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Compressible fluids

fluids having significant changes in fluid density - gas dynamics

Supersonic aircraft breaking the sound barrier Space wind around a supermassive black hole

Tropical cyclone - Hurricane Fran, 1996 Micro-climate effects of wind turbines
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Stochastic NSE for compressible fluids

time evolution of density % and velocity u given by

d%+ div(%u)dt = 0

d(%u) +
[

div(%u⊗ u) +∇%γ
]
dt = div S(∇u)dt+ G(%, %u) dW

with the standard Newtonian viscous stress tensor

S(∇u) = µ
(
∇u +∇tu− 2

3
divu I

)
+ λ divu I

adiabatic constant γ > 3
2 , viscosities µ > 0, λ ≥ 0

%γ pressure; %u momentum
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Stochastic perturbation

W is a cylindrical Wiener process in U:

W (t) =
∑
k≥1

Wk(t)ek

G(%, %u) = {Gk(x, %, %u)}k≥1 takes values in `2(L1(T3))

G(%, %u) dW =
∑
k≥1

Gk(x, %, %u) dWk =
∑
k≥1

%Fk(x, %, %u) dWk

with suitable assumptions on Fk

⇒ G(%, %u) takes values in L2(U;W−b,2(T3)), b > 3
2
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Known results

Tornatore ’00, Feireisl, Maslowski, Novotný ’13 - weak solutions
for G(%, %u) = %G(x) via a semi-deterministic approach

Breit, H. ’14 - weak solutions for a general G

Wang, Wang ’15, Smith ’15 - Dirichlet boundary conditions

Breit, Feireisl, H. ’15 - incompressible limit

Breit, Feireisl, H. ’15 - relative energy inequality
(inviscid–incompressible limit, weak–strong uniqueness)

Breit, Feireisl, H. ’16 - local strong solutions

Breit, Feireisl, H., Maslowski ’17 - stationary solutions
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The solution concept – dissipative martingale solutions

weak solutions in PDE & probabilistic sense

energy inequality
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Dissipative martingale solution

Λ a probability measure on Lγ(T3)× L
2γ
γ+1 (T3)

Then
(
(Ω,F , (Ft),P), %,u,W ) is a dissipative martingale solution

with the initial law Λ

provided

(Ω,F , (Ft),P) is a stochastic basis with (UC)

W is an (Ft)-cylindrical Wiener process

Λ = P ◦
(
%(0), %u(0)

)−1
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Dissipative weak martingale solution

density % ≥ 0, % ∈ Cw([0, T ];Lγ(T3)) a.s. and

E sup
t∈[0,T ]

‖%(t)‖γpLγ <∞ for some p ∈ (1,∞)

velocity field u ∈ L2(Ω;L2(0, T ;W 1,2(T3))) satisfies

E
(∫ T

0
‖u‖2W 1,2 dt

)p
for some p ∈ (1,∞)

momentum %u ∈ Cw([0, T ];L
2γ
γ+1 (T3)) a.s. and

E sup
t∈[0,T ]

‖%u(t)‖
2γ
γ+1

p

L
2γ
γ+1

<∞ for some p ∈ (1,∞)
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the continuity eq satisfied in weak and renormalized sense

the momentum eq satisfied in the weak sense
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Energy inequality

for all φ ∈ C∞c ([0, T )), φ ≥ 0, the following energy inequality
holds true P-a.s.

−
∫ T

0
∂tφ

∫
T3

[1

2
%|u|2 +

%

γ − 1

]
dx dt+

∫ T

0
φ

∫
T3

S(∇u) : ∇udx dt

≤ φ(0)

∫
T3

[1

2

|(%u)(0)|2

%(0)
+

%(0)

γ − 1

]
dx

+

∞∑
k=1

∫ T

0
φ

∫
T3

Gk(%, %u) · udx dWk

+
1

2

∫ T

0
φ

∫
T3

∞∑
k=1

%−1|Gk(%, %u)|2 dx dt
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What is the right notion of stationarity?
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The notion of stationarity

no uniqueness – the concept of invariant measures ambiguous

density % and momentum %u are stochastic processes

velocity u ∈ L2(Ω;L2(0, T ;W 1,2(T3)))

⇒ not a stochastic process in the classical sense
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Stationarity vs. weak stationarity

Definition (Stationary stochastic process)

Let U = {U(t); t ∈ [0,∞)} be an X-valued stochastic process. We
say that U is stationary provided the joint laws

L(U(t1 + τ), . . . ,U(tn + τ)), L(U(t1), . . . ,U(tn))

on Xn coincide for all τ ≥ 0, for all t1, . . . , tn ∈ [0,∞).

Definition (Weakly stationary random variable)

Let U : Ω→ D′((0,∞)× T3) be weakly measurable. Let Sτ be the
time shift on the space of trajectories given by Sτϕ(t) = ϕ(t+ τ).
We say that U is weakly stationary provided the laws

L (〈U,S−τϕ1〉, . . . , 〈U,S−τϕn〉) , L (〈U, ϕ1〉, . . . , 〈U, ϕn〉)

on Rn coincide for all τ ≥ 0 and all ϕ1, . . . , ϕn ∈ C∞c ((0,∞)× T3).
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Properties

weak stationarity stable under weak convergence

weak stationarity of u ∈ L2
loc(0,∞;W 1,2(T3)) a.s.

⇒ L(u) = L(Sτu) on L2
loc(0,∞;W 1,2(T3))

⇒ L(u(s)) = L(u(t)) on W 1,2(T3) for a.e. s, t ∈ [0,∞)

weak stationarity of % ∈ Cloc

(
[0,∞); (Lγ(T3), w)

)
a.s.

⇒ % is a stationary Lγ(T3)-valued stochastic process

weak stationarity of %u ∈ Cloc

(
[0,∞); (L

2γ
γ+1 (T3), w)

)
a.s.

⇒ %u is a stationary L
2γ
γ+1 (T3)-valued stochastic process
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Stationary solutions

Definition

A dissipative martingale solution [%,u,W ] is called stationary
provided the joint law of the time shift [Sτ%,Sτu,SτW −W (τ)] on

Lploc(0,∞;Lγ(T3))× L2
loc(0,∞;W 1,2(T3))× Cloc([0,∞);U0)

is independent of τ ≥ 0, for all p ∈ [1,∞).
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Theorem (Breit, Feireisl, H., Maslowski ’17)

Let the total mass be given by M0 ∈ (0,∞), that is,

M0 =

∫
T3

%(t, x) dx for all t ∈ (0,∞).

Then there exists a stationary dissipative martingale solution
[%,u,W ] satisfying complete slip boundary conditions.
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A few words about the proof
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Four layer approximation scheme

χ smooth, nonincreasing, χ ≡ 1 on (−∞, 0], χ ≡ 0 on [1,∞)

artificial viscosity - ε

artificial pressure in the momentum equation - δ

d%+ div(%u)dt = ε∆%dt− 2ε%dt+ χ

(
1

M0

∫
T3

%dx

)
dt

d(%u) +
[

div(%u⊗ u)+∇%γ + δ∇%β − ε∆(%u)
]
dt

= div S(∇u)dt+ G(%, %u) dW

Faedo-Galerkin finite-dimensional approximation - N

stopping time argument - R

Aim: R→∞, N →∞, ε→ 0, δ → 0
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Four layer approximation scheme

d%+ div(%u)dt = ε∆%dt− 2ε%dt+ χ

(
1

M0

∫
T3

%dx

)
dt

d(%u) +
[

div(%u⊗ u)+∇%γ + δ∇%β − ε∆(%u)
]
dt

= div S(∇u)dt+ G(%, %u) dW

+ Faedo-Galerkin (N) and stopping times (R)

existence of an invariant measure on the basic level
– Krylov-Bogoliubov method

new global-in-time estimates needed

stationarity preserved under limit procedures
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Additional difficulties in comparison to existence

global-in-time estimates not controlled by the initial data

new estimates established at every approximation step

generalized energy inequality needed

modified method of effective viscous flux

if G(%, %u)dW  %f(x) dt, global bounds only for γ > 5
3
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Thank you for your attention!
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