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Part 1. Motivation



N-Particle System

e N interacting controlled players (state in R%)

o dynamics of player numberi € {1,..., N}
dX! = aldt + dw! , X, =x, t€[0,T]
o independent noises wt, ..., WN,
o choose control a/i = prog. meas. w.r.t. c(W!,...,WN, )
N——

at any ¢



N-Particle System

e N interacting controlled players (state in R%)

o dynamics of player numberi € {1,..., N}

dX! = aldt + dW! + \ndB,, X} =xo, t€[0,T]

o independent noises wl ..., WN, B, n>0
o choose control a/i = prog. meas. w.r.t. c(W',..., WN, B)
——

at any ¢



N-Particle System

e N interacting controlled players (state in RY)

o dynamics of player number i € {1,...,N}
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N-Particle System

e N interacting controlled players (state in RY)

o dynamics of player number i € {1,...,N}
dXi = didt + dW, + \lndB,, X}, = xo, t € [0, T]
| &
o independent noises wt, ...,WN, B, ﬁﬁv = N Z (5X{

o choose control o = a'(t, X}, -+ ,XN) ~ implicit formulation

¢ Willing to minimize cost J i(a!,...,a") with mean-field interaction

P =Blah i)+ [l

o g(x, ) and f(x, u, @) withx e R, y € P(RY) and @ € A c R*

o f convex in a ~» typical instance f(x, u, @) = f(x, u) + %Ial2



Nash equilibrium

o If each particle / player decides in its own way to minimize
Ji@',....aV)
o depends on the others! = consensus? ~» Nash equilibrium

e N-tuple (a'*, ..., @""*) = equilibrium if no incentive to quit

o if unilateral change a"* ~ o' = J' /

Jih .. at, Ll ) < Jie L ad L e

i—l,*’ i+1,*, a'N’*?

e Meaning of the freezing a'"*,..., a a

o closed loop control ~ ' = &i(t, X/, ..., XN) ~» players choose
their strategy depending on the states of the others ~» SDE

o freezing means freezing the functions o*!, ..., @*" and not the
processes

e N-particle system ~» N-player game



Nash System

o N fixed ~» N player game equilibrium described by PDE system

o unique Markovian equilibrium with bounded feedback function
~> given by N X (Nd) Nash system ~» vV~ value function to player i

Vit x) + % ; AVt x) + g %“ TR vV (1,%)
= > 0N (1,x) - 0N (2, x)
J#L
~ SN + ) = 0
o mean field i = % Zjvl X =, ,xy) € ROV

o boundary condition VAT, x) = g(x;, ﬁi\’ )

¢ vV'i(¢,x) = equilibrium cost to player i when

the system starts from x at time ¢



Nash System

e N fixed ~ N player game equilibrium described by PDE system

o unique Markovian equilibrium with bounded feedback function
~> given by N x (Nd) Nash system ~» vV value function to player i

O™ (1, x) + % Z AV (1 x) + g Zk: Tedy v (1, %)
J J>
= > 01, x) - 0N (1, )
J#
~ SN + ) = 0
o mean field iy = & Zj]\il 6y X =(x1,---,xy) € ROV

o boundary condition V(T x) = g(x;, ﬁi\’ )

e Trajectories at equilibrium

dx! = -9V, X!, -+, XNydt + dW, + \dB;



Nash System

e N fixed ~ N player game equilibrium described by PDE system

o unique Markovian equilibrium with bounded feedback function
~> given by N x (Nd) Nash system ~» vV value function to player i

. 1 . .
a0 i(tx) + 5 " A ) + ] Z;:‘ Ted? vV (1,%)
J J>

= > Mt x) - Vit x)

J#L
1 .
= 310 @ + fxi, 1) = 0
o mean field i = £ X, 6y x = (x1,--- ,xw) € RDY

o boundary condition VAT, x) = g(x;, ﬁﬁ’ )

e Well-posed system with bounded gradient and solution is symmetric

VN’i(t’x) = VN(I,X,‘, (X], X1 Xl ))

vV(-,-) symmetric in the second argument



Nash System

e N fixed ~ N player game equilibrium described by PDE system

o unique Markovian equilibrium with bounded feedback function
~> given by N x (Nd) Nash system ~» vV value function to player i

Ji 1 N,i n 2 N,
ANt x) + 3 2 Ayt x) + 3 %; Trd? V(2. x)
- Z Bx_,.vNJ(t, X) - BxivN’i(t, X)
J#i
1 4
= 10 @0 + i, i) = 0
o mean field i = ]%,Zjl\il 6y X =(x;,--,xn) € RHY
o boundary condition WWA(T, x) = g(x;, ﬁQ’ )

e Guess is VV'i(t,x) ~ U(t, x;, 1) with U : [0,T] xR? x P(RY) — R

o 1%, Zﬁ\; | Oxi should be close the empirical distribution of

dX; = =0, U, X}, y T 65)dt + dW] + idB,



Part II. Master equation



Differential calculus on Wasserstein space

e Goal is to write a PDE for U by plugging uV/(t,x) = U(t, x;, i) as
nearly solution of Nash

o use differential calculus on P»(RY) ~» Lions’ approach

e Given U : P>(RY) — R ~» define lifting of U

U : L*(Q,P) 3 X — ULX) = Law(X))

o U differentiable if T/ Fréchet differentiable

e Differential of U ~> Fréchet derivative of T/

DUX) = , UwW)X), U :RY 3 x> d,Uw(x) u= LX)

o derivative of U in y ~ 9, Uu) € L*(RY, 11; RY)

e Finite-dimensional projection

o Ju L gax,)] Y L A

J=1

e Example: U(u) = f h(y)du(y) = 0,U(w)(v) = Vh(v)
R4



Second-order differentiability

e Need for existence of second-order derivatives

o asking the lift to be twice Fréchet is too strong

o only discuss the existence of second-order partial derivatives
e Requires

o 0, U(u)(v) is differentiable in v and u
O UWE)  GUWE, V)

0 0,0, U(u)(v) and 6,21%((;1)(\/, v") continuous in (u, v,v") (for W5 in
) with suitable growth

o Finite-dimensional projection

1 < 1 1<
Ul 20)] = oot 2 o) o

2

Xi Xj

N
Uy Z5xk)(xi,xj)



Connection with the master equation

e Strategy is to regard u\"/(t,x) = U(t, x;, fi¥) as nearly solution
o First-order terms

oUW X, 1Y) + O(y) if j=i

. u™Ni(t,x) = _ cr .
(0 %) ,lva#(u(t,x,-,yjj)(xj) if j#i

o Hamiltonian
1 ; 1 1
=510 (O + fxi, 1) = = S10Ux3, O +F 0o 15) + O(3)

o drift terms

= " 0yt x) - (1, x)

J#EI

1 _ _ 1
=~ 2, U5 ) - 8, U3, i) + O(3)

I
1
-~ [ 0t i) - 3,20 B + O
R

oup to O(%) ~» yields first order terms of a PDE for U



Form of the master equation

o Treat second order terms in the same way and get that U/ should
satisfy Master equation at order 2

O U1, x, 1) — f Ot v, ) UG, X 1, V)A()
~ No U, x, f)|2 + e ) + 3(1 + n)Trace(92U(t, x, 1))
+ (1 +7p) fR ) Trace(d,0, U, x, 1)(v))du(v)
+1 fR ) Trace(dxd, U(t, x, 1)) )du()
+1n L ) fR ) Trace(0, U, x, ) (v, V))du(v)du(v') = 0

e Not a proof of existence of a smooth solution!

o This should be proved first



Connection with the MFG system (; = 0)

e Regard U as the generalized value function of the MFG system
o U(t, x0, 1) = w#0™ (89, xp)

e Optimization in environment (¢ ):cf0,7] ~> HIB equation
o u(t, x) = minimal cost under (u;)se[o,7] When X, = x € R?

Auu(t,x) + TAu(t,x) — o, +fCe,pu) =0
e e

infla - du(t, x) + Lal]
(0%
u(T, x) = g(x, ur)
e Dynamics of (¢s)e[0,7]

o Fokker-Planck with optimal feedback is a* (¢, x) = —d,u(t, x)
. te[0,T
Bty — Lt — div(udyu(t, 1)) = 0 { o1
/10 - YXxo

o marginal law of diffusion process

dX} = —0wu(t, X} )dt + dW, = =0, U, X}, LX;))dt + dW,



Connection with the MFG system (n > 0)

e Regard U as the generalized value function of the MFG system
o U(t, x0, 1) = w#0™ (89, xp)

e Optimization in environment (¢ ):cf0,7] ~> HIB equation
o u(t, x) = minimal cost under (u;)se[o,7] When X, = x € R?

Auu(t,x) + TAut,x) - Howut, ) +fCeu) =0
N e’

infla@ - du(t, x) + Lal]
u(T, x) = g(x, ur)
e Dynamics of (¢;)e[0.7]
o Fokker-Planck with optimal feedback is a*(#,x) = —d,u(t, x)
. . dB
Orpte — 5Dy — div(udyu(t, ) + Wdlv(ytjtt) =0
o marginal law of diffusion process

dXF = -0, U(t, X}, LXF|B))dt + dW, + \idB,



Solving the master equation

o Well posedness of U requires 1! for MFG system
e Need additional monotonicity condition to prevent shocks

o Lasry-Lions monotonicity in direction u (same with g)
TR(,0"(%,,11) = fCe,uN))d(p — p')x) > 0

o Example: lét Lbe /" and p be even and set
) = [ Lo upt =

e Linearization ~» differentiability in u° ~» use convex perturbation

o requires smooth coefficients with bounded derivatives

d ’ d

(1-&)u+eu _ ’
— u fo,) = — U(ty, -, (1 —)u+ ¢
de|e=0+ (%o, * de|e=0+ (f0, - ( ot en)

- fR Vlto, YO = 1))

o ay(V(f(), ,IJ)(Y) = apﬂ(t()a K] /J)()’)



Part III. Convergence

o & = = = 9Dao



Connection Nash system/master equation

e Now it makes sense to let u""/(z,x) = U(t, x;, i)

e Using smoothness of U at order 2 ~ we show
. 1 . .
o1, x) + 5 D A, x) + g > D it x)
J Jjk

= > 0yt x) - i1, x)
JEI
1 . .
— 0™ + (Fn i)+ Mx) )=0
2 —_—
V| < C/N
owithxV = 5 ¥ x

e Propagation of reminder O(1/N) among N players?



Comparison of value functions

e Equilibrium trajectories of the N player game
dXN = —9 Vi, XN XV N dr + AW+ B,

e Value processes

r =i X X, Y = oM X X
N, N,i N,1 N,N Nr,/ N,i Nl N,N
Vi = X X0, = dyu (1, X, XM

e [t0’s formula

. 1 . . .
dY =~ Y )+ Y 7 (dW] + By
J

AN G 1l amvaa . .
diN = —(§|va””|2 + N BNy + A, XN de
+ Z 2N (N _ ZNI gy 4 Z 7NV (W + \dB,)
7 j

with Y} = g(Xb, i) and ¥ = g(Xi, @), and @ = £ 36 X



Stability argument

¢ Difference between two dynamics
d(¥ = ™)
1 o 1 s _ .
= —[SIZVVP = SI1ZHE A X |de
2 2 —_
~C/N
AN NG N
DR A A A
- ——
T <CN if i

+ Q2 =y awg + (Y2 = Y Z) - B,
j j j

e Observe that f/lTV'i = Y/TV’i
o if no dt terms except O(1/N)

PV _ yiVi
f Z(ZN"’ 750 dW]+(ZZN"’ ZZN"’) Vi7dB = O()



Stability argument

¢ Difference between two dynamics
d(¥ = ™)
1 v | _ .
= —[SIZVVP = SI1ZHE A X |de
2 2 —_
~CIN
£ 2N @V Ny
- ——
T <CN if i
+ 2@ =7y awd + (T2 = 3 2y - B,
J J J
e Observe that f/lTV'i = Y/TV’i
o if no dt terms except O(1/N)
EIAES Ay

T . T .. ..
+Ef Z|Z,A”"J—zfv”='|2+nEf 1> 209 =3 2V ds = 0G)
rj rj J



Stability argument

¢ Difference between two dynamics
d(j}N,i _ YN,i)
1 . , .
[ |22 — 5|Z§V”*’|2 + Vi, XVt
~C/N

£ 2 @ Zar

- ——

I <C/N if iz

ANij  SNij j AN ij N.ij

+ Z(Zt ! _Zt l‘l)'dWi + (ZZ’ = Zzz IJ) : ‘/ﬁdBt

J J J

e Do as if | - |* is Lipschitz ~» take the square and E

T N
E[ PN _ yNi]? f oNid _ N2 g ]
|7 o+ t ;| s 2| ds
EfT|ZN»’?" -2V s + < EfT|ZNJJ -z ds
, s s N ; ; s s



Stability argument

¢ Difference between two dynamics
&N yNi
d(Yr - Yt l)
_[1|ZN,1',1'|2 1 ZNll er([ XN! ]
27 2 NI
~CIN

ALY
- ——
T <C/N if i
+ 2@ =7y awd + (T2 = 3 2y - B,
J J J
¢ To handle the square ~» exponential transform = final result

C
[sup |YNz_ Nz +Ef |Zsz ZN11|2dt<_2
0<e<T N
e Inserting in the forward equation
dXN = —ZNdr + dW! + \dB,

~ 7N dt + dW! + \fdB,



Part IV. Rate of convergence



Fluctuations

e Equilibrium trajectories of the N player game

dxXN =~ Wi, XN XNNYdr + aWi + \dB,
N
] .
= —[a.u(e. X", N ; Syna) + OGR)dt + dW; + FidB;
e Compare with

N
dj\(iv’l = —6}(7/[( ,Xﬁvl’ Z 55(11\4/)61[ + dW; als \/ﬁdB;
j:l

SRIA C
o get E[ su |XN”— A
s [OStspT ! ] N2
2 C
oand E sup Wz 05 N 1) N: —
e Z Z W

o Limit is Ot — A, — div(u U, -, 1)) + Vdiv(u,B;) = 0



