Stationary solutions to the compressible Navier–Stokes system driven by stochastic forces

Martina Hofmanová

Technical University Berlin

based on joint works with D. Breit, E. Feireisl and B. Maslowski

Maryland, April 2017

Compressible fluids

• fluids having significant changes in fluid density - gas dynamics

Supersonic aircraft breaking the sound barrier

Tropical cyclone - Hurricane Fran, 1996

Space wind around a supermassive black hole

Micro-climate effects of wind turbines

Stochastic NSE for compressible fluids

ullet time evolution of density arrho and velocity ${f u}$ given by

$$d\varrho + \operatorname{div}(\varrho \mathbf{u})dt = 0$$
$$d(\varrho \mathbf{u}) + \left[\operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) + \nabla \varrho^{\gamma}\right]dt = \operatorname{div} \mathbb{S}(\nabla \mathbf{u})dt + \mathbb{G}(\varrho, \varrho \mathbf{u}) dW$$

with the standard Newtonian viscous stress tensor

$$\mathbb{S}(\nabla \mathbf{u}) = \mu \Big(\nabla \mathbf{u} + \nabla^t \mathbf{u} - \frac{2}{3} \operatorname{div} \mathbf{u} \, \mathbb{I} \Big) + \lambda \operatorname{div} \mathbf{u} \, \mathbb{I}$$

- adiabatic constant $\gamma > \frac{3}{2}$, viscosities $\mu > 0$, $\lambda \ge 0$
- \bullet ρ^{γ} pressure; $\rho \mathbf{u}$ momentum

Stochastic perturbation

ullet W is a cylindrical Wiener process in \mathfrak{U} :

$$W(t) = \sum_{k \ge 1} W_k(t) e_k$$

• $\mathbb{G}(\varrho, \varrho \mathbf{u}) = {\mathbf{G}_k(x, \varrho, \varrho \mathbf{u})}_{k \ge 1}$ takes values in $\ell^2(L^1(\mathbb{T}^3))$ $\mathbb{G}(\varrho, \varrho \mathbf{u}) \, \mathrm{d}W = \sum_{k \ge 1} \mathbf{G}_k(x, \varrho, \varrho \mathbf{u}) \, \mathrm{d}W_k = \sum_{k \ge 1} \varrho \, \mathbf{F}_k(x, \varrho, \varrho \mathbf{u}) \, \mathrm{d}W_k$

with suitable assumptions on \mathbf{F}_k

 $\Rightarrow \mathbb{G}(\varrho, \varrho \mathbf{u})$ takes values in $L_2(\mathfrak{U}; W^{-b,2}(\mathbb{T}^3))$, $b > \frac{3}{2}$

Known results

- Tornatore '00, Feireisl, Maslowski, Novotný '13 weak solutions for $\mathbb{G}(\varrho,\varrho\mathbf{u})=\varrho\,\mathbb{G}(x)$ via a semi-deterministic approach
- ullet Breit, H. '14 weak solutions for a general ${\mathbb G}$
- Wang, Wang '15, Smith '15 Dirichlet boundary conditions
- Breit, Feireisl, H. '15 incompressible limit
- Breit, Feireisl, H. '15 relative energy inequality (inviscid-incompressible limit, weak-strong uniqueness)
- Breit, Feireisl, H. '16 local strong solutions
- Breit, Feireisl, H., Maslowski '17 stationary solutions

The solution concept – dissipative martingale solutions

- weak solutions in PDE & probabilistic sense
- energy inequality

Dissipative martingale solution

 \bullet Λ a probability measure on $L^{\gamma}(\mathbb{T}^3)\times L^{\frac{2\gamma}{\gamma+1}}(\mathbb{T}^3)$

Then $((\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbb{P}), \varrho, \mathbf{u}, W)$ is a dissipative martingale solution with the initial law Λ

provided

- $(\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbb{P})$ is a stochastic basis with (UC)
- ullet W is an (\mathscr{F}_t) -cylindrical Wiener process
- $\Lambda = \mathbb{P} \circ (\varrho(0), \varrho \mathbf{u}(0))^{-1}$

Dissipative weak martingale solution

 \bullet density $\varrho \geq 0$, $\varrho \in C_w([0,T];L^\gamma(\mathbb{T}^3))$ a.s. and

$$\mathbb{E}\sup_{t\in[0,T]}\|\varrho(t)\|_{L^{\gamma}}^{\gamma p}<\infty\quad\text{ for some }\quad p\in(1,\infty)$$

ullet velocity field $\mathbf{u} \in L^2(\Omega; L^2(0,T;W^{1,2}(\mathbb{T}^3)))$ satisfies

$$\mathbb{E}\bigg(\int_0^T \|\mathbf{u}\|_{W^{1,2}}^2 \,\mathrm{d}t\bigg)^p \quad \text{for some} \quad p \in (1,\infty)$$

 \bullet momentum $\varrho \mathbf{u} \in C_w([0,T];L^{\frac{2\gamma}{\gamma+1}}(\mathbb{T}^3))$ a.s. and

$$\mathbb{E}\sup_{t\in[0,T]}\|\varrho\mathbf{u}(t)\|_{L^{\frac{2\gamma}{\gamma+1}p}}^{\frac{2\gamma}{\gamma+1}p}<\infty\quad\text{ for some }\quad p\in(1,\infty)$$

- the continuity eq satisfied in weak and renormalized sense
- the momentum eq satisfied in the weak sense

Energy inequality

• for all $\phi \in C_c^{\infty}([0,T)), \phi \geq 0$, the following energy inequality holds true \mathbb{P} -a.s.

$$-\int_{0}^{T} \partial_{t} \phi \int_{\mathbb{T}^{3}} \left[\frac{1}{2} \varrho |\mathbf{u}|^{2} + \frac{\varrho}{\gamma - 1} \right] dx dt + \int_{0}^{T} \phi \int_{\mathbb{T}^{3}} \mathbb{S}(\nabla \mathbf{u}) : \nabla \mathbf{u} dx dt$$

$$\leq \phi(0) \int_{\mathbb{T}^{3}} \left[\frac{1}{2} \frac{|(\varrho \mathbf{u})(0)|^{2}}{\varrho(0)} + \frac{\varrho(0)}{\gamma - 1} \right] dx$$

$$+ \sum_{k=1}^{\infty} \int_{0}^{T} \phi \int_{\mathbb{T}^{3}} \mathbf{G}_{k}(\varrho, \varrho \mathbf{u}) \cdot \mathbf{u} dx dW_{k}$$

$$+ \frac{1}{2} \int_{0}^{T} \phi \int_{\mathbb{T}^{3}} \sum_{k=1}^{\infty} \varrho^{-1} |\mathbf{G}_{k}(\varrho, \varrho \mathbf{u})|^{2} dx dt$$

What is the right notion of stationarity?

The notion of stationarity

• no uniqueness – the concept of invariant measures ambiguous

ullet density arrho and momentum $arrho {f u}$ are stochastic processes

- $\bullet \ \ \mathrm{velocity} \ \mathbf{u} \in L^2(\Omega; L^2(0,T;W^{1,2}(\mathbb{T}^3)))$
- ⇒ not a stochastic process in the classical sense

Stationarity vs. weak stationarity

Definition (Stationary stochastic process)

Let $\mathbf{U}=\{\mathbf{U}(t);t\in[0,\infty)\}$ be an X-valued stochastic process. We say that \mathbf{U} is stationary provided the joint laws

$$\mathcal{L}(\mathbf{U}(t_1+\tau),\ldots,\mathbf{U}(t_n+\tau)),\quad \mathcal{L}(\mathbf{U}(t_1),\ldots,\mathbf{U}(t_n))$$

on X^n coincide for all $\tau \geq 0$, for all $t_1, \ldots, t_n \in [0, \infty)$.

Stationarity vs. weak stationarity

Definition (Stationary stochastic process)

Let $\mathbf{U}=\{\mathbf{U}(t);t\in[0,\infty)\}$ be an X-valued stochastic process. We say that \mathbf{U} is stationary provided the joint laws

$$\mathcal{L}(\mathbf{U}(t_1+\tau),\ldots,\mathbf{U}(t_n+\tau)), \quad \mathcal{L}(\mathbf{U}(t_1),\ldots,\mathbf{U}(t_n))$$

on X^n coincide for all $\tau \geq 0$, for all $t_1, \ldots, t_n \in [0, \infty)$.

Definition (Weakly stationary random variable)

Let $\mathbf{U}:\Omega\to\mathcal{D}'((0,\infty)\times\mathbb{T}^3)$ be weakly measurable. Let \mathcal{S}_{τ} be the time shift on the space of trajectories given by $\mathcal{S}_{\tau}\varphi(t)=\varphi(t+\tau)$. We say that \mathbf{U} is weakly stationary provided the laws

$$\mathcal{L}(\langle \mathbf{U}, \mathcal{S}_{-\tau}\varphi_1 \rangle, \dots, \langle \mathbf{U}, \mathcal{S}_{-\tau}\varphi_n \rangle), \quad \mathcal{L}(\langle \mathbf{U}, \varphi_1 \rangle, \dots, \langle \mathbf{U}, \varphi_n \rangle)$$

on \mathbb{R}^n coincide for all $\tau \geq 0$ and all $\varphi_1, \ldots, \varphi_n \in C_c^{\infty}((0, \infty) \times \mathbb{T}^3)$.

Properties

- weak stationarity stable under weak convergence
- ullet weak stationarity of $\mathbf{u} \in L^2_{\mathrm{loc}}(0,\infty;W^{1,2}(\mathbb{T}^3))$ a.s.
- $\Rightarrow \mathcal{L}(\mathbf{u}) = \mathcal{L}(\mathcal{S}_{\tau}\mathbf{u}) \text{ on } L^2_{loc}(0,\infty;W^{1,2}(\mathbb{T}^3))$
- \Rightarrow $\mathcal{L}(\mathbf{u}(s)) = \mathcal{L}(\mathbf{u}(t))$ on $W^{1,2}(\mathbb{T}^3)$ for a.e. $s,t \in [0,\infty)$
 - weak stationarity of $\varrho \in C_{\mathrm{loc}} \big([0, \infty); (L^{\gamma}(\mathbb{T}^3), w) \big)$ a.s.
- $\Rightarrow \varrho$ is a stationary $L^{\gamma}(\mathbb{T}^3)$ -valued stochastic process
 - ullet weak stationarity of $\varrho \mathbf{u} \in C_{\mathrm{loc}}ig([0,\infty);(L^{rac{2\gamma}{\gamma+1}}(\mathbb{T}^3),w)ig)$ a.s.
- $\Rightarrow \varrho \mathbf{u}$ is a stationary $L^{\frac{2\gamma}{\gamma+1}}(\mathbb{T}^3)$ -valued stochastic process

Stationary solutions

Definition

A dissipative martingale solution $[\varrho, \mathbf{u}, W]$ is called *stationary* provided the joint law of the time shift $[\mathcal{S}_{\tau}\varrho, \mathcal{S}_{\tau}\mathbf{u}, \mathcal{S}_{\tau}W - W(\tau)]$ on

$$L^p_{\mathrm{loc}}(0,\infty;L^\gamma(\mathbb{T}^3))\times L^2_{\mathrm{loc}}(0,\infty;W^{1,2}(\mathbb{T}^3))\times C_{\mathrm{loc}}([0,\infty);\mathfrak{U}_0)$$

is independent of $\tau \geq 0$, for all $p \in [1, \infty)$.

Theorem (Breit, Feireisl, H., Maslowski '17)

Let the total mass be given by $M_0 \in (0, \infty)$, that is,

$$M_0 = \int_{\mathbb{T}^3} \varrho(t, x) \, \mathrm{d}x$$
 for all $t \in (0, \infty)$.

Then there exists a stationary dissipative martingale solution $[\varrho,\mathbf{u},W]$ satisfying complete slip boundary conditions.

A few words about the proof

Four layer approximation scheme

- $\bullet \ \chi$ smooth, nonincreasing, $\chi \equiv 1$ on $(-\infty,0]$, $\chi \equiv 0$ on $[1,\infty)$
- ullet artificial viscosity arepsilon
- ullet artificial pressure in the momentum equation δ

$$d\varrho + \operatorname{div}(\varrho \mathbf{u})dt = \varepsilon \Delta \varrho \, dt - 2\varepsilon \varrho \, dt + \chi \left(\frac{1}{M_0} \int_{\mathbb{T}^3} \varrho \, dx\right) dt$$
$$d(\varrho \mathbf{u}) + \left[\operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) + \nabla \varrho^{\gamma} + \delta \nabla \varrho^{\beta} - \varepsilon \Delta(\varrho \mathbf{u})\right] dt$$
$$= \operatorname{div} \mathbb{S}(\nabla \mathbf{u}) dt + \mathbb{G}(\varrho, \varrho \mathbf{u}) \, dW$$

- Faedo-Galerkin finite-dimensional approximation N
- ullet stopping time argument R

Aim: $R \to \infty$, $N \to \infty$, $\varepsilon \to 0$, $\delta \to 0$

Four layer approximation scheme

$$\begin{split} \mathrm{d}\varrho + \mathrm{div}(\varrho \mathbf{u}) \mathrm{d}t &= \varepsilon \Delta \varrho \, \mathrm{d}t - 2\varepsilon \varrho \, \mathrm{d}t + \chi \left(\frac{1}{M_0} \int_{\mathbb{T}^3} \varrho \, \mathrm{d}x\right) \mathrm{d}t \\ \mathrm{d}(\varrho \mathbf{u}) + \left[\, \mathrm{div}(\varrho \mathbf{u} \otimes \mathbf{u}) + \nabla \varrho^{\gamma} + \delta \nabla \varrho^{\beta} - \varepsilon \Delta(\varrho \mathbf{u}) \right] \mathrm{d}t \\ &= \mathrm{div} \, \mathbb{S}(\nabla \mathbf{u}) \mathrm{d}t + \mathbb{G}(\varrho, \varrho \mathbf{u}) \, \mathrm{d}W \end{split}$$

- + Faedo-Galerkin (N) and stopping times (R)
- existence of an invariant measure on the basic level
 Krylov-Bogoliubov method
- new global-in-time estimates needed
- stationarity preserved under limit procedures

Additional difficulties in comparison to existence

- global-in-time estimates not controlled by the initial data
- new estimates established at every approximation step
- generalized energy inequality needed
- modified method of effective viscous flux
- if $\mathbb{G}(\varrho, \varrho \mathbf{u}) \mathrm{d} W \leadsto \varrho \mathbf{f}(x) \, \mathrm{d} t$, global bounds only for $\gamma > \frac{5}{3}$

Thank you for your attention!