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Sensor array imaging and (some of) its main limitations

e Sensor array imaging (echography in medical imaging, sonar, non-destructive
testing, seismic exploration, etc) has two steps:

- data acquisition: an unknown medium is probed with waves; waves are
emitted by a source (or a source array) and recorded by a receiver array.

- data processing: the recorded signals are processed to identify the quantities

of interest (source locations, reflector locations, etc).

e Example:

Ultrasound echography

e Standard imaging techniques require:
- suitable conditions for wave propagation (ideally, homogeneous medium),

- controlled and known sources.
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Ultrasound echography in concrete

Experimental set-up Acquisition geometry (top VieW)

Concrete: highly scattering medium for ultrasonic waves.
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Ultrasound echography in concrete
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The recorded signals are very “noisy” due to scattering.

— Standard imaging techniques fail.
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Ultrasound echography in concrete
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— The data set is good !
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Wave propagation in random media

e Wave equation:

1 82u(t =
c2(x) ot2

e Time-harmonic source in the plane z = 0: F(t, ) = §(2) f(x)e ™" (with

T = (x,2z2)).

e Random medium model: "

-~ s“_'- S o
1 1 1 = ‘..‘ - -‘4. ’.°_'.o
— — 5 —|_ w Set - ™ = .
c? (&) cg< () L s Se SN
Co is a reference speed, > ““’::T..‘
5 - . - -
pu(Z) is a zero-mean random process. ;;vf - -.‘/.4-
Il = -
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Wave propagation in the random paraxial regime

e Consider the time-harmonic wave equation (with & = (x, 2), A = A, + §?)

2

N W N
(AL + )i+ — (1+ plx, 2)) @ = =6(2) f ().
e Consider the paraxial regime “A\ < [.,r, < L”:
w T z T
W — e p(x, 2) —>53M(€—278—2)7 f(x) —>f<€—2)
The function 4°(w, x, z) is solution of
2
2\ ~€ W 3 Lz ~E L
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e The function qASE (slowly-varying envelope of a plane wave) defined by

4
e _1g¢ W2\ s T
ut (w,x,z) = 5, ©XP (zg4co)gb (w, 62,7:)
satisfies
~ WA A w? 1 2\ A LW
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Wave propagation in the random paraxial regime

The function ¢° (slowly-varying envelope of a plane wave) defined by

icte, L WZ o\ A €T
2)

exp (z

u(w, @, z) =

2w ete,

satisfies

41927 w? 1 2\~ W
200" + (2@— 8.0° + A1 ¢° + ——u( = )gb€> = 2i—6(2) f(x).

CO O CO

e ¢° converges in distribution in C°([0, L], L2(R?)) (or C°([0, L], H*(R?))) to ¢
that is the unique solution of the It6-Schrédinger equation [1]

zco

do = (x, 2)
with B(zx, z) Brownian field E[B(x, z )A (' )] v(x — ') min(z, 2’),
= [ _E[u(0,0)u(x, z)]dz, and ¢(z = a:) f(x).

[1] J. Garnier and K. Sglna, Ann. Appl. Probab. 19, 318 (2009).



Moment calculations in the random paraxial regime

Consider
zco

dp = (x, 2)
starting from ¢(x, z = 0) = f(a:)
e By Ito’s formula,

2 161 = Kon w19 - C 2 gy

2w 8¢

and therefore

(O)w2z>’

2
8cs

E[qu(w, z)] = qghom(a:, 2) exp ( _ 2

where v(z) = [ E[u(0,0)u(x, z)]dz and dhom is the solution in the
homogeneous medlum.

e Strong damping of the coherent wave.
803
7(0)w? "
— Coherent imaging methods (such as Kirchhoff migration, Reverse-Time

—> Identification of the scattering mean free path Zg., =

migration) fail.
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Moment calculations in the random paraxial regime

e The mean Wigner transform defined by

Wirgz) = |

RQ

A

exp (=i q)E |(r+7.,2)0(r — 7.2)| da,

is the angularly-resolved mean wave energy density.

By Ito’s formula, it solves a radiative transport-like equation

ow ¢, w?
0z i w & Vel = 4(27)2c2

[ A [wie—r) -w©)ax

starting from W(r, &,z = 0) = Wy(r, ), the Wigner transform of the initial
field f.

e The fields at nearby points are correlated and their correlations contain
information about the medium.

—> One should use (migrate) cross correlations for imaging in random media.
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Beyond the second-order moments

e Fourth-order moments are useful to:
e quantify the statistical stability of correlation-based imaging methods.

e implement intensity-correlation-based imaging methods when only intensities

can be measured (optics).
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Moment calculations in the random paraxial regime

e Consider
zco

dd = (x, z)

starting from ¢(x, z = 0) = f(a:)

e Let us consider the fourth-order moment:

2 T1+T21+q1tq 2T —T21tq1—(q
M4(T‘1,T‘2,Q1,Q2,Z) — E{Qﬁ( - = 9 . 272)¢< : = 9 : 27Z>
2/ T1+ T2 —q1 — 2/T1— T2 —q1 1 Q2
<6 2)6( 2]
2 2
By It0’s formula,
0M4 ’iCO 2
aZ — ?(v'f‘l ) vql —I_ v'f‘g ’ vqg)Mél _I_ 4 2U4(q17q27r17r2)M47
with the generalized potential
Us(qi,92,71,72) = ~(@g2+q1)+v(@—q1)+vy(ra+q1) +v(r2 —q1)

—v(q2 + 72) — v(q2 — r2) — 27(0).

— One can get a general (but complicated) characterization of the
fourth-order moment [1].

[1] J. Garnier and K. Sglna, ARMA 220 (2016) 37.



Stability of the Wigner transform of the field

. q q
Wir, g, z):= / exp ( — 1€ - q)qb(’r -+ 5 z)qﬁ(’r — 5 z)dq
RQ
Let us consider two positive parameters rg and & and define the smoothed

Wigner transform:

1 , 2Ry
Ws(r, &, 2) = (27)272¢€2 //IRQXR2 Wi(r—r'€-€,z)exp (_ ’;;L? — |§£L? )d'r d§’.

e The coeflicient of variation Cy of the smoothed Wigner transform is defined

by:
C (’I" € Z) = \/E[WS(T7 £7 2)2] T E[WS(T, 57 Z)]2
- E[WS(T,f,z)]
satisfies
e c2 23
£21p? + 1 , 63 ?°2 4+ ?)WSQEOQZSCa
(r £ ) j?"Qz 9 IOz 4Z 2C2Z3 ,
PE«S ! sca ?“2 + SwQEZZsca
when | ’2 | ’2 |
= * 8¢,
v(x) =~(0) [1 et 0( 2 )}, 2> T = oL
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Stability of the Wigner transform of the field
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Contour levels of the coefficient of variation of the smoothed Wigner transform.

Here 7y = ry/p, and &, = &p.,.
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Application: Ultrasound echography in concrete

Défaut multifacettes

g
1l
E4
L 3
&
%
o
+

=5971mp

S

Experimental set-up Acquisition geometry (top view)

Concrete: highly scattering medium for ultrasonic waves.
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Application: Ultrasound echography in concrete
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Real configuration Image (2D slice)

Image obtained by travel-time migration of well-chosen cross correlations of
data.
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Beyond acoustics

e In optics: only intensities are measured (square moduli of complex

amplitudes).
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Speckle intensity correlation imaging through a scattering medium

Source I
_ ! —
I w
| 5 i{ -
Moving object Camera e
(mask)  Scattering Speckle pattern
medium

Experimental set-up [1]
e The light source is a time-harmonic plane wave.
e The object to be imaged is a mask that can be shifted transversally.

e For each position of the object the spatial intensity of the transmitted field

(speckle pattern) can be recorded by the camera.

[1] J. A. Newmann and K. J. Webb, PRL 113, 263903 (2014).



Speckle intensity correlation imaging through a scattering medium

Source
—» |
> |
|
Moving object Camera
(mask) Scattering
medium

e The field just after the object is of the form
Ur(x) =U(x — 1),
for some function U (typically, the indicator function of the mask).

e The field in the plane of the camera is denoted by FE,.(x).

The measured intensity correlation is

1
Cr,r’ — T a
’AO| Ao

2d:c / dx |,
|A0|/ o)fde) (1 o)|*de)

where Ag is the spatial support of the camera.

| Er (@) [*| Eps ()| dae
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Speckle intensity correlation imaging through a scattering medium

Source
—> |
— > |
|
Moving object Camera
(mask)  gcattering
medium

e Result:

E[Crr] = /AOdX/dY‘ - ([v+? (- e (- i¢ @) da)
xexp (i€ (X "°+r )) ex (402/ V(COCz—Y)—v(O)dz)dq

Jewr |, (ot 5 e e
X exp (ZC (X — r —I—’r’)) exp ( — Z}CZW(O)L)CZC 2,

with y(z) = [Z_ E[u(0,0)u(z, 2)]dz.
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Speckle intensity correlation imaging through a scattering medium

Source
—> |
> |
|
Moving object Camera
(mask) Scattering
medium

e Result: When L > Z.., = (%C)w2 and

c2L3 , 5 Zseal?
Lol > |Ap|(~ diam(camera)®) > 7

we have
2

Y

Cropr 2 E[Cp | & ‘/]U exp (r’—r))dn

up to a multiplicative constant, where

U(k) = /U(m)exp(—z’m-w)dm.

— It is possible to reconstruct the incident field U.

Columbia

May 2018



Speckle intensity correlation imaging through a scattering medium

Source
—> |
— > |
|
Moving object Camera
(mask) Scattering
medium

e We have
2
Chr :E | R ‘/]U exp k- (r —T‘))dlﬂ‘,‘
— It is possible to reconstruct the incident field U by a two-step phase
retrieval algorithm (Gerchberg-Saxon-type).

1) Given C, ,, we know the modulus of the (I)FT of |U(k)[?, and we know the
phase of |U(k)|? (zero) — we can extract |U(k)|2.
2) Given |U(k)[?, we know the modulus of the FT of U(x), and we know the

phase of U(x) (zero) — we can extract U(x).

Columbia May 2018



Speckle intensity correlation imaging through a scattering medium (II)
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Experimental set-up
e A laser beam with incident angle 0 is shined on the scattering medium.
e The object to be imaged is a mask.

e The total intensity of the light that goes through the mask is collected by a
bucket detector.

— For each incident angle 8 the total transmitted intensity £g is measured.
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Speckle intensity correlation imaging through a scattering medium (II)

L L
T
______ \
0 T
s I
Source Scattering Object Scattering Bucket
medium  (mask) medium  detector
Consider:
1 2
C(AG) ~ / EoE0rnodd — (= / sede)
© Jo
e Result:
E[C( 2 / ’7(33 -+ AQ(Z —+ LO))dz> e_ZiBﬁ’()'(g)Fdew
0)L 7, (0) L
xexp( ) - 100 exp (- S5,
with y(z) = [T E[u(0,0)u(z, 2)]dz.
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Speckle intensity correlation imaging through a scattering medium (II)

et
) e
\ ~~~~~~~~~~~~~~~~~~~~~~~~ I
Source Scattering Object Scattering Bucket

medium (mask) medium  detector

2
3c;

e Result: When L > Z,., = MO then

C(A8) = E[C(AD)] ~ (K, * (U +U)) (A0L,) exp ép% a0P),

/

up to a multiplicative constant, where f x g(x) = [ f(z')g(x + =’)da’,

Ko, () = —=5 exp pL = :

1 =/’ 200,
( ; )’ W CW(O)L

(pr is the correlation radius of the speckle pattern at z = L), and ¢, = L, + %

— If py, is small and L, is large enough, then one can extract |U(k)[? and then

U(x) by a phase retrieval algorithm.
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Ghost imaging

Beam splitter
Source P

4>

-

R

Object (mask) Bucket detecto

1

VIV High-resolution detector |
I Correlator

e Noise source (laser light passed through a rotating glass diffuser).

e without object in path 1; a high-resolution detector measures the

spatially-resolved intensity I (¢, x).

e with object (mask) in path 2; a single-pixel detector measures the

spatially-integrated intensity I (?).

Experiment: the correlation of I;(-, ) and I5(-) is an image of the object [1,2].
1] A. Valencia et al., PRL 94. 063601 (2005): [2] J. H. Shapiro et al., Quantum Inf. Process1.949 (2012).



Ghost imaging

e Wave equation in paths 1 and 2:

1 82uj
c;(x) Ot

—Agu; = e "“ln(t,x)6(2)+c.c., T = (x,2) € R°xR, j=1,2

e Noise source (with Gaussian statistics):

(

n(t, @)n(t, w’)> — F(t —t') exp ( _

=|”

)5(:13 —x')

2
rs

o Wave fields: u;(t, &) = v;(t,@)e "' + c.c., j=1,2

e Intensity measurements:

Il(t, CE‘) =

IL(t) =
e Correlation:

CT(CC) =

Columbia

lv1 (¢, (2, L))|? in the plane of the high-resolution detector

lva(t, (', L + Lg))|*d’ in the plane of the bucket detector
RQ

%/()Tll(t, 2)L(t)dt — (7 /OTll(t,m)dt>(% /OTIQ(t)dt>
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Ghost imaging in homogeneous media

e Resolution analysis in homogeneous media.

e Model for the object: Mask 7 (x) in the plane z = L.

e Result:
Cr(x) 1o C’(l)(m) — / h(x — z)|T(z)|2dz
RQ
with
’ o2y . L
h(a:) = S8 2] 2 exp ( — 4/0;10)7 Pgio = 2wgr§

Resolution: pgig ~ Ao L/7r, (Rayleigh resolution formula).

Sketch of ideal proof. Use the Gaussian summation rule (the fourth-order
moments of Gaussian random fields can be expressed in terms of sums of
products of second-order moments).

If v(x) is a complex symmetric circular Gaussian random field, then

2

Cov (|u(@) %, [v(@") ) = | Cov (v(a), v(@))]
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Ghost imaging in heterogeneous media

Beam splitter
Source P |
— e |
4» { 2 |
— <’ I
i I

Object (mask) Bucket detecto

High-resolution detector
Correlator

The medium in paths 1 and 2 is heterogeneous (for instance, turbulent
atmosphere).
They are two independent realizations with the same distribution.

Columbia
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Ghost imaging in heterogeneous media

e Resolution analysis in randomly heterogeneous media.

e If the propagation distance is larger than the scattering mean free path, then

V@) = [ Ha—y)|Tw)Pdy,
R
with
"o Pg |2 42 L3 2L
o oM gi0 2 2 o 2 _ o
H(CB) 287T2L4p§m exXp <_4,0§12 )7 IOgi2 _ pgiO + ngZscagg’ pgiO _ zwgrg

— Scattering only slightly reduces the resolution !
This imaging method is robust with respect to medium noise. It gives an image
even when L/Z ., > 1.
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Ghost imaging in heterogeneous identical media

Beam splitter
Source P

4>

%
—> '

.

Object (mask) Bucket detecto

(D)

High-resolution detector
Correlator

The medium in paths 1 and 2 is heterogeneous.

They are the same realization.
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Ghost imaging in heterogeneous identical media

e Resolution analysis in randomly heterogeneous and identical media.

e If the propagation distance is larger than the scattering mean free path, then

C(l)(a:) — H(x — y)!T(y)I2dy,
R2
with
?“él ’CE‘|2 1 1 16L
H(CE‘) T 28 2[4 exXp ( B 4021?))’ @ N @ Zscagg

— the radius of the convolution kernel is reduced by scattering and can even
be smaller than the Rayleigh resolution formula: enhanced resolution compared
to the homogeneous case (similar phenomenon observed in time-reversal

experiments) !
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Ghost imaging with a virtual high-resolution detector

Source

I
|
I
[
t

Object (mask) Bucket detecto

~Numerical wave
solver

» Correlator

- The medium in path 2 is randomly heterogeneous.

- There is no other measurement than I5(%).

- The realization of the source is known (use of a Spatial Light Modulator) and
the medium is taken to be homogeneous in the “virtual path 1”7 — one can

compute the field (and therefore its intensity I (¢, «)) in the “virtual” output
plane of path 1.

— a one-pirel camera can give a high-resolution image of the object!
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On the role of the random medium

Beam splitter

Source I
S P ey | 7N
—P (\\9) (\g/‘) I (3/)
| .
Object (mask) Bucket detecto
W,

High-resolution detector o
-

N
Correlator )
e Rl

Random medium in region 0 is good.

Random medium in regions 1 and 2 is bad (unless they are the same

realization).

Random medium in region 3 plays no role.
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Conclusion

e Correlation-based imaging allows for imaging in randomly scattering media.

e One needs to process well-chosen cross correlations of the data.

e Fourth-order moment of the wave field is useful.

e Application: Speckle intensity correlation-based imaging. Many modalities !
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