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Sensor array imaging and (some of) its main limitations

• Sensor array imaging (echography in medical imaging, sonar, non-destructive

testing, seismic exploration, etc) has two steps:

- data acquisition: an unknown medium is probed with waves; waves are

emitted by a source (or a source array) and recorded by a receiver array.

- data processing: the recorded signals are processed to identify the quantities

of interest (source locations, reflector locations, etc).

• Example:

Ultrasound echography −→

• Standard imaging techniques require:

- suitable conditions for wave propagation (ideally, homogeneous medium),

- controlled and known sources.
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Ultrasound echography in concrete

Experimental set-up Acquisition geometry (top view)

Concrete: highly scattering medium for ultrasonic waves.
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Ultrasound echography in concrete
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The recorded signals are very “noisy” due to scattering.

→֒ Standard imaging techniques fail.
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Ultrasound echography in concrete
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Reciprocity: u(t, ~xr; ~xs) = u(t, ~xs; ~xr) for (almost) all pairs (~xr, ~xs).

→֒ The data set is good !
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Wave propagation in random media

• Wave equation:

1

c2(~x)

∂2u

∂t2
(t, ~x)−∆~xu(t, ~x) = F (t, ~x)

• Time-harmonic source in the plane z = 0: F (t, ~x) = δ(z)f(x)e−iωt (with

~x = (x, z)).

• Random medium model:
1

c2(~x)
=

1

c2o

(

1 + µ(~x)
)

co is a reference speed,

µ(~x) is a zero-mean random process.
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Wave propagation in the random paraxial regime

• Consider the time-harmonic wave equation (with ~x = (x, z), ∆ = ∆⊥ + ∂2
z )

(∆⊥ + ∂2
z )û+

ω2

c2o

(

1 + µ(x, z)
)

û = −δ(z)f(x).

• Consider the paraxial regime “λ ≪ lc, ro ≪ L”:

ω →
ω

ε4
, µ(x, z) → ε3µ

( x

ε2
,
z

ε2
)

, f(x) → f
( x

ε2
)

.

The function ûε(ω,x, z) is solution of

(∆⊥ + ∂2
z )û

ε +
ω2

c2oε
8

(

1 + ε3µ
( x

ε2
,
z

ε2
))

ûε = −δ(z)f
( x

ε2
)

.

• The function φ̂ε (slowly-varying envelope of a plane wave) defined by

ûε(ω,x, z) =
iε4co
2ω

exp
(

i
ωz

ε4co

)

φ̂ε
(

ω,
x

ε2
, z
)

satisfies

ε4∂2
z φ̂

ε +

(

2i
ω

co
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c2o

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 2i
ω

co
δ(z)f(x).
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Wave propagation in the random paraxial regime

The function φ̂ε (slowly-varying envelope of a plane wave) defined by

ûε(ω,x, z) =
iε4co
2ω

exp
(

i
ωz

ε4co

)

φ̂ε
(

ω,
x

ε2
, z
)

satisfies

ε4∂2
z φ̂

ε +

(

2i
ω

co
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c2o

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 2i
ω

co
δ(z)f(x).

• φ̂ε converges in distribution in C0([0, L], L2(R2)) (or C0([0, L], Hk(R2))) to φ̂

that is the unique solution of the Itô-Schrödinger equation [1]

dφ̂ =
ico
2ω

∆⊥φ̂dz +
iω

2co
φ̂ ◦ dB(x, z)

with B(x, z) Brownian field E[B(x, z)B(x′, z′)] = γ(x− x′) min(z, z′),

γ(x) =
∫

∞

−∞
E[µ(0, 0)µ(x, z)]dz, and φ̂(z = 0,x) = f(x).

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19, 318 (2009).



Moment calculations in the random paraxial regime

Consider

dφ̂ =
ico
2ω

∆⊥φ̂dz +
iω

2co
φ̂ ◦ dB(x, z)

starting from φ̂(x, z = 0) = f(x).

• By Itô’s formula,

d

dz
E[φ̂] =

ico
2ω

∆⊥E[φ̂]−
ω2γ(0)

8c2o
E[φ̂]

and therefore

E
[

φ̂(x, z)
]

= φ̂hom(x, z) exp
(

−
γ(0)ω2z

8c2o

)

,

where γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz and φ̂hom is the solution in the

homogeneous medium.

• Strong damping of the coherent wave.

=⇒ Identification of the scattering mean free path Zsca =
8c2

o

γ(0)ω2 .

=⇒ Coherent imaging methods (such as Kirchhoff migration, Reverse-Time

migration) fail.
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Moment calculations in the random paraxial regime

• The mean Wigner transform defined by

W (r, ξ, z) =

∫

R2

exp
(

− iξ · q
)

E

[

φ̂
(

r +
q

2
, z
)

φ̂
(

r −
q

2
, z
)

]

dq,

is the angularly-resolved mean wave energy density.

By Itô’s formula, it solves a radiative transport-like equation

∂W

∂z
+

co
ω
ξ · ∇rW =

ω2

4(2π)2c2o

∫

R2

γ̂(κ)
[

W (ξ − κ)−W (ξ)
]

dκ,

starting from W (r, ξ, z = 0) = W0(r, ξ), the Wigner transform of the initial

field f .

• The fields at nearby points are correlated and their correlations contain

information about the medium.

=⇒ One should use (migrate) cross correlations for imaging in random media.
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Beyond the second-order moments

• Fourth-order moments are useful to:

• quantify the statistical stability of correlation-based imaging methods.

• implement intensity-correlation-based imaging methods when only intensities

can be measured (optics).
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Moment calculations in the random paraxial regime

• Consider

dφ̂ =
ico
2ω

∆⊥φ̂dz +
iω

2co
φ̂ ◦ dB(x, z)

starting from φ̂(x, z = 0) = f(x).

• Let us consider the fourth-order moment:

M4(r1, r2, q1, q2, z) = E

[

φ̂
(r1 + r2 + q1 + q2

2
, z
)

φ̂
(r1 − r2 + q1 − q2

2
, z
)

×φ̂
(r1 + r2 − q1 − q2

2
, z
)

φ̂
(r1 − r2 − q1 + q2

2
, z
)

]

By Itô’s formula,

∂M4

∂z
=

ico
ω

(

∇r1
· ∇q1

+∇r2
· ∇q2

)

M4 +
ω2

4c2o
U4(q1, q2, r1, r2)M4,

with the generalized potential

U4(q1, q2, r1, r2) = γ(q2 + q1) + γ(q2 − q1) + γ(r2 + q1) + γ(r2 − q1)

−γ(q2 + r2)− γ(q2 − r2)− 2γ(0).

=⇒ One can get a general (but complicated) characterization of the

fourth-order moment [1].

[1] J. Garnier and K. Sølna, ARMA 220 (2016) 37.



Stability of the Wigner transform of the field

W (r, ξ, z) :=

∫

R2

exp
(

− iξ · q
)

φ̂
(

r +
q

2
, z
)

φ̂
(

r −
q

2
, z
)

dq.

Let us consider two positive parameters rs and ξs and define the smoothed

Wigner transform:

Ws(r, ξ, z) =
1

(2π)2r2s ξ
2
s

∫∫

R2×R2

W (r−r′, ξ−ξ′, z) exp
(

−
|r′|2

2r2s
−

|ξ′|2

2ξ2s

)

dr′dξ′.

• The coefficient of variation Cs of the smoothed Wigner transform is defined

by:

Cs(r, ξ, z) :=

√

E[Ws(r, ξ, z)2]− E[Ws(r, ξ, z)]2

E[Ws(r, ξ, z)]
.

satisfies

Cs(r, ξ, z) ≃





1
ξ2
s
ρ2
z

+ 1

4r2
s

ρ2
z

+ 1





1/2

, ρ2z =
ℓ2c

4Zscaz

r2o +
8c2

o
z3

3ω2ℓ2
c
Zsca

r2o +
2c2

o
z3

3ω2ℓ2
c
Zsca

,

when

γ(x) = γ(0)
[

1−
|x|2

ℓ2c
+ o

( |x|2

ℓ2c

)]

, z ≫ Zsca =
8c2o

γ(0)ω2
.
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Stability of the Wigner transform of the field
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Here rs = rs/ρz and ξs = ξsρz.
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Application: Ultrasound echography in concrete

Experimental set-up Acquisition geometry (top view)

Concrete: highly scattering medium for ultrasonic waves.
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Application: Ultrasound echography in concrete
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Image obtained by travel-time migration of well-chosen cross correlations of

data.
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Beyond acoustics

• In optics: only intensities are measured (square moduli of complex

amplitudes).
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Speckle intensity correlation imaging through a scattering medium

−→

Speckle pattern

Experimental set-up [1]

• The light source is a time-harmonic plane wave.

• The object to be imaged is a mask that can be shifted transversally.

• For each position of the object the spatial intensity of the transmitted field

(speckle pattern) can be recorded by the camera.

[1] J. A. Newmann and K. J. Webb, PRL 113, 263903 (2014).



Speckle intensity correlation imaging through a scattering medium

• The field just after the object is of the form

Ur(x) = U(x− r),

for some function U (typically, the indicator function of the mask).

• The field in the plane of the camera is denoted by Er(x).

The measured intensity correlation is

Cr,r′ =
1

|A0|

∫

A0

|Er(x)|
2|Er′(x)|2dx

−
( 1

|A0|

∫

A0

|Er(x)|
2dx

)( 1

|A0|

∫

A0

|Er′(x)|2dx
)

,

where A0 is the spatial support of the camera.
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Speckle intensity correlation imaging through a scattering medium

• Result:

E
[

Cr,r′

]

=

∫

A0

dX

∫

dY
∣

∣

∣

1

(2π)2

∫

(

∫

U
(

x+
r′ − r

2

)

U
(

x−
r′ − r

2

)

exp
(

− iζ · x
)

dx
)

× exp
(

iζ ·
(

X −
r + r′

2

)

)

exp
( ω2

4c2o

∫ L

0

γ
(coζ

ω
z − Y

)

− γ(0)dz
)

dζ
∣

∣

∣

2

−
∣

∣

∣

1

(2π)2

∫

A0

dX
(

∫

U
(

x+
r′ − r

2

)

U
(

x−
r′ − r

2

)

exp
(

− iζ · x
)

dx
)

× exp
(

iζ ·
(

X −
r + r′

2

)

)

exp
(

−
ω2

4c2o
γ(0)L

)

dζ
∣

∣

∣

2

,

with γ(x) =
∫

∞

−∞
E[µ(0, 0)µ(x, z)]dz.
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Speckle intensity correlation imaging through a scattering medium

• Result: When L ≫ Zsca =
8c2

o

γ(0)ω2 and

c2oL
3

ω2Zscaℓ2c
≫ |A0|(∼ diam(camera)2) ≫

Zscaℓ
2
c

L

we have

Cr,r′ ≃ E
[

Cr,r′

]

≈
∣

∣

∣

∫

|Û(κ)|2 exp
(

iκ · (r′ − r)
)

dκ
∣

∣

∣

2

,

up to a multiplicative constant, where

Û(κ) =

∫

U(x) exp
(

− iκ · x
)

dx.

→֒ It is possible to reconstruct the incident field U .
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Speckle intensity correlation imaging through a scattering medium

• We have

Cr,r′ ≃ E
[

Cr,r′

]

≈
∣

∣

∣

∫

|Û(κ)|2 exp
(

iκ · (r′ − r)
)

dκ
∣

∣

∣

2

→֒ It is possible to reconstruct the incident field U by a two-step phase

retrieval algorithm (Gerchberg-Saxon-type).

1) Given Cr,r′ , we know the modulus of the (I)FT of |Û(κ)|2, and we know the

phase of |Û(κ)|2 (zero) → we can extract |Û(κ)|2.

2) Given |Û(κ)|2, we know the modulus of the FT of U(x), and we know the

phase of U(x) (zero) → we can extract U(x).
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Speckle intensity correlation imaging through a scattering medium (II)

Experimental set-up

• A laser beam with incident angle θ is shined on the scattering medium.

• The object to be imaged is a mask.

• The total intensity of the light that goes through the mask is collected by a

bucket detector.

→ For each incident angle θ the total transmitted intensity Eθ is measured.
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Speckle intensity correlation imaging through a scattering medium (II)

Consider:

C(∆θ) ≃
1

Θ

∫

Θ

EθEθ+∆θdθ −
( 1

Θ

∫

Θ

Eθdθ
)2

• Result:

E[C(∆θ)] =
1

(2π)2

∫∫

exp
( ω2

2c2o

∫ L

0

γ
(

x+∆θ(z + Lo)
)

dz
)

e−ix·ξ|Û(ξ)|2dξdx

× exp
(

−
ω2γ(0)L

2c2o

)

− |Û(0)|2 exp
(

−
ω2γo(0)L

2c2o

)

,

with γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.
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Speckle intensity correlation imaging through a scattering medium (II)

• Result: When L ≫ Zsca =
8c2

o

γ(0)ω2 , then

C(∆θ) ≃ E[C(∆θ)] ≈ (KρL
⋆ (U ⋆ U)) (∆θℓo) exp

(

−
L2

12ρ2L
|∆θ|2

)

,

up to a multiplicative constant, where f ⋆ g(x) =
∫

f(x′)g(x+ x′)dx′,

KρL
(x) =

1

πρ2L
exp

(

−
|x|2

ρ2L

)

, ρL :=
2coℓc

ω
√

γ(0)L
,

(ρL is the correlation radius of the speckle pattern at z = L), and ℓo = Lo +
L
2 .

→ If ρL is small and Lo is large enough, then one can extract |Û(κ)|2 and then

U(x) by a phase retrieval algorithm.
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Ghost imaging

• Noise source (laser light passed through a rotating glass diffuser).

• without object in path 1; a high-resolution detector measures the

spatially-resolved intensity I1(t,x).

• with object (mask) in path 2; a single-pixel detector measures the

spatially-integrated intensity I2(t).

Experiment: the correlation of I1(·,x) and I2(·) is an image of the object [1,2].
[1] A. Valencia et al., PRL 94, 063601 (2005); [2] J. H. Shapiro et al., Quantum Inf. Process 1, 949 (2012).



Ghost imaging

• Wave equation in paths 1 and 2:

1

c2j(~x)

∂2uj

∂t2
−∆~xuj = e−iωotn(t,x)δ(z)+c.c., ~x = (x, z) ∈ R

2×R, j = 1, 2

• Noise source (with Gaussian statistics):

〈

n(t,x)n(t,x′)
〉

= F (t− t′) exp
(

−
|x|2

r2o

)

δ(x− x′)

• Wave fields: uj(t, ~x) = vj(t, ~x)e
−iωot + c.c., j = 1, 2

• Intensity measurements:

I1(t,x) = |v1(t, (x, L))|
2 in the plane of the high-resolution detector

I2(t) =

∫

R2

|v2(t, (x
′, L+ L0))|

2dx′ in the plane of the bucket detector

• Correlation:

CT (x) =
1

T

∫ T

0

I1(t,x)I2(t)dt−
( 1

T

∫ T

0

I1(t,x)dt
)( 1

T

∫ T

0

I2(t)dt
)
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Ghost imaging in homogeneous media

• Resolution analysis in homogeneous media.

• Model for the object: Mask T (x) in the plane z = L.

• Result:

CT (x)
T→∞
−→ C(1)(x) =

∫

R2

h(x− z)|T (z)|2dz

with

h(x) =
r4o

28π2L2
exp

(

−
|x|2

4ρ2gi0

)

, ρ2gi0 =
c2oL

2

2ω2
or

2
o

Resolution: ρgi0 ∼ λoL/ro (Rayleigh resolution formula).

Sketch of ideal proof. Use the Gaussian summation rule (the fourth-order

moments of Gaussian random fields can be expressed in terms of sums of

products of second-order moments).

If v(x) is a complex symmetric circular Gaussian random field, then

Cov
(

|v(x)|2, |v(x′)|2
)

=
∣

∣Cov
(

v(x), v(x′)
)∣

∣

2
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Ghost imaging in heterogeneous media

The medium in paths 1 and 2 is heterogeneous (for instance, turbulent

atmosphere).

They are two independent realizations with the same distribution.
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Ghost imaging in heterogeneous media

• Resolution analysis in randomly heterogeneous media.

• If the propagation distance is larger than the scattering mean free path, then

C(1)(x) =

∫

R2

H(x− y)|T (y)|2dy,

with

H(x) =
r4oρ

2
gi0

28π2L4ρ2gi2
exp

(

−
|x|2

4ρ2gi2

)

, ρ2gi2 = ρ2gi0 +
4c2oL

3

3ω2
oZscaℓ2c

, ρ2gi0 =
c2oL

2

2ω2
or

2
o

→֒ Scattering only slightly reduces the resolution !

This imaging method is robust with respect to medium noise. It gives an image

even when L/Zsca ≫ 1.
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Ghost imaging in heterogeneous identical media

The medium in paths 1 and 2 is heterogeneous.

They are the same realization.
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Ghost imaging in heterogeneous identical media

• Resolution analysis in randomly heterogeneous and identical media.

• If the propagation distance is larger than the scattering mean free path, then

C(1)(x) =

∫

R2

H(x− y)|T (y)|2dy,

with

H(x) =
r4o

28π2L4
exp

(

−
|x|2

4ρ2gi3

)

,
1

ρ2gi3
=

1

ρ2gi0
+

16L

Zscaℓ2c

→֒ the radius of the convolution kernel is reduced by scattering and can even

be smaller than the Rayleigh resolution formula: enhanced resolution compared

to the homogeneous case (similar phenomenon observed in time-reversal

experiments) !
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Ghost imaging with a virtual high-resolution detector

- The medium in path 2 is randomly heterogeneous.

- There is no other measurement than I2(t).

- The realization of the source is known (use of a Spatial Light Modulator) and

the medium is taken to be homogeneous in the “virtual path 1” → one can

compute the field (and therefore its intensity I1(t,x)) in the “virtual” output

plane of path 1.

→֒ a one-pixel camera can give a high-resolution image of the object!
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On the role of the random medium

Random medium in region 0 is good.

Random medium in regions 1 and 2 is bad (unless they are the same

realization).

Random medium in region 3 plays no role.
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Conclusion

• Correlation-based imaging allows for imaging in randomly scattering media.

• One needs to process well-chosen cross correlations of the data.

• Fourth-order moment of the wave field is useful.

• Application: Speckle intensity correlation-based imaging. Many modalities !
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