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Opinion dynamics
e Propose an opinion model for an interacting population of agents to study
consensus convergence, with simple local rules of interaction.

e Opinion model for N agents [1]:
1 — -
du; = —+ ; o(|xi — i) (zi — x;)dt + odW'(t), i=1,...,N,

where z;(t) is the agent ¢’s opinion.

e The influence function ¢ is nonnegative, bounded, and compactly supported in [0, 1].
— The interactions are attractive and the agent ¢ is only affected by agents that have

similar opinions.

e The initial opinions z;(0) may be deterministic or random, for instance z;(0) are

i.i.d. with distribution with density po.

e The independent Brownian motions W*(t), i = 1,..., N model external noise, and

o > 0 is its strength.

[1] S. Motsch and E. Tadmor, SIAM Review 56, 577 (2014).



Opinion dynamics: Simulations
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¢(s) = 1[0,1/\/51(3) + 0.1 % 1(1/\/5,1](3) -
Initial uniform distribution over [0, L], L = 10, N = 500.

Can we predict the number of clusters ?
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Opinion dynamics: The mean field limit
e Consider the model in [0, L] with periodic boundary conditions.

e Introduce the empirical probability measure p™ (t,dx) of the opinions of the agents:

t daz Z(Swj (t) daz

p" (t,dx) is a measure-valued stochastic process.

e Assume that as N — oo, p” (0, dx) converges weakly, in probability, to a
deterministic measure with density po(x).

This happens (with po(z) = 1/L) if the initial opinions are i.i.d. with uniform density
over [0, L].

o As N — oo, p (t,dx) converges weakly, in probability, to a deterministic
probability measure whose density p(t, x) satisfies (in a weak sense) the nonlinear
Fokker-Planck equation [1]:

8 8 82
af; (t2) = 5 { U p(t,x — y)yab(lyl)dy] p(t, )} + %@(t,x),
with initial density po(x).

[1] D. A. Dawson, J. Statist. Phys. 31, 29 (1983).



Opinion dynamics: The mean field limit

Formally:

N
da; = —[% " 6(fwi — sl — )] di+ odWi(),  i=1,...,N

0
d; = —[/qb(m —yl) @i~ )p" (1 dy)|db + odWi),  i=1,.. N
I N — o0

dXi = — [/cxb(lXt — y) (X — y)p(t,y)dy} dt +odW(t),  p(t,-) = pdf of X;

g
Lt.a) = o {| [ 902~ e~ ottty o) | + 55 0

[1] D. A. Dawson, J. Statist. Phys. 31, 29 (1983).



Opinion dynamics for ¢ =0
e Modulational instability (in the mean field limit N = o0).

e Linearize the Fokker-Planck equation by assuming p(t,z) = po + p1(t,x), po = 1/L:

0
Bh(t.x) = oo [ (b~ oy

e Take the Fourier transform in x, p1(t, k) = fOL e "% p1 (¢, x)dx, with the discrete
frequency k in K = {2mn/L,n € N}:

88[251 (8 k) = {’iﬂokfe_ikyyqﬁ(!y!)dy] p1(t, k).

e For each k, [p1(t, k)| = |p1(0, k)| exp(vxt), where the growth rate of the k-th mode is:
= Re [ipok/e_ikyyqb(lyl)dy] = pokfsin(ky)y¢(!y!)dy

e The growth rate ¢ is maximal for k = £knax with

b = argmax [0(R)], (k) = 2k /O sin(ks)(s)sds

kel
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Opinion dynamics for ¢ =0
e Fluctuation theory (in the regime N > 1).
e Denote po(dxr) = dx/L. Fix T. Consider

N(t,dz) == VN (pN(t, dz) — po(da:)) . te0,T]

o If the initial opinions (x;(0));=; are i.i.d. with uniform density over [0, L],
then, as N > 1,

pr(t=0,k) = / e " p1 (t = 0, dx) \/_Z e 0 ke {2rn/L,n € N*}

converge to p1(t = 0,k) i.i.d. complex circular Gaussian random variables, mean zero,

and variance 1:

E[pi(t=0,k)] =0, E [ﬁl(t —0,k)p1(t =0, k’)} — S, kK € {27n/L,n € N*}.

Note p7 (t,k = 0) = 0.
e As N> 1, p7 (t, k), k € K\{0}, converge to pi(t, k), k € K\{0}, independent
complex cu'cular Gaussian random variables, with mean zero and variance exp(2yxt):

E [ﬁl(t, k)ﬁl(t,k’)} = O exp(2yxt), k,k' € {27n/L,n € N},

— The mode with the largest growth rate Ymax = 2p0% (kmax) quickly dominates.
Zurich May 2017



Opinion dynamics for ¢ =0

e The time up to the onset of clustering is when p; ~ v Npg:

! In N ~ ! In N

27max 2p0¢(kmax)

Clustering happens with a mean distance between clusters equal to 27 /kmax-

tclu =~

e Once clustering has occurred, two types of dynamical evolutions are possible:

1. If 27 /kmax > 1, then the clusters do not interact with each other because they
are beyond the range of the influence function.

— The situation is frozen and there is no consensus convergence.

Zurich May 2017



Opinion dynamics for 0 =0

Opinions, x;(t)

100 150

Here ¢(S) — 1[0’1/\/5](8) _|_ 01 X 1(1/\/5,1](3)7 L — 107 N — 500
kmax = 3.77. Inter-cluster distance = 1.67.

— No consensus convergence.
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Opinion dynamics for ¢ =0

e The time up to the onset of clustering is when p; ~ v Npo:

! In N ~ ! In N

27max 2p0¢(kmax)

Clustering happens with a mean distance between clusters equal to 27 /kmax-

tclu =~

e Once clustering has occurred, two types of dynamical evolutions are possible:

1. If 27 /kmax > 1, then the clusters do not interact with each other because they
are beyond the range of the influence function.

— The situation is frozen and there is no consensus convergence.

2. If 27w /kmax < 1, then the clusters interact with each other.
— There may be consensus convergence.
However, consensus convergence is not guaranteed as clusters may merge by
packets, and the centers of the new clusters may be separated by a distance
larger than 27 /kmax, and then global consensus convergence does not happen.

— The number of mega-clusters formed by this dynamic is not easy to predict.
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Opinion dynamics for 0 =0

Opinions, x;(t)
Opinions, z;(t)
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kmax = 9.42. Inter-cluster distance = 0.67.
— There may be global consensus convergence (very sensitive !).

Zurich

May 2017



Opinion dynamics for ¢ > 0
e Modulational instability (in the mean field limit N = o0).

e Linearize the Fokker-Planck equation by assuming p(t,x) = po + p1(t, ), po = 1/L:

op1 _ 3 a® & p1
Bhtx) =0 | Pt~ oy + G G (tx).

e In the Fourier domain:

1 (6.0) = [ioak [ e ys(ulidy — T3] )

e Growth rates of the modes:

. —3 0‘2]€2
Yo,k = Re [@pok/e Yyo(|ly|)dy — 5 ] ,

or Yok = po¥o(k), where
o’ k?
2,00 .

o (k) = 2k / sin(ky)yo(ly|)dy —

We look for the most unstable mode whose frequency kmax € {27mn/L,n € N}

maximizes ¥, (k).
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Opinion dynamics for o > 0

Let
1 1
o2 = max [4%/0 (b(s)ssin(ks)ds] 24/)0/ s> (s)ds.

kel 0

1. If 0 < 0., then maxg~o Yo (k) > 0, 50 kmax = argmax,. %o (k) > 0 exists and
p1(t, kmax) has positive growth rate Ymax = pPo%o (kmax)-
— The system is linearly unstable (qualitatively analogous to the deterministic
case, although knax is reduced).

2. If 0 > 0., then maxg>o ¥, (k) < 0, so all of p1(¢, k) have negative growth rates.
— The system with uniform density is stable.
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Opinion dynamics for o > 0
e Fluctuation theory (in the regime N > 1).

e The measure-valued process

ol (¢ dw) == VN (p" (t,dz) = po(dz))
converges in distribution as N — oo to a measure-valued process pi(t,dz) whose
density pi1(t,x) satisfies a stochastic PDE:

o 8,01 0‘2 82,01
dpr(t.0) = oo [ (0 = gyuolul)dy + G G2 (0)| de+ oaw (e,

where W (t, ) is a space-time Gaussian random noise with mean zero and covariance

Cov ( /O " Ws, o) (2)de, /O Wit fg(:(:)da:) - mi“f’t} /O U @) fl()de

for any test functions fi(z) and f2(x), which is independent of the Gaussian (white

noise) initial condition.

e p1(t, k) is a Gaussian process with mean zero and covariance

02k2} o2 k?

— . k. k' e {2mn/L,n € N}.
270,]»{: 270,]»{: } { / }

E [ﬁl (t, k)m] = Opp {exp(Q%,kt) [1 +

— The mode with the largest growth rate v, = po¥s (kmax) quickly dominates.

max

Zurich May 2017



Zurich

Opinion dynamics for o > 0
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Opinion dynamics for o > 0
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Opinion dynamics for ¢ > 0
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Opinion dynamics for o > 0
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Opinion dynamics for o > 0
After clustering:

- Markovian dynamics of clusters (move like Brownian motions and merge when two

of them come close to each other).

Opinions, x;(t)
Opinions, x;(t)

1 1 1 0 1 1 1 1
50 100 150 200 0 2000 4000 6000 8000 10000
Time Time

- Global consensus convergence (in 1D, Brownian motions always collide).

- Megacluster moves like a Brownian motion.

Zurich May 2017



Collective motion
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Collective motion: Czirdk model

e N agents move along the torus [0, L].

e For:=1,..., N, the position x; and velocity u; of particle 7 satisfy:

da:z- = uidt,
du; = [G((u)z) — uz} dt + O'dWi(t).

o {W;(t)}iL, are independent Brownian motions.

o (u), is a weighted average of the velocities {u;};:

1 N
=5 > uso(ley — i),
j=1

with the weights depending on the distance (on the torus) between the position x;

and the positions of the other agents.
()
(

G(u) is an odd and smooth function.

(
(

is a nonnegative influence function normalized so that + fo (|z])dz = 1.

u) = u: Cucker-Smale model.

IfG

u) derives from a double well potential: Czirék model.

Zurich May 2017



Collective motion bistability: Experiments

350

Locusts in a torus Alignment as function of time

Cf: G. Ariel and A. Ayali, PLoS Comput. Biol. 11(12):1-25, 2015.
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Collective motion: Simulations
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Qb(S) =9 X 1[0’1] (8)
G(u) = 2u — 0.072u°.
o =d.

Initial distribution: (z;(0),u;(0))iL; i.i.d., (2;(0));<; uniform over [0, L], (u;(0)),

Gaussian distributed with mean zero and variance o*/2, L = 10, N = 100.

Can we explain the bistability, the transition rate ?
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Collective motion: The mean field limit

e Introduce the empirical probability measure:

(t dZL' du Zé(w%(t) u%(t))(d:c du)

1=1

o If pn(0,dx,du) converges to a deterministic measure p(x,u)dxdu as N — oo,
then as N — oo, pn(t,dx,du) converges to the deterministic measure p(t, x, u)dzdu

whose density is the solution of the nonlinear Fokker-Planck equation

a,0_ ap ro AN 12@
E——u%——{[ (//u¢|a}| ,u)duda:) u]p}—l—za 502

starting from p(t = 0,x,u) = p(x,u).

Zurich May 2017



Collective motion: The stationary states in the mean field limit
e The stationary solutions p(x,u) have the following form:

pele.) = L Fe(w). Fe(u) =~ exp -

(u—€)2>.

2

e They are uniform in space, Gaussian in velocity, and their mean velocity £ satisfies

the compatibility condition:

§=G(§).
e There are, therefore, as many stationary equilibria as there are solutions to the
compatibility equation.
e When G is such that u — G(u) derives from a double-well potential, such as
G(u) = 2tanh(u) or G(u) = 2u — u?, there are three ¢ satisfying the compatibility
condition: 0 and £&., with & > 0.

Zurich May 2017



Collective motion: Linear stability analysis for the stationary states

e Let £ be such that G(§) = £ and consider

1
plt,z,u) = pe(a,u) + p (8, 2,u) = = Fe(u) + p (¢, 2, 0),

for small perturbation ,0(1). By linearizing the nonlinear Fokker-Planck equation:

op _ _ o o [(g W)
ot oz wP
1 502
(1) I /70 / 20 P
_—G {//ucb ,u)dudm}Fg(u)—i—§a ERCRE
e The mode ,0 =7 fo W (t, x, u)e®™ /L gz satisfies

(9,0,(:) _ 127k (1) 0 (1)
o = Eupl) — - (€ —wnf”

- @ | [ )| P + 3o 00

with ¢p = + [ o(|z|)e? ™/ Fdz.

e The equations are uncoupled in k£ and the system is linearly stable if all modes are
stable.

Zirich May 2017



Collective motion: Linear stability analysis for the stationary states
e The 0-th order mode is stable if and only if G'(£) < 1.
e The k-th order modes are stable if o is large enough (critical o depends on ¢, G).

When G is such that u — G(u) derives from a double-well potential:

1. the order states

11 (u F &) _
Pte. (LU, U) - Z \/W exp ( - 0_2 )7 56 - G(ﬁe) > 07
are stable equilibria,
2. the disorder state
(2.) L1 ( u2)
—— ] X _ —

is an unstable equilibrium.

— The noise strength o improves the stability of the order states pi¢, (z,u).

Zurich May 2017



Collective motion: Fluctuation analysis
e Fluctuation analysis (N > 1).

e Let pn(t,dz,du) = + Zfll O(z,;(t),u; (1)) (dx,du) and £ be a solution to & = G(§).
o If as N — oo, pn(0,dz, du) converges to the stationary state pe(z,u)dzrdu,
then as N — oo, pg\})(t, dx,du) = vV N|pn(t,dz, du) — pe(x, u)drdu] converges to the

measure-valued process p! (¢, dz, du) satisfying

a (1) .
dp) = g dt — 5 ((G(€) —u)pM]dt

3,05 (1) / / 1 282 (1)
[/ / (|z" — z|)p" (¢, dx’, du) dt—|—§ 902 dt + odWre,

where We(t,x,u) is a space-time Gaussian random noise with covariance

Cov (/OL /_O; We(t, z, u) fi(x, u)drdu, /OL /_o; Wg(t’,x,u)fg(a:,u)da:du>

, L (o%e) a | a
= min(t,t )/O N 8—2(:{:,1@ 8]; (x, u)pe(x, u)dxdu,

for any test functions f; and fs.

e Stability is ensured iff p¢ is stable for the linearized Fokker-Planck equation.

Zurich May 2017



Collective motion: Simulations
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G(u) = 2y — Lw’, h=6, 0 =0.5, N = 1000.

e Here G'(£) < 1, so that the mode 0 is stable — the average velocity is stable.
e The first mode kmax = 1, with growth rate y(kmax) = Ve (kmax) + i (kmax) € C, is

the most unstable.

— a spatial modulation is growing, which gives one cluster.

v = ’Yi(k’maX)L .
2mkmax

e The imaginary part of the growth rate gives the velocity of the cluster

exp|—127kmax®/ L] exp[(Vr (kmax ) +17i (kmax ) )t] = exp[—i(2mkmax /L) (x—vt)] exp[yr (kmax )]

Zurich May 2017



Collective motion: Simulations

G(u) = 2y — 2w, h =6, 0 = 0.5, N = 1000.

e Here G'(£) < 1, so that the mode 0 is stable — the average velocity is stable.

e The first mode kmax = 1, with growth rate y(kmax) = Vr (kmax) + i (kmax) € C, is
the most unstable.
— a spatial modulation is growing, which gives one cluster.

Yi (kmax)L .
27mkmax

e The imaginary part of the growth rate gives the velocity of the cluster v =

exp| =127 kmax / L] exp[(7r (kmax ) +0%i (Fmax ) )t] = exp|—i(2mkmax /L) (x—vt)] exp[7r (Fmax )]

e The velocity of the cluster is larger than the average velocity of the particles.

The slow particles of the cluster are left behind !
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Collective motion: Large deviations analysis
e Assume that two order states p+¢_  exist and are stable.
e Assume initial conditions are such that p(0,x,u) ~ pie (x,u).

e Consider the rare event:

A=A{p: [[p(T,dz,dy) — p—¢.(z, u)dzdul| < d}.

e We have

P(pn € A) N exp (—N inf I(p)) :
pEA

The rate function:

T 90 (¢ . — [* t.-. . 2
I(p) o L/ sup <8t( ’ ) p(t,-,-)p( ’ )7f> dt,
0

o B
207 Flz,w):(p(t,,),(3L)2)0 (p(t, ), (a—£)2>

where L] is the differential operator associated to the Fokker-Planck equation:

* a,0 0 / / I . 1 28210
L,,p——uax—au [(G(//uqb(kc])V(:L’—:I:,U)dUd:L’)—u)p]—|—20 52
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Collective motion: Simulations
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Stability increases with V.

Zurich May 2017



Collective motion: Simulations
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Empirical locity @n. Here N = d h = 6, with G(u) = & T
mpirical average velocity . Here N = 100 and h = 6, with G(u) = “T-u — 5z u

Stability decreases with o (but provided o is large enough !).
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Collective motion: Simulations
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Stability increases with A.
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Conclusions

e Linear stability analysis of the nonlinear Fokker-Planck equation of the mean field

model gives a lot of insight into the dynamics of the interacting system.
e Noise globally increases the stability (for opinion dynamics and collective motion).

e Simple systems can give complex behaviors.
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