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Opinion dynamics

• Propose an opinion model for an interacting population of agents to study

consensus convergence, with simple local rules of interaction.

• Opinion model for N agents [1]:

dxi = − 1

N

N
∑

j=1

φ(|xi − xj |)(xi − xj)dt+ σdW i(t), i = 1, . . . , N,

where xi(t) is the agent i’s opinion.

• The influence function φ is nonnegative, bounded, and compactly supported in [0, 1].

→֒ The interactions are attractive and the agent i is only affected by agents that have

similar opinions.

• The initial opinions xi(0) may be deterministic or random, for instance xi(0) are

i.i.d. with distribution with density ρ0.

• The independent Brownian motions W i(t), i = 1, . . . , N model external noise, and

σ ≥ 0 is its strength.

[1] S. Motsch and E. Tadmor, SIAM Review 56, 577 (2014).



Opinion dynamics: Simulations
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σ = 0 σ = 0.1

φ(s) = 1[0,1/
√

2](s) + 0.1× 1(1/
√
2,1](s) .

Initial uniform distribution over [0, L], L = 10, N = 500.

Can we predict the number of clusters ?

Zürich May 2017



Opinion dynamics: The mean field limit

• Consider the model in [0, L] with periodic boundary conditions.

• Introduce the empirical probability measure ρN (t, dx) of the opinions of the agents:

ρN (t, dx) =
1

N

N
∑

j=1

δxj(t)(dx).

ρN (t, dx) is a measure-valued stochastic process.

• Assume that as N → ∞, ρN (0, dx) converges weakly, in probability, to a

deterministic measure with density ρ0(x).

This happens (with ρ0(x) = 1/L) if the initial opinions are i.i.d. with uniform density

over [0, L].

• As N → ∞, ρN (t, dx) converges weakly, in probability, to a deterministic

probability measure whose density ρ(t, x) satisfies (in a weak sense) the nonlinear

Fokker-Planck equation [1]:

∂ρ

∂t
(t, x) =

∂

∂x

{[
∫

ρ(t, x− y)yφ(|y|)dy
]

ρ(t, x)

}

+
σ2

2

∂2ρ

∂x2
(t, x),

with initial density ρ0(x).

[1] D. A. Dawson, J. Statist. Phys. 31, 29 (1983).



Opinion dynamics: The mean field limit

Formally:

dxi = −
[ 1

N

N
∑

j=1

φ(|xi − xj |)(xi − xj)
]

dt+ σdW i(t), i = 1, . . . , N

m

dxi = −
[

∫

φ(|xi − y|)(xi − y)ρN (t, dy)
]

dt+ σdW i(t), i = 1, . . . , N

↓ N → ∞

dXt = −
[

∫

φ(|Xt − y|)(Xt − y)ρ(t, y)dy
]

dt+ σdW (t), ρ(t, ·) = pdf of Xt

m
∂ρ

∂t
(t, x) =

∂

∂x

{[
∫

φ(|x− y|)(x− y)ρ(t, y)dy

]

ρ(t, x)

}

+
σ2

2

∂2ρ

∂x2
(t, x)

[1] D. A. Dawson, J. Statist. Phys. 31, 29 (1983).



Opinion dynamics for σ = 0

• Modulational instability (in the mean field limit N = ∞).

• Linearize the Fokker-Planck equation by assuming ρ(t, x) = ρ0 + ρ1(t, x), ρ0 = 1/L:

∂ρ1
∂t

(t, x) = ρ0

∫

∂ρ1
∂x

(t, x− y)yφ(|y|)dy.

• Take the Fourier transform in x, ρ̂1(t, k) =
∫ L

0
e−ikxρ1(t, x)dx, with the discrete

frequency k in K = {2πn/L, n ∈ N}:

∂ρ̂1
∂t

(t, k) =

[

iρ0k

∫

e−ikyyφ(|y|)dy
]

ρ̂1(t, k).

• For each k, |ρ̂1(t, k)| = |ρ̂1(0, k)| exp(γkt), where the growth rate of the k-th mode is:

γk = Re

[

iρ0k

∫

e−ikyyφ(|y|)dy
]

= ρ0k

∫

sin(ky)yφ(|y|)dy.

• The growth rate γk is maximal for k = ±kmax with

kmax = argmax
k∈K

[ψ(k)] , ψ(k) = 2k

∫ 1

0

sin(ks)φ(s)sds

Zürich May 2017



Opinion dynamics for σ = 0

• Fluctuation theory (in the regime N ≫ 1).

• Denote ρ0(dx) = dx/L. Fix T . Consider

ρN1 (t, dx) :=
√
N

(

ρN (t, dx)− ρ0(dx)
)

, t ∈ [0, T ]

• If the initial opinions (xj(0))
N
j=1 are i.i.d. with uniform density over [0, L],

then, as N ≫ 1,

ρ̂N1 (t = 0, k) =

∫

e−ikxρN1 (t = 0, dx) =
1√
N

N
∑

j=1

e−ikxj (0), k ∈ {2πn/L, n ∈ N
∗}

converge to ρ̂1(t = 0, k) i.i.d. complex circular Gaussian random variables, mean zero,

and variance 1:

E [ρ̂1(t = 0, k)] = 0, E

[

ρ̂1(t = 0, k)ρ̂1(t = 0, k′)
]

= δkk′ , k, k′ ∈ {2πn/L, n ∈ N
∗}.

Note ρ̂N1 (t, k = 0) = 0.

• As N ≫ 1, ρ̂N1 (t, k), k ∈ K\{0}, converge to ρ̂1(t, k), k ∈ K\{0}, independent
complex circular Gaussian random variables, with mean zero and variance exp(2γkt):

E

[

ρ̂1(t, k)ρ̂1(t, k′)
]

= δkk′ exp(2γkt), k, k′ ∈ {2πn/L, n ∈ N
∗}.

→ The mode with the largest growth rate γmax = 2ρ0ψ(kmax) quickly dominates.

Zürich May 2017



Opinion dynamics for σ = 0

• The time up to the onset of clustering is when ρ1 ∼
√
Nρ0:

tclu ≃ 1

2γmax
lnN ≃ 1

2ρ0ψ(kmax)
lnN

Clustering happens with a mean distance between clusters equal to 2π/kmax.

• Once clustering has occurred, two types of dynamical evolutions are possible:

1. If 2π/kmax > 1, then the clusters do not interact with each other because they

are beyond the range of the influence function.

→֒ The situation is frozen and there is no consensus convergence.

Zürich May 2017



Opinion dynamics for σ = 0
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Here φ(s) = 1[0,1/
√
2](s) + 0.1× 1(1/

√
2,1](s), L = 10, N = 500.

kmax = 3.77. Inter-cluster distance = 1.67.

→֒ No consensus convergence.

Zürich May 2017



Opinion dynamics for σ = 0

• The time up to the onset of clustering is when ρ1 ∼
√
Nρ0:

tclu ≃ 1

2γmax
lnN ≃ 1

2ρ0ψ(kmax)
lnN

Clustering happens with a mean distance between clusters equal to 2π/kmax.

• Once clustering has occurred, two types of dynamical evolutions are possible:

1. If 2π/kmax > 1, then the clusters do not interact with each other because they

are beyond the range of the influence function.

→֒ The situation is frozen and there is no consensus convergence.

2. If 2π/kmax < 1, then the clusters interact with each other.

→֒ There may be consensus convergence.

However, consensus convergence is not guaranteed as clusters may merge by

packets, and the centers of the new clusters may be separated by a distance

larger than 2π/kmax, and then global consensus convergence does not happen.

→֒ The number of mega-clusters formed by this dynamic is not easy to predict.

Zürich May 2017



Opinion dynamics for σ = 0
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Here φ(s) = 0.2× 1[0,1/
√

2](s) + 1(1/
√
2,1](s), L = 10, N = 500.

kmax = 9.42. Inter-cluster distance = 0.67.

→֒ There may be global consensus convergence (very sensitive !).

Zürich May 2017



Opinion dynamics for σ > 0

• Modulational instability (in the mean field limit N = ∞).

• Linearize the Fokker-Planck equation by assuming ρ(t, x) = ρ0 + ρ1(t, x), ρ0 = 1/L:

∂ρ1
∂t

(t, x) = ρ0

∫

∂ρ1
∂x

(t, x− y)yφ(|y|)dy + σ2

2

∂2ρ1
∂x2

(t, x).

• In the Fourier domain:

∂ρ̂1
∂t

(t, k) =

[

iρ0k

∫

e−ikyyφ(|y|)dy − σ2k2

2

]

ρ̂1(t, k).

• Growth rates of the modes:

γσ,k = Re

[

iρ0k

∫

e−ikyyφ(|y|)dy − σ2k2

2

]

,

or γσ,k = ρ0ψσ(k), where

ψσ(k) = 2k

∫ 1

0

sin(ky)yφ(|y|)dy − σ2k2

2ρ0
.

We look for the most unstable mode whose frequency kmax ∈ {2πn/L, n ∈ N}
maximizes ψσ(k).

Zürich May 2017



Opinion dynamics for σ > 0

Let

σ2
c = max

k∈K

[

4ρ0
k

∫ 1

0

φ(s)s sin(ks)ds

]

≃ 4ρ0

∫ 1

0

s2φ(s)ds.

1. If σ < σc, then maxk>0 ψσ(k) > 0, so kmax = argmaxk>0ψσ(k) > 0 exists and

ρ̂1(t, kmax) has positive growth rate γmax = ρ0ψσ(kmax).

→֒ The system is linearly unstable (qualitatively analogous to the deterministic

case, although kmax is reduced).

2. If σ > σc, then maxk>0 ψσ(k) < 0, so all of ρ̂1(t, k) have negative growth rates.

→֒ The system with uniform density is stable.

Zürich May 2017



Opinion dynamics for σ > 0

• Fluctuation theory (in the regime N ≫ 1).

• The measure-valued process

ρN1 (t, dx) :=
√
N

(

ρN (t, dx)− ρ0(dx)
)

converges in distribution as N → ∞ to a measure-valued process ρ1(t, dx) whose

density ρ1(t, x) satisfies a stochastic PDE:

dρ1(t, x) =

[

ρ0

∫

∂ρ1
∂x

(t, x− y)yφ(|y|)dy + σ2

2

∂2ρ1
∂x2

(t, x)

]

dt+ σdW (t, x)

where W (t, x) is a space-time Gaussian random noise with mean zero and covariance

Cov

(
∫ L

0

W (s, x)f1(x)dx,

∫ L

0

W (t, x)f2(x)dx

)

=
min{s, t}

L

∫ L

0

f ′
1(x)f

′
2(x)dx

for any test functions f1(x) and f2(x), which is independent of the Gaussian (white

noise) initial condition.

• ρ̂1(t, k) is a Gaussian process with mean zero and covariance

E

[

ρ̂1(t, k)ρ̂1(t, k′)
]

= δkk′

{

exp(2γσ,kt)
[

1 +
σ2k2

2γσ,k

]

− σ2k2

2γσ,k

}

, k, k′ ∈ {2πn/L, n ∈ N}.

→ The mode with the largest growth rate γσ,kmax
= ρ0ψσ(kmax) quickly dominates.

Zürich May 2017



Opinion dynamics for σ > 0
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Opinion dynamics for σ > 0
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Opinion dynamics for σ > 0
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Opinion dynamics for σ > 0
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Opinion dynamics for σ > 0

After clustering:

- Markovian dynamics of clusters (move like Brownian motions and merge when two

of them come close to each other).
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- Global consensus convergence (in 1D, Brownian motions always collide).

- Megacluster moves like a Brownian motion.

Zürich May 2017



Collective motion

Zürich May 2017



Collective motion: Czirók model

• N agents move along the torus [0, L].

• For i = 1, . . . , N , the position xi and velocity ui of particle i satisfy:

dxi = uidt,

dui =
[

G(〈u〉i)− ui

]

dt+ σdWi(t).

• {Wi(t)}Ni=1 are independent Brownian motions.

• 〈u〉i is a weighted average of the velocities {uj}Nj=1:

〈u〉i =
1

N

N
∑

j=1

ujφ(|xj − xi|),

with the weights depending on the distance (on the torus) between the position xi

and the positions of the other agents.

φ(x) is a nonnegative influence function normalized so that 1
L

∫ L

0
φ(|x|)dx = 1.

• G(u) is an odd and smooth function.

If G(u) = u: Cucker-Smale model.

If G(u) derives from a double well potential: Czirók model.

Zürich May 2017



Collective motion bistability: Experiments

Locusts in a torus Alignment as function of time

Cf: G. Ariel and A. Ayali, PLoS Comput. Biol. 11(12):1–25, 2015.

Zürich May 2017



Collective motion: Simulations
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φ(s) = 5× 1[0,1](s).

G(u) = 2u− 0.072u3.

σ = 5.

Initial distribution: (xi(0), ui(0))
N
i=1 i.i.d., (xi(0))

N
i=1 uniform over [0, L], (ui(0))

N
i=1

Gaussian distributed with mean zero and variance σ2/2, L = 10, N = 100.

Can we explain the bistability, the transition rate ?

Zürich May 2017



Collective motion: The mean field limit

• Introduce the empirical probability measure:

ρN (t, dx, du) =
1

N

N
∑

i=1

δ(xi(t),ui(t))(dx, du).

• If ρN (0, dx, du) converges to a deterministic measure ρ̄(x, u)dxdu as N → ∞,

then as N → ∞, ρN (t, dx, du) converges to the deterministic measure ρ(t, x, u)dxdu

whose density is the solution of the nonlinear Fokker-Planck equation

∂ρ

∂t
= −u∂ρ

∂x
− ∂

∂u

{[

G

(
∫∫

u′φ(|x′|)ρ(t, x− x′, u′)du′dx′
)

− u

]

ρ

}

+
1

2
σ2 ∂

2ρ

∂u2
,

starting from ρ(t = 0, x, u) = ρ̄(x, u).

Zürich May 2017



Collective motion: The stationary states in the mean field limit

• The stationary solutions ρ(x, u) have the following form:

ρξ(x, u) =
1

L
Fξ(u), Fξ(u) =

1√
πσ2

exp
(

− (u− ξ)2

σ2

)

.

• They are uniform in space, Gaussian in velocity, and their mean velocity ξ satisfies

the compatibility condition:

ξ = G(ξ).

• There are, therefore, as many stationary equilibria as there are solutions to the

compatibility equation.

• When G is such that u−G(u) derives from a double-well potential, such as

G(u) = 2 tanh(u) or G(u) = 2u− u3, there are three ξ satisfying the compatibility

condition: 0 and ±ξe, with ξe > 0.

Zürich May 2017



Collective motion: Linear stability analysis for the stationary states

• Let ξ be such that G(ξ) = ξ and consider

ρ(t, x, u) = ρξ(x, u) + ρ(1)(t, x, u) =
1

L
Fξ(u) + ρ(1)(t, x, u),

for small perturbation ρ(1). By linearizing the nonlinear Fokker-Planck equation:

∂ρ(1)

∂t
= −u∂ρ

(1)

∂x
− ∂

∂u

[

(ξ − u)ρ(1)
]

− 1

L
G′(ξ)

[
∫∫

u′φ(|x′|)ρ(1)(t, x− x′, u′)du′dx′
]

F ′
ξ(u) +

1

2
σ2 ∂

2ρ(1)

∂u2
.

• The mode ρ
(1)
k (t, u) = 1

L

∫ L

0
ρ(1)(t, x, u)ei2πkx/Ldx satisfies

∂ρ
(1)
k

∂t
=
i2πk

L
uρ

(1)
k − ∂

∂u

[

(ξ − u)ρ
(1)
k

]

−G′(ξ)φk

[
∫

u′ρ
(1)
k (t, u′)du′

]

F ′
ξ(u) +

1

2
σ2 ∂

2ρ
(1)
k

∂u2
,

with φk = 1
L

∫ L

0
φ(|x|)ei2πkx/Ldx.

• The equations are uncoupled in k and the system is linearly stable if all modes are

stable.

Zürich May 2017



Collective motion: Linear stability analysis for the stationary states

• The 0-th order mode is stable if and only if G′(ξ) < 1.

• The k-th order modes are stable if σ is large enough (critical σ depends on φ, G).

When G is such that u−G(u) derives from a double-well potential:

1. the order states

ρ±ξe(x, u) =
1

L

1√
πσ2

exp
(

− (u∓ ξe)
2

σ2

)

, ξe = G(ξe) > 0,

are stable equilibria,

2. the disorder state

ρ0(x, u) =
1

L

1√
πσ2

exp
(

− u2

σ2

)

is an unstable equilibrium.

→֒ The noise strength σ improves the stability of the order states ρ±ξe(x, u).

Zürich May 2017



Collective motion: Fluctuation analysis

• Fluctuation analysis (N ≫ 1).

• Let ρN (t, dx, du) = 1
N

∑N
i=1 δ(xi(t),ui(t))(dx, du) and ξ be a solution to ξ = G(ξ).

• If as N → ∞, ρN (0, dx, du) converges to the stationary state ρξ(x, u)dxdu,

then as N → ∞, ρ
(1)
N (t, dx, du) =

√
N [ρN (t, dx, du)− ρξ(x, u)dxdu] converges to the

measure-valued process ρ(1)(t, dx, du) satisfying

dρ(1) = −u∂ρ
(1)

∂x
dt− ∂

∂u
[(G(ξ)− u)ρ(1)]dt

−G′(ξ)
∂ρξ
∂u

[
∫ L

0

∫ ∞

−∞
u′φ(|x′ − x|)ρ(1)(t, dx′, du′)

]

dt+
1

2
σ2 ∂

2ρ(1)

∂u2
dt+ σdWξ,

where Wξ(t, x, u) is a space-time Gaussian random noise with covariance

Cov

(
∫ L

0

∫ ∞

−∞
Wξ(t, x, u)f1(x, u)dxdu,

∫ L

0

∫ ∞

−∞
Wξ(t

′, x, u)f2(x, u)dxdu

)

= min(t, t′)

∫ L

0

∫ ∞

−∞

∂f1
∂u

(x, u)
∂f2
∂u

(x, u)ρξ(x, u)dxdu,

for any test functions f1 and f2.

• Stability is ensured iff ρξ is stable for the linearized Fokker-Planck equation.

Zürich May 2017



Collective motion: Simulations
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G(u) = h+1
5
u− h

125
u3, h = 6, σ = 0.5, N = 1000.

• Here G′(ξ) < 1, so that the mode 0 is stable → the average velocity is stable.

• The first mode kmax = 1, with growth rate γ(kmax) = γr(kmax) + iγi(kmax) ∈ C, is

the most unstable.

→ a spatial modulation is growing, which gives one cluster.

• The imaginary part of the growth rate gives the velocity of the cluster v = γi(kmax)L
2πkmax

:

exp[−i2πkmaxx/L] exp[(γr(kmax)+iγi(kmax))t] = exp[−i(2πkmax/L)(x−vt)] exp[γr(kmax)t]

Zürich May 2017



Collective motion: Simulations
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• Here G′(ξ) < 1, so that the mode 0 is stable → the average velocity is stable.

• The first mode kmax = 1, with growth rate γ(kmax) = γr(kmax) + iγi(kmax) ∈ C, is

the most unstable.

→ a spatial modulation is growing, which gives one cluster.

• The imaginary part of the growth rate gives the velocity of the cluster v = γi(kmax)L
2πkmax

:

exp[−i2πkmaxx/L] exp[(γr(kmax)+iγi(kmax))t] = exp[−i(2πkmax/L)(x−vt)] exp[γr(kmax)t]

• The velocity of the cluster is larger than the average velocity of the particles.

The slow particles of the cluster are left behind !
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Collective motion: Large deviations analysis

• Assume that two order states ρ±ξe exist and are stable.

• Assume initial conditions are such that ρ(0, x, u) ≃ ρ+ξe(x, u).

• Consider the rare event:

A = {ρ : ‖ρ(T, dx, dy)− ρ−ξe(x, u)dxdu‖ ≤ δ} .

• We have

P(ρN ∈ A)
N≫1≈ exp

(

−N inf
ρ∈A

I(ρ)

)

.

The rate function:

I(ρ) =
1

2σ2

∫ T

0

sup
f(x,u):〈ρ(t,·,·),( ∂f

∂u
)2〉6=0

〈 ∂ρ
∂t
(t, ·, ·)− L∗

ρ(t,·,·)ρ(t, ·, ·), f〉2

〈ρ(t, ·, ·), ( ∂f
∂u

)2〉
dt,

where L∗
ν is the differential operator associated to the Fokker-Planck equation:

L∗
νρ = −u∂ρ

∂x
− ∂

∂u

[(

G

(
∫∫

u′φ(|x′|)ν(x− x′, u′)du′dx′
)

− u

)

ρ

]

+
1

2
σ2 ∂

2ρ

∂u2
.
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Collective motion: Simulations
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Empirical average velocity ūn. Here h = 6 and σ = 5, with G(u) = h+1
5
u− h

125
u3.

Stability increases with N .
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Collective motion: Simulations

σ = 4 σ = 4.5
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Empirical average velocity ūn. Here N = 100 and h = 6, with G(u) = h+1
5
u− h

125
u3

Stability decreases with σ (but provided σ is large enough !).
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Collective motion: Simulations

h = 5 h = 5.5
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Empirical average velocity ūn. Here N = 100 and σ = 5, with G(u) = h+1
5
u− h

125
u3.

Stability increases with h.
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Conclusions

• Linear stability analysis of the nonlinear Fokker-Planck equation of the mean field

model gives a lot of insight into the dynamics of the interacting system.

• Noise globally increases the stability (for opinion dynamics and collective motion).

• Simple systems can give complex behaviors.
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