^1, \ldots, W^N, B, \eta > 0$
- \circ choose control $\underbrace{\alpha_t^i}_{\text{at any }t}$ = prog. meas. w.r.t. $\sigma(W^1,\ldots,W^N,\textbf{\textit{B}})$

- *N* interacting controlled players (state in \mathbb{R}^d)
 - \circ dynamics of player number $i \in \{1, ..., N\}$

$$dX_t^i = \alpha_t^i dt + dW_t^i + \sqrt{\eta} dB_t, \quad X_0^i = x_0, \ t \in [0, T]$$

$$\circ$$
 independent noises $W^1, \ldots, W^N, B, \ \bar{\mu}_t^N = \frac{1}{N} \sum_{j=1}^N \delta_{X_t^j}$

 \circ choose control $\alpha_t^i = \alpha^i(t, X_t^1, \dots, X_t^N) \rightsquigarrow \text{implicit formulation}$

- *N* interacting controlled players (state in \mathbb{R}^d)
 - \circ dynamics of player number $i \in \{1, ..., N\}$

$$dX_t^i = \alpha_t^i dt + dW_t^i + \sqrt{\eta} dB_t, \quad X_0^i = x_0, \ t \in [0, T]$$

$$\circ$$
 independent noises $W^1, \ldots, W^N, B, \ \bar{\mu}_t^N = \frac{1}{N} \sum_{j=1}^N \delta_{X_t^j}$

- \circ choose control $\alpha_t^i = \alpha^i(t, X_t^1, \dots, X_t^N) \rightarrow \text{implicit formulation}$
- Willing to minimize cost $J^i(\alpha^1, ..., \alpha^N)$ with mean-field interaction

$$J^{i}(\ldots) = \mathbb{E}\Big[g(X_{T}^{i}, \bar{\mu}_{T}^{N}) + \int_{0}^{T} f(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{i}) dt\Big]$$

∘
$$g(x, \mu)$$
 and $f(x, \mu, \alpha)$ with $x \in \mathbb{R}^d$, $\mu \in \mathcal{P}(\mathbb{R}^d)$ and $\alpha \in A \subset \mathbb{R}^k$
∘ f convex in $\alpha \leadsto$ typical instance $f(x, \mu, \alpha) = f(x, \mu) + \frac{1}{2} |\alpha|^2$

Nash equilibrium

• If each particle / player decides in its own way to minimize

$$J^i(\alpha^1,\ldots,\alpha^N)$$

- depends on the others! ⇒ consensus? → Nash equilibrium
- *N*-tuple $(\alpha^{1,*}, \dots, \alpha^{N,*})$ = equilibrium if no incentive to quit • if unilateral change $\alpha^{i,*} \leadsto \alpha^i \Rightarrow J^i \nearrow$

$$J^{i}(\alpha^{1,\star},\ldots,\alpha^{i,\star},\ldots,\alpha^{N,\star}) \leq J^{i}(\alpha^{1,\star},\ldots,\alpha^{i},\ldots\alpha^{N,\star})$$

- Meaning of the freezing $\alpha^{1,\star}, \ldots, \alpha^{i-1,\star}, \alpha^{i+1,\star}, \alpha^{N,\star}$?
- \circ closed loop control $\rightsquigarrow \alpha_t^i = \alpha^i(t, X_t^1, \dots, X_t^N) \rightsquigarrow$ players choose their strategy depending on the states of the others \rightsquigarrow SDE
- \circ freezing means freezing the functions $\alpha^{\star,1},\ldots,\alpha^{\star,N}$ and not the processes
- *N*-particle system \sim *N*-player game

- N fixed \sim N player game equilibrium described by PDE system
- ∘ unique Markovian equilibrium with bounded feedback function \rightsquigarrow given by $N \times (Nd)$ Nash system $\rightsquigarrow v^{N,i}$ value function to player i

$$\partial_t v^{N,i}(t, \boldsymbol{x}) + \frac{1}{2} \sum_j \Delta_{x_j} v^{N,i}(t, \boldsymbol{x}) + \frac{\eta}{2} \sum_{j,k} \operatorname{Tr} \partial_{x_j, x_k}^2 v^{N,i}(t, \boldsymbol{x})$$
$$- \sum_{j \neq i} \partial_{x_j} v^{N,j}(t, \boldsymbol{x}) \cdot \partial_{x_j} v^{N,i}(t, \boldsymbol{x})$$
$$- \frac{1}{2} |\partial_{x_i} v^{N,i}(t, \boldsymbol{x})|^2 + f(x_i, \bar{\mu}_{\boldsymbol{x}}^N) = 0$$

∘ mean field
$$\bar{\mu}_{x}^{N} = \frac{1}{N} \sum_{j=1}^{N} \delta_{x_{j}}$$
 $x = (x_{1}, \dots, x_{N}) \in (\mathbb{R}^{d})^{N}$
∘ boundary condition $v^{N,i}(T, x) = g(x_{i}, \bar{\mu}_{x}^{N})$

• $v^{N,i}(t, \mathbf{x})$ = equilibrium cost to player i when

the system starts from x at time t

- N fixed \sim N player game equilibrium described by PDE system
- \circ unique Markovian equilibrium with bounded feedback function \rightarrow given by $N \times (Nd)$ Nash system $\rightarrow v^{N,i}$ value function to player i

$$\partial_t v^{N,i}(t, \boldsymbol{x}) + \frac{1}{2} \sum_j \Delta_{x_j} v^{N,i}(t, \boldsymbol{x}) + \frac{\eta}{2} \sum_{j,k} \operatorname{Tr} \partial_{x_j,x_k}^2 v^{N,i}(t, \boldsymbol{x})$$
$$- \sum_{j \neq i} \partial_{x_j} v^{N,j}(t, \boldsymbol{x}) \cdot \partial_{x_j} v^{N,i}(t, \boldsymbol{x})$$
$$- \frac{1}{2} |\partial_{x_i} v^{N,i}(t, \boldsymbol{x})|^2 + f(x_i, \bar{\mu}_x^N) = 0$$

• mean field $\bar{\mu}_{\mathbf{x}}^N = \frac{1}{N} \sum_{j=1}^N \delta_{x_j}$ $\mathbf{x} = (x_1, \dots, x_N) \in (\mathbb{R}^d)^N$

- boundary condition $v^{N,i}(T, \mathbf{x}) = g(x_i, \bar{\mu}_{\mathbf{x}}^N)$
- Trajectories at equilibrium

$$dX_t^i = -\partial_{x_i} v^{N,i}(t, X_t^1, \cdots, X_t^N) dt + dW_t + \sqrt{\eta} dB_t$$

- N fixed \sim N player game equilibrium described by PDE system
- \circ unique Markovian equilibrium with bounded feedback function \sim given by $N \times (Nd)$ Nash system $\sim v^{N,i}$ value function to player i

$$\partial_t v^{N,i}(t, \boldsymbol{x}) + \frac{1}{2} \sum_j \Delta_{x_j} v^{N,i}(t, \boldsymbol{x}) + \frac{\eta}{2} \sum_{j,k} \operatorname{Tr} \partial_{x_j, x_k}^2 v^{N,i}(t, \boldsymbol{x})$$
$$- \sum_{j \neq i} \partial_{x_j} v^{N,j}(t, \boldsymbol{x}) \cdot \partial_{x_j} v^{N,i}(t, \boldsymbol{x})$$
$$- \frac{1}{2} |\partial_{x_i} v^{N,i}(t, \boldsymbol{x})|^2 + f(x_i, \bar{\mu}_{\boldsymbol{x}}^N) = 0$$

o mean field
$$\bar{\mu}_x^N = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$$
 $\mathbf{x} = (x_1, \dots, x_N) \in (\mathbb{R}^d)^N$

- boundary condition $v^{N,i}(T, \mathbf{x}) = g(x_i, \bar{\mu}_{\mathbf{x}}^N)$
- Well-posed system with bounded gradient and solution is symmetric

$$v^{N,i}(t, \mathbf{x}) = v^N(t, x_i, (x_1, \dots, x_{i-1}, x_{i+1}, \dots))$$

 $v^N(\cdot, \cdot)$ symmetric in the second argument

- N fixed \sim N player game equilibrium described by PDE system
- \circ unique Markovian equilibrium with bounded feedback function \sim given by $N \times (Nd)$ Nash system $\sim v^{N,i}$ value function to player i

$$\partial_t v^{N,i}(t, \boldsymbol{x}) + \frac{1}{2} \sum_j \Delta_{x_j} v^{N,i}(t, \boldsymbol{x}) + \frac{\eta}{2} \sum_{j,k} \operatorname{Tr} \partial_{x_j, x_k}^2 v^{N,i}(t, \boldsymbol{x})$$
$$- \sum_{j \neq i} \partial_{x_j} v^{N,j}(t, \boldsymbol{x}) \cdot \partial_{x_j} v^{N,i}(t, \boldsymbol{x})$$
$$- \frac{1}{2} |\partial_{x_i} v^{N,i}(t, \boldsymbol{x})|^2 + f(x_i, \bar{\mu}_{\boldsymbol{x}}^N) = 0$$

- o mean field $\bar{\mu}_{\boldsymbol{x}}^N = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$ $\boldsymbol{x} = (x_1, \dots, x_N) \in (\mathbb{R}^d)^N$
- boundary condition $v^{N,i}(T, \mathbf{x}) = g(x_i, \bar{\mu}_{\mathbf{x}}^N)$
- Guess is $v^{N,i}(t, \mathbf{x}) \approx \mathcal{U}(t, x_i, \bar{\mu}_{\mathbf{x}}^N)$ with $\mathcal{U} : [0,T] \times \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$
 - $\circ \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}^{i}}$ should be close the empirical distribution of

$$d\hat{X}_t^i = -\partial_x \mathcal{U}(t, \hat{X}_t^i, \frac{1}{N} \sum_{i=1}^N \delta_{\hat{X}_t^i}) dt + dW_t^i + \sqrt{\eta} dB_t$$

Part II. Master equation

Differential calculus on Wasserstein space

- Goal is to write a PDE for \mathcal{U} by plugging $u^{N,i}(t,x) = \mathcal{U}(t,x_i,\bar{\mu}_x^N)$ as nearly solution of Nash
 - \circ use differential calculus on $\mathcal{P}_2(\mathbb{R}^d) \leadsto \text{Lions'}$ approach
- Given $\mathcal{U}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \to \text{define lifting of } \mathcal{U}$

$$\hat{\mathcal{U}}: L^2(\Omega, \mathbb{P}) \ni X \mapsto \mathcal{U}(\mathcal{L}(X) = \text{Law}(X))$$

- $\circ \mathcal{U}$ differentiable if $\hat{\mathcal{U}}$ Fréchet differentiable
- Differential of $\mathcal{U} \sim$ Fréchet derivative of $\hat{\mathcal{U}}$

$$D\hat{\mathcal{U}}(X) = \partial_{\mu}\mathcal{U}(\mu)(X), \quad \partial_{\mu}\mathcal{U}(\mu) : \mathbb{R}^{d} \ni x \mapsto \partial_{\mu}\mathcal{U}(\mu)(x) \quad \mu = \mathcal{L}(X)$$
o derivative of \mathcal{U} in $\mu \leadsto \partial_{\mu}\mathcal{U}(\mu) \in L^{2}(\mathbb{R}^{d}, \mu; \mathbb{R}^{d})$

• Finite-dimensional projection

$$\partial_{\mathbf{x}_{i}}\left[\mathcal{U}\left(\frac{1}{N}\sum_{i=1}^{N}\delta_{x_{j}}\right)\right] = \frac{1}{N}\partial_{\mu}\mathcal{U}\left(\frac{1}{N}\sum_{i=1}^{N}\delta_{x_{j}}\right)(\mathbf{x}_{i}), \quad x_{1},\ldots,x_{N} \in \mathbb{R}^{d}$$

• Example:
$$U(\mu) = \int_{\mathbb{R}^d} h(y) d\mu(y) \Rightarrow \partial_{\mu} U(\mu)(v) = \nabla h(v)$$

Second-order differentiability

- Need for existence of second-order derivatives
 - o asking the lift to be twice Fréchet is too strong
 - o only discuss the existence of second-order partial derivatives
- Requires
 - $\circ \partial_{\mu} \mathcal{U}(\mu)(v)$ is differentiable in v and μ

$$\partial_{\nu}\partial_{\mu}\mathcal{U}(\mu)(\nu)$$
 $\partial_{\mu}^{2}\mathcal{U}(\mu)(\nu, \mathbf{v'})$

- $\circ \partial_{\nu}\partial_{\mu}\mathcal{U}(\mu)(\nu)$ and $\partial_{\mu}^{2}\mathcal{U}(\mu)(\nu, \nu')$ continuous in (μ, ν, ν') (for W_{2} in μ) with suitable growth
- Finite-dimensional projection

$$\begin{split} \partial_{\boldsymbol{x}_{i}}^{2} x_{j} \left[\mathcal{U} \left(\frac{1}{N} \sum_{k=1}^{N} \delta_{x_{k}} \right) \right] &= \frac{1}{N} \partial_{\nu} \partial_{\mu} \mathcal{U} \left(\frac{1}{N} \sum_{k=1}^{N} \delta_{x_{k}} \right) (\boldsymbol{x}_{i}) \, \boldsymbol{\delta}_{i,j} \\ &+ \frac{1}{N^{2}} \partial_{\mu}^{2} \mathcal{U} \left(\frac{1}{N} \sum_{k=1}^{N} \delta_{x_{k}} \right) (\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) \end{split}$$

Connection with the master equation

- Strategy is to regard $u^{N,i}(t, \mathbf{x}) = \mathcal{U}(t, x_i, \bar{\mu}_{\mathbf{x}}^N)$ as nearly solution
- First-order terms

$$\partial_{x_{j}} u^{N,i}(t, \boldsymbol{x}) = \begin{array}{ll} \partial_{x} \mathcal{U}(t, x_{i}, \bar{\mu}_{\boldsymbol{x}}^{N}) + O(\frac{1}{N}) & \text{if} \quad j = i \\ \frac{1}{N} \partial_{\mu} \mathcal{U}(t, x_{i}, \bar{\mu}_{\boldsymbol{x}}^{N})(\boldsymbol{x}_{j}) & \text{if} \quad j \neq i \end{array}$$

o Hamiltonian

$$-\frac{1}{2}|\partial_{x_i} u^{N,i}(t, \pmb{x})|^2 + f(x_i, \bar{\mu}^N_{\pmb{x}}) = -\frac{1}{2}|\partial_x \mathcal{U}(t, x_i, \bar{\mu}^N_{\pmb{x}})|^2 + f(x_i, \bar{\mu}^N_{\pmb{x}}) + O(\frac{1}{N})$$

o drift terms

$$\begin{aligned}
&-\sum_{j\neq i}\partial_{x_{j}}u^{N,j}(t,\boldsymbol{x})\cdot\partial_{x_{j}}u^{N,i}(t,\boldsymbol{x}) \\
&=-\frac{1}{N}\sum_{j\neq i}\partial_{x}\mathcal{U}(t,\boldsymbol{x}_{j},\bar{\mu}_{\boldsymbol{x}}^{N})\cdot\partial_{\mu}\mathcal{U}(t,\boldsymbol{x}_{i},\bar{\mu}_{\boldsymbol{x}}^{N})(x_{j})+O(\frac{1}{N}) \\
&=-\int_{\mathbb{R}^{d}}\partial_{x}\mathcal{U}(t,\boldsymbol{v},\bar{\mu}_{\boldsymbol{x}}^{N})\cdot\partial_{\mu}\mathcal{U}(t,\boldsymbol{x}_{i},\bar{\mu}_{\boldsymbol{x}}^{N})(\boldsymbol{v})d\bar{\mu}_{\boldsymbol{x}}^{N}(\boldsymbol{v})+O(\frac{1}{N})
\end{aligned}$$

 \circ up to $O(\frac{1}{N}) \rightsquigarrow$ yields first order terms of a PDE for \mathcal{U}

Form of the master equation

ullet Treat second order terms in the same way and get that ${\cal U}$ should satisfy Master equation at order 2

$$\begin{split} &\partial_{t}\mathcal{U}(t,x,\mu) - \int_{\mathbb{R}^{d}} \partial_{x}\mathcal{U}(t,\boldsymbol{v},\mu) \cdot \partial_{\mu}\mathcal{U}(t,x,\mu,\boldsymbol{v}) d\mu(\boldsymbol{v}) \\ &- \frac{1}{2} |\partial_{x}\mathcal{U}(t,x,\mu)|^{2} + f(x,\mu) + \frac{1}{2}(1+\eta) \mathrm{Trace} \Big(\partial_{x}^{2}\mathcal{U}(t,x,\mu) \Big) \\ &+ \frac{1}{2}(1+\eta) \int_{\mathbb{R}^{d}} \mathrm{Trace} \Big(\partial_{v}\partial_{\mu}\mathcal{U}(t,x,\mu)(\boldsymbol{v}) \Big) d\mu(\boldsymbol{v}) \\ &+ \eta \int_{\mathbb{R}^{d}} \mathrm{Trace} \Big(\partial_{x}\partial_{\mu}\mathcal{U}(t,x,\mu)(\boldsymbol{v}) \Big) d\mu(\boldsymbol{v}) \\ &+ \frac{1}{2}\eta \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \mathrm{Trace} \Big(\partial_{\mu}^{2}\mathcal{U}(t,x,\mu)(\boldsymbol{v},\boldsymbol{v}') \Big) d\mu(\boldsymbol{v}) d\mu(\boldsymbol{v}') = 0 \end{split}$$

- Not a proof of existence of a smooth solution!
 - o This should be proved first

Connection with the MFG system ($\eta = 0$)

ullet Regard ${\mathcal U}$ as the generalized value function of the MFG system

$$\circ \mathcal{U}(t_0, x_0, \mu^0) = u^{\mu: \mu_{t_0} = \mu^0}(t_0, x_0)$$

• Optimization in environment $(\mu_t)_{t \in [0,T]} \rightsquigarrow \text{HJB equation}$

$$\circ u(t, x) = \text{minimal cost under } (\mu_t)_{t \in [0, T]} \text{ when } X_t = x \in \mathbb{R}^d$$

$$\begin{split} \partial_t u(t,x) + \frac{1}{2} \Delta u(t,x) - & \underbrace{\frac{1}{2} |\partial_x u(t,x)|^2}_{\alpha} + f(x,\mu_t) = 0 \\ & \inf_{\alpha} [\alpha \cdot \partial_x u(t,x) + \frac{1}{2} |\alpha|^2] \end{split}$$

$$u(T,x)=g(x,\mu_T)$$

- Dynamics of $(\mu_t)_{t \in [0,T]}$
 - Fokker-Planck with optimal feedback is $\alpha^*(t, x) = -\partial_x u(t, x)$

$$\partial_t \mu_t - \frac{1}{2} \Delta \mu_t - \operatorname{div}(\mu_t \partial_x u(t, x)) = 0 \qquad \begin{cases} t \in [0, T] \\ \mu_0 = \delta_{x_0} \end{cases}$$

o marginal law of diffusion process

$$dX_t^{\star} = -\partial_x u(t, X_t^{\star})dt + dW_t = -\partial_x \mathcal{U}(t, X_t^{\star}, \mathcal{L}(X_t^{\star}))dt + dW_t$$

Connection with the MFG system $(\eta > 0)$

 \bullet Regard ${\cal U}$ as the generalized value function of the MFG system

$$\circ \mathcal{U}(t_0, x_0, \mu^0) = u^{\mu:\mu_{t_0} = \mu^0}(t_0, x_0)$$

• Optimization in environment $(\mu_t)_{t \in [0,T]} \rightsquigarrow \text{HJB equation}$

$$\circ u(t, x) = \text{minimal cost under } (\mu_t)_{t \in [0, T]} \text{ when } X_t = x \in \mathbb{R}^d$$

$$\partial_t u(t,x) + \frac{1}{2} \Delta u(t,x) - \underbrace{\frac{1}{2} |\partial_x u(t,x)|^2}_{\alpha} + f(x,\mu_t) = 0$$
$$\inf_{\alpha} [\alpha \cdot \partial_x u(t,x) + \frac{1}{2} |\alpha|^2]$$

$$u(T,x)=g(x,\mu_T)$$

- Dynamics of $(\mu_t)_{t \in [0,T]}$
 - \circ Fokker-Planck with optimal feedback is $\alpha^*(t, x) = -\partial_x u(t, x)$

$$\partial_t \mu_t - \frac{1}{2} \Delta \mu_t - \operatorname{div}(\mu_t \partial_x u(t, x)) + \sqrt{\eta} \operatorname{div}(\mu_t \frac{dB_t}{dt}) = 0$$

o marginal law of diffusion process

$$dX_t^{\star} = -\partial_x \mathcal{U}(t, X_t^{\star}, \mathcal{L}(X_t^{\star}|B))dt + dW_t + \sqrt{\eta} dB_t$$

Solving the master equation

- Well posedness of \mathcal{U} requires $\exists!$ for MFG system
- Need additional monotonicity condition to prevent shocks
 - \circ Lasry-Lions monotonicity in direction μ (same with g)

$$\int_{\mathbb{R}^d} (f(x,\mu) - f(x,\mu')) d(\mu - \mu')(x) \ge 0$$

 \circ Example: let L be \nearrow and ρ be even and set

$$h(x,\mu) = \int_{\mathbb{R}^d} L(\rho \star \mu(z)) \rho(x-z) dz$$

• Linearization \sim differentiability in $\mu^0 \sim$ use convex perturbation \circ requires smooth coefficients with bounded derivatives

$$\frac{d}{d\varepsilon}\Big|_{\varepsilon=0+} u^{(1-\varepsilon)\mu+\varepsilon\mu'}(t_0,\cdot) = \frac{d}{d\varepsilon}\Big|_{\varepsilon=0+} \mathcal{U}(t_0,\cdot,(1-\varepsilon)\mu+\varepsilon\mu')$$

$$= \int_{\mathbb{R}^d} \mathcal{V}(t_0,\cdot,\mu)(y) d(\mu'-\mu)(y)$$

$$\circ \partial_{y} \mathcal{V}(t_{0},\cdot,\mu)(y) = \partial_{\mu} \mathcal{U}(t_{0},\cdot,\mu)(y)$$

Part III. Convergence

Connection Nash system/master equation

- Now it makes sense to let $u^{N,i}(t, \mathbf{x}) = \mathcal{U}(t, x_i, \bar{\mu}_{\mathbf{x}}^N)$
- Using smoothness of $\mathcal U$ at order $2 \rightsquigarrow$ we show

$$\partial_{t}u^{N,i}(t,\boldsymbol{x}) + \frac{1}{2} \sum_{j} \Delta_{x_{j}}u^{N,i}(t,\boldsymbol{x}) + \frac{\eta}{2} \sum_{j,k} \operatorname{Tr}D_{x_{j},x_{k}}^{2}u^{N,i}(t,\boldsymbol{x})$$

$$- \sum_{j\neq i} \partial_{x_{j}}u^{N,i}(t,\boldsymbol{x}) \cdot \partial_{x_{j}}u^{N,j}(t,\boldsymbol{x})$$

$$- \frac{1}{2}|\partial_{x_{i}}u^{N,i}(t,\boldsymbol{x})|^{2} + (f(x_{i},\bar{\mu}_{\boldsymbol{x}}^{N}) + \underbrace{r^{N,i}(t,\boldsymbol{x})}_{|r^{N,i}| \leq C/N}) = 0$$

$$\circ \text{ with } \bar{x}^N = \frac{1}{N} \sum_{j=1}^N x_j$$

• Propagation of reminder O(1/N) among N players?

Comparison of value functions

• Equilibrium trajectories of the N player game

$$dX_t^{N,i} = -\partial_{x_i} v^{N,i}(t, X_t^{N,1}, \cdots, X_t^{N,N}) dt + dW_t^i + \sqrt{\eta} dB_t$$

• Value processes

$$Y_t^{N,i} = v^{N,i}(t, X_t^{N,1}, \cdots, X_t^{N,N}), \quad Z_t^{N,i,j} = \partial_{x_j} v^{N,i}(t, X_t^{N,1}, \cdots, X_t^{N,N})$$

$$\hat{Y}_t^{N,i} = u^{N,i}(t, X_t^{N,1}, \cdots, X_t^{N,N}), \quad \hat{Z}_t^{N,i,j} = \partial_{x_j} u^{N,i}(t, X_t^{N,1}, \cdots, X_t^{N,N})$$

• Itô's formula

$$dY_{t}^{N,i} = -\left(\frac{1}{2}|Z_{t}^{N,i,i}|^{2} + f(X_{t}^{N,i}, \bar{\mu}_{t}^{N})\right)dt + \sum_{j} Z_{t}^{N,i,j} \cdot (dW_{t}^{j} + \sqrt{\eta}dB_{t})$$

$$d\hat{Y}_{t}^{N,i} = -\left(\frac{1}{2}|\hat{Z}_{t}^{N,i,i}|^{2} + f(X_{t}^{N,i}, \bar{\mu}_{t}^{N}) + r^{N,i}(t, X_{t}^{N,i})\right)dt$$

$$+ \sum_{i} \hat{Z}_{t}^{N,i,j} \cdot (\hat{Z}_{t}^{N,j,j} - Z_{t}^{N,j,j})dt + \sum_{i} \hat{Z}_{t}^{N,i,j} \cdot (dW_{t}^{j} + \sqrt{\eta}dB_{t})$$

with
$$Y_T^{N,i}=g(X_T^i,\bar{\mu}_T^N)$$
 and $\hat{Y}_T^{N,i}=g(X_T^i,\bar{\mu}_T^N)$, and $\bar{\mu}_t^N=\frac{1}{N}\sum_j \delta_{X_t^{N,j}}$

• Difference between two dynamics

$$\begin{split} d(\hat{Y}_{t}^{N,i} - Y_{t}^{N,i}) &= -\Big[\frac{1}{2}|\hat{Z}_{t}^{N,i,i}|^{2} - \frac{1}{2}|Z_{t}^{N,i,i}|^{2} + \underbrace{r^{N,i}(t, X_{t}^{N,i})}_{\sim C/N}\Big]dt \\ &+ \sum_{j} \underbrace{\hat{Z}_{t}^{N,i,j}}_{\leq C/N \text{ if } i \neq j} (\hat{Z}_{t}^{N,j,j} - Z_{t}^{N,j,j})dt \\ &+ \sum_{j} (\hat{Z}_{t}^{N,i,j} - Z_{t}^{N,i,j}) \cdot dW_{t}^{j} + (\sum_{j} \hat{Z}_{t}^{N,i,j} - \sum_{j} Z_{t}^{N,i,j}) \cdot \sqrt{\eta} dB_{t} \end{split}$$

• Observe that $\hat{Y}_T^{N,i} = Y_T^{N,i}$ • if no dt terms except O(1/N)

$$\begin{aligned} \hat{Y}_{t}^{N,i} - Y_{t}^{N,i} \\ + \int_{t}^{T} \sum_{j} (\hat{Z}_{t}^{N,i,j} - Z_{t}^{N,i,j}) \cdot dW_{s}^{j} + (\sum_{j} \hat{Z}_{t}^{N,i,j} - \sum_{j} Z_{t}^{N,i,j}) \cdot \sqrt{\eta} dB_{s} = O(\frac{1}{N}) \end{aligned}$$

• Difference between two dynamics

$$\begin{split} d(\hat{Y}_{t}^{N,i} - Y_{t}^{N,i}) \\ &= - \Big[\frac{1}{2} |\hat{Z}_{t}^{N,i,i}|^{2} - \frac{1}{2} |Z_{t}^{N,i,i}|^{2} + \underbrace{r^{N,i}(t, X_{t}^{N,i})}_{\sim C/N} \Big] dt \\ &+ \sum_{j} \underbrace{\hat{Z}_{t}^{N,i,j}}_{\leq C/N \text{ if } i \neq j} (\hat{Z}_{t}^{N,j,j} - Z_{t}^{N,j,j}) dt \\ &+ \sum_{j} (\hat{Z}_{t}^{N,i,j} - Z_{t}^{N,i,j}) \cdot dW_{t}^{j} + (\sum_{j} \hat{Z}_{t}^{N,i,j} - \sum_{j} Z_{t}^{N,i,j}) \cdot \sqrt{\eta} dB_{t} \end{split}$$

• Observe that $\hat{Y}_T^{N,i} = Y_T^{N,i}$ • if no dt terms except O(1/N)

$$\mathbb{E}[|\hat{Y}_{t}^{N,i} - Y_{t}^{N,i}|^{2}] + \mathbb{E}\int_{t}^{T} \sum_{i} |\hat{Z}_{t}^{N,i,j} - Z_{t}^{N,i,j}|^{2} + \eta \mathbb{E}\int_{t}^{T} |\sum_{i} \hat{Z}_{t}^{N,i,j} - \sum_{i} Z_{t}^{N,i,j}|^{2} ds = O(\frac{1}{N^{2}})$$

• Difference between two dynamics

$$\begin{split} d(\hat{Y}_{t}^{N,i} - Y_{t}^{N,i}) &= -\Big[\frac{1}{2}|\hat{Z}_{t}^{N,i,i}|^{2} - \frac{1}{2}|Z_{t}^{N,i,i}|^{2} + \underbrace{r^{N,i}(t, X_{t}^{N,i})}_{\sim C/N}\Big]dt \\ &+ \sum_{j} \underbrace{\hat{Z}_{t}^{N,i,j}}_{\leq C/N \text{ if } i \neq j} (\hat{Z}_{t}^{N,j,j} - Z_{t}^{N,j,j})dt \\ &+ \sum_{j} (\hat{Z}_{t}^{N,i,j} - Z_{t}^{N,i,j}) \cdot dW_{t}^{j} + (\sum_{j} \hat{Z}_{t}^{N,i,j} - \sum_{j} Z_{t}^{N,i,j}) \cdot \sqrt{\eta} dB_{t} \end{split}$$

• Do as if $|\cdot|^2$ is Lipschitz \rightsquigarrow take the square and \mathbb{E}

$$\mathbb{E}\left[\left|\hat{\boldsymbol{Y}}_{t}^{N,i} - \boldsymbol{Y}_{t}^{N,i}\right|^{2} + \int_{t}^{T} \sum_{j=1}^{N} \left|\hat{\boldsymbol{Z}}_{s}^{N,i,j} - \boldsymbol{Z}_{s}^{N,i,j}\right|^{2} ds\right]$$

$$\leq \frac{C_{\epsilon}}{N^{2}} + \epsilon \mathbb{E} \int_{t}^{T} \left|\hat{\boldsymbol{Z}}_{s}^{N,i,i} - \boldsymbol{Z}_{s}^{N,i,i}\right|^{2} ds + \frac{\epsilon}{N} \sum_{j} \mathbb{E} \int_{t}^{T} \left|\hat{\boldsymbol{Z}}_{s}^{N,j,j} - \boldsymbol{Z}_{s}^{N,j,j}\right|^{2} ds$$

• Difference between two dynamics

$$\begin{split} d(\hat{Y}_{t}^{N,i} - Y_{t}^{N,i}) &= -\Big[\frac{1}{2}|\hat{Z}_{t}^{N,i,i}|^{2} - \frac{1}{2}|Z_{t}^{N,i,i}|^{2} + \underbrace{r^{N,i}(t, X_{t}^{N,i})}_{\sim C/N}\Big]dt \\ &+ \sum_{j} \underbrace{\hat{Z}_{t}^{N,i,j}}_{\leq C/N \text{ if } i \neq j} (\hat{Z}_{t}^{N,j,j} - Z_{t}^{N,j,j})dt \\ &+ \sum_{j} (\hat{Z}_{t}^{N,i,j} - Z_{t}^{N,i,j}) \cdot dW_{t}^{j} + (\sum_{j} \hat{Z}_{t}^{N,i,j} - \sum_{j} Z_{t}^{N,i,j}) \cdot \sqrt{\eta} dB_{t} \end{split}$$

• To handle the square \rightarrow exponential transform \Rightarrow final result

$$\mathbb{E}\big[\sup_{0 \leq t \leq T} |\hat{Y}^{N,i}_t - Y^{N,i}_t|^2\big] + \mathbb{E}\int_0^T |\hat{Z}^{N,i,i}_t - Z^{N,i,i}_t|^2 dt \leq \frac{C}{N^2}$$

 $dX_{\cdot}^{N,i} = -Z_{\cdot}^{N,i,i}dt + dW_{t}^{i} + \sqrt{\eta}dB_{t}$

• Inserting in the forward equation

$$\approx -\hat{\mathbf{Z}}_t^{N,i,i}dt + dW_t^i + \sqrt{\eta}dB_t$$

Part IV. Rate of convergence

Fluctuations

• Equilibrium trajectories of the N player game

$$\begin{split} dX_{t}^{N,i} &= -\partial_{x_{i}} v^{N,i}(t, X_{t}^{N,1}, \cdots, X_{t}^{N,N}) dt + dW_{t}^{i} + \sqrt{\eta} dB_{t} \\ &= - \Big[\partial_{x} \mathcal{U} \Big(t, X_{t}^{N,i}, \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{N,i}} \Big) + O(\frac{1}{N}) \Big] dt + dW_{t}^{i} + \sqrt{\eta} dB_{t} \end{split}$$

• Compare with

$$d\hat{X}_{t}^{N,i} = -\partial_{x} \mathcal{U}\left(t, \hat{X}_{t}^{N,i}, \frac{1}{N} \sum_{j=1}^{N} \delta_{\hat{X}_{t}^{N,j}}\right) dt + dW_{t}^{i} + \sqrt{\eta} dB_{t}$$

$$\circ \text{ get } \mathbb{E}\left[\sup_{0 \leq t \leq T} |\hat{X}_{t}^{N,i} - X_{t}^{N,i}|^{2}\right] \leq \frac{C}{N^{2}}$$

$$\circ \text{ and } \mathbb{E}\left[\sup_{0 \leq t \leq T} W_{2}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{\hat{X}_{t}^{N,i}}, \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{N,i}}\right)^{2}\right] \leq \frac{C}{N^{2}}$$

• Limit is $\partial_t \mu_t - \frac{1}{2} \Delta \mu_t - \text{div}(\mu_t \partial_x \mathcal{U}(t, \cdot, \mu_t)) + \sqrt{\eta} \text{div}(\mu_t \dot{B}_t) = 0$

