K-theory via the emergent topology of insulators

Mathematical and Physical Aspects of Topologically Protected States, Columbia University.

Terry A. Loring

May, 2017

Infinite SSH chain with defect

Infinite SSH chain with defect

Infinite SSH chain with defect

and

$$\Delta_{\psi}^{2}(X) = \left\langle \psi \left| X^{2} \right| \psi \right\rangle - \left\langle \psi \left| X \right| \psi \right\rangle^{2} \approx 0.$$

Using symmetry we can enforce $H\psi_0 = 0$.

Alternately, find a null vector ψ_0 for the Hamiltonian (with $\alpha=2.85$ and $\beta=2.15)$

and compute $X\psi$ etc. for the position observable

(Exactly) Compatible Observables

Recall XY = XY implies "enough" common eigenvalues. Must restrict (λ_1, λ_2) to the joint spectrum $\sigma(X, Y)$, determined by any of the following.

(Exactly) Compatible Observables

Recall XY = XY implies "enough" common eigenvalues. Must restrict (λ_1, λ_2) to the joint spectrum $\sigma(X, Y)$, determined by any of the following.

(Exactly) Compatible Observables

Recall XY = XY implies "enough" common eigenvalues. Must restrict (λ_1, λ_2) to the joint spectrum $\sigma(X, Y)$, determined by any of the following.

Here s_{\min} is smallest singular value, λ_{\min} is magnitude of the eigenvalue closest to zero. Also, $X_{\lambda} = X - \lambda I$ and $Y_{\lambda} = Y - \lambda I$.

Given $X_j X_k \approx X_k X_j$, prefer to use multivariate pseudospectrum:

Definition

Given Hermitian matrices X_1, \ldots, X_d define

$$\Lambda_{\epsilon}(X_1,\ldots,X_d) = \left\{ \boldsymbol{\lambda} \in \mathbb{R}^d \, \Big| \, \left\| \left(\sum \left(X_j - \lambda_j \right) \otimes \Gamma_j \right)^{-1} \right\| \geq \epsilon^{-1} \right\}$$

with the convention $0^{-1} = \infty$ and $\left\| (\text{singular})^{-1} \right\| = \infty$ and where $\Gamma_1, \ldots, \Gamma_d$ are Dirac matrices.

Given $X_j X_k \approx X_k X_j$, prefer to use multivariate pseudospectrum:

Definition

Given Hermitian matrices X_1, \ldots, X_d define

$$\Lambda_{\epsilon}(X_1,\ldots,X_d) = \left\{ \boldsymbol{\lambda} \in \mathbb{R}^d \, \Big| \, \left\| \left(\sum \left(X_j - \lambda_j \right) \otimes \Gamma_j \right)^{-1} \right\| \geq \epsilon^{-1} \right\}$$

with the convention $0^{-1} = \infty$ and $\left\| (\text{singular})^{-1} \right\| = \infty$ and where $\Gamma_1, \ldots, \Gamma_d$ are Dirac matrices.

When $\epsilon = 0$ this is called the Clifford spectrum.

Assume $\delta = ||XY - XY||$ is small, not zero.

Think of pseudospectrum as a function

$$(\lambda_1, \lambda_2) \mapsto \lambda_{\min} \left[\begin{array}{cc} X_{\lambda_1} & -Y_{\lambda_2} \\ Y_{\lambda_2} & -X_{\lambda_1} \end{array} \right]$$

with $\Lambda_{\epsilon}(X_1, Y)$ the sub-level sets.

Think of pseudospectrum as a function

$$(\lambda_1, \lambda_2) \mapsto \lambda_{\min} \begin{bmatrix} X_{\lambda_1} & -Y_{\lambda_2} \\ Y_{\lambda_2} & -X_{\lambda_1} \end{bmatrix}$$

the sub-level sets

with $\Lambda_{\epsilon}(X_1,Y)$ the sub-level sets.

Random examples, ||X|| = ||Y|| = 1, matrix size 20:

Bigger random examples, ||X|| = ||Y|| = 1, matrix size 200.

Examples with large commutator are hard to generate. Must avoid standard matrix distributions.

Pseudospectrum of X and H in SSH models

Pseudospectrum of X and H in SSH models

Pseudospectrum of X and H in SSH models

Even dimensional space. Chiral symmetry: $\Gamma |\bullet\rangle = |\bullet\rangle$, $\Gamma |\bullet\rangle = - |\bullet\rangle$, and $\Gamma X = X\Gamma$, $\Gamma H = -H\Gamma$.

In chiral situation,

$$s_{\min}\left(X_{\lambda_1} + iH_{\lambda_2}\right) = s_{\min}\left(\left(X_{\lambda_1} + iH_{\lambda_2}\right)\Gamma\right)$$

and $(X_{\lambda_1} + iY_{\lambda_2}) \Gamma$ is Hermitian.

In chiral situation,

$$s_{\min}(X_{\lambda_1} + iH_{\lambda_2}) = s_{\min}((X_{\lambda_1} + iH_{\lambda_2})\Gamma)$$

and $(X_{\lambda_1} + iY_{\lambda_2})\Gamma$ is Hermitian. So also

$$s_{\min}\left(X_{\lambda_{1}}+iH_{\lambda_{2}}\right)=\lambda_{\min}\left(\left(X_{\lambda_{1}}+iH_{\lambda_{2}}\right)\Gamma\right)$$

In chiral situation,

$$s_{\min}\left(X_{\lambda_{1}}+iH_{\lambda_{2}}\right)=s_{\min}\left(\left(X_{\lambda_{1}}+iH_{\lambda_{2}}\right)\Gamma\right)$$

and $(X_{\lambda_1} + iY_{\lambda_2}) \Gamma$ is Hermitian. So also

$$s_{\min}(X_{\lambda_1} + iH_{\lambda_2}) = \lambda_{\min}((X_{\lambda_1} + iH_{\lambda_2})\Gamma)$$

Both X + iH and $(X_{\lambda_1} + iH_{\lambda_2}) \Gamma$ have patterns in eigenvalues and singular values.

In chiral situation,

$$s_{\min}(X_{\lambda_1} + iH_{\lambda_2}) = s_{\min}((X_{\lambda_1} + iH_{\lambda_2})\Gamma)$$

and $(X_{\lambda_1} + iY_{\lambda_2}) \Gamma$ is Hermitian. So also

$$s_{\min}(X_{\lambda_1} + iH_{\lambda_2}) = \lambda_{\min}((X_{\lambda_1} + iH_{\lambda_2})\Gamma)$$

Both X + iH and $(X_{\lambda_1} + iH_{\lambda_2})\Gamma$ have patterns in eigenvalues and singular values.

For X + iH: Eigenvalues in conjugate pairs. Real eigenvalues can be single.

In chiral situation,

$$s_{\min}(X_{\lambda_1} + iH_{\lambda_2}) = s_{\min}((X_{\lambda_1} + iH_{\lambda_2})\Gamma)$$

and $(X_{\lambda_1} + iY_{\lambda_2}) \Gamma$ is Hermitian. So also

$$s_{\min}(X_{\lambda_1} + iH_{\lambda_2}) = \lambda_{\min}((X_{\lambda_1} + iH_{\lambda_2})\Gamma)$$

Both X + iH and $(X_{\lambda_1} + iH_{\lambda_2}) \Gamma$ have patterns in eigenvalues and singular values.

For X + iH: Eigenvalues in conjugate pairs. Real eigenvalues can be single. For $(X_{\lambda_1} + iH_{\lambda_2}) \Gamma$: Former conjugate pairs become $\pm \lambda$ pairs. Former real eigenvalues can flip

sign.

In chiral situation,

$$s_{\min}(X_{\lambda_1} + iH_{\lambda_2}) = s_{\min}((X_{\lambda_1} + iH_{\lambda_2})\Gamma)$$

and $(X_{\lambda_1} + iY_{\lambda_2}) \Gamma$ is Hermitian. So also

$$s_{\min}(X_{\lambda_1} + iH_{\lambda_2}) = \lambda_{\min}((X_{\lambda_1} + iH_{\lambda_2})\Gamma)$$

Both X + iH and $(X_{\lambda_1} + iH_{\lambda_2}) \Gamma$ have patterns in eigenvalues and singular values.

For X + iH: Eigenvalues in conjugate pairs. Real eigenvalues can be single. For $(X_{\lambda_1} + iH_{\lambda_2}) \Gamma$: Former conjugate pairs become $\pm \lambda$ pairs. Former real eigenvalues can flip sign.

Using $\Gamma_t \Gamma | \bullet \rangle = e^{\pi i t} | \bullet \rangle$ we can animate this.

22 site SSH chain with end defects Defect Defect 0.1 1.5 0.09 0.08 1 0.07 0.5 0.06 0 0.05 0.04 -0.5 0.0.0.0 0.03 -1 0.02 0.01 -1.5 -1.5 -0.5 0 0.5 1.5 -1 1

$\Lambda_{\epsilon}\left(X_{\lambda_{1}}+iH_{\lambda_{2}}\right)$

22 site SSH chain with end defects

Defect Defect 0.1 1.5 0.09 0.08 1 0.07 0.5 0.06 0 0.05 0.04 -0.5 0.03 -1 0.02 0.01 -1.5 -1.5 -0.5 0.5 1.5 -1 0 1 $\Lambda_{\epsilon} \left(\left(X_{\lambda_1} + i H_{\lambda_2} \right) \Gamma^{0.6} \right)$

22 site SSH chain with end defects

22 site SSH chain with end defects

22 site SSH chain with end defects

The eigenvalues of the Hermitian matrix $(X_{\lambda_1} + iH_{\lambda_2}) \Gamma$ tell us about the real eigenvalues of $X_{\lambda_1} + iH_{\lambda_2}$. Helps find **v** with H**v** \approx 0 and X**v** $\approx \lambda_1$ **v**.

The eigenvalues of the Hermitian matrix $(X_{\lambda_1} + iH_{\lambda_2}) \Gamma$ tell us about the real eigenvalues of $X_{\lambda_1} + iH_{\lambda_2}$. Helps find **v** with H**v** \approx 0 and X**v** $\approx \lambda_1$ **v**.

For B Hermitian, nonsingular,

 $sig(B) = # \{positive eigenvalues\} - # \{negative eigenvalues\}$

The eigenvalues of the Hermitian matrix $(X_{\lambda_1} + iH_{\lambda_2}) \Gamma$ tell us about the real eigenvalues of $X_{\lambda_1} + iH_{\lambda_2}$. Helps find **v** with H**v** \approx 0 and X**v** $\approx \lambda_1$ **v**.

For B Hermitian, nonsingular,

 $sig(B) = # \{positive eigenvalues\} - # \{negative eigenvalues\}$

Theorem

For a finite, chiral system in one physical dimension,

$$\frac{1}{2}\operatorname{sig}\left(\left(X_{\lambda}+iH\right)\Gamma\right)=\sum\left\{\mu(\rho)\mid\rho\in\mathbb{R}\ \&\ (X_{\lambda}+iH)\mathbf{v}=\rho\mathbf{v}\right\}$$

where $\mu(\lambda) = \pm 1$ depending on $\rho > \lambda$ or $\rho < \lambda$ and on $\Gamma(\mathbf{v}) = \pm \mathbf{v}$.

The eigenvalues of the Hermitian matrix $(X_{\lambda_1} + iH_{\lambda_2}) \Gamma$ tell us about the real eigenvalues of $X_{\lambda_1} + iH_{\lambda_2}$. Helps find **v** with H**v** \approx 0 and X**v** $\approx \lambda_1$ **v**.

For B Hermitian, nonsingular,

 $sig(B) = # \{positive eigenvalues\} - # \{negative eigenvalues\}$

Theorem

For a finite, chiral system in one physical dimension,

$$\frac{1}{2}\operatorname{sig}\left(\left(X_{\lambda}+iH\right)\Gamma\right)=\sum\left\{\mu(\rho)\mid\rho\in\mathbb{R}\ \&\ (X_{\lambda}+iH)\mathbf{v}=\rho\mathbf{v}\right\}$$

where $\mu(\lambda) = \pm 1$ depending on $\rho > \lambda$ or $\rho < \lambda$ and on $\Gamma(\mathbf{v}) = \pm \mathbf{v}$.

Trickier given multiplicity. This is, rather disguised, a theorem relating K_0 of a graded C^* -algebra and K_0 of an ungraded C^* -algebra.

The eigenvalues of the Hermitian matrix $(X_{\lambda_1} + iH_{\lambda_2}) \Gamma$ tell us about the real eigenvalues of $X_{\lambda_1} + iH_{\lambda_2}$. Helps find **v** with H**v** \approx 0 and X**v** $\approx \lambda_1$ **v**.

For B Hermitian, nonsingular,

 $sig(B) = # \{positive eigenvalues\} - # \{negative eigenvalues\}$

Theorem

For a finite, chiral system in one physical dimension,

$$\frac{1}{2}\operatorname{sig}\left(\left(X_{\lambda}+iH\right)\Gamma\right)=\sum\left\{\mu(\rho)\mid\rho\in\mathbb{R}\ \&\ (X_{\lambda}+iH)\mathbf{v}=\rho\mathbf{v}\right\}$$

where $\mu(\lambda) = \pm 1$ depending on $\rho > \lambda$ or $\rho < \lambda$ and on $\Gamma(\mathbf{v}) = \pm \mathbf{v}$.

Trickier given multiplicity. This is, rather disguised, a theorem relating K_0 of a graded C^* -algebra and K_0 of an ungraded C^* -algebra. Calculating signature is part of the well established numerical method called spectral slicing.

- Hilbert space is now $\mathcal{H} = \ell^2(\mathbb{Z}) \otimes \mathbb{C}^{2N}$.
- Chiral symmetry is determined by $\Gamma = 1 \otimes \begin{bmatrix} l & 0 \\ 0 & -l \end{bmatrix}$
- Position given by $X(e_n \otimes \xi) = n(e_n \otimes \xi)$
- Hamiltonian is $H = \begin{bmatrix} 0 & A \\ A^* & 0 \end{bmatrix}$, built from local hopping.

- Hilbert space is now $\mathcal{H} = \ell^2(\mathbb{Z}) \otimes \mathbb{C}^{2N}$.
- Chiral symmetry is determined by $\Gamma = 1 \otimes \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$
- Position given by $X(e_n \otimes \xi) = n(e_n \otimes \xi)$
- Hamiltonian is $H = \begin{bmatrix} 0 & A \\ A^* & 0 \end{bmatrix}$, built from local hopping. More generally just assume is bounded, Hermitian, $\Gamma H = -H\Gamma$ and $\|[X, H]\| < \infty$.

Let $\hat{\Pi}$ denote the projection of ${\cal H}$ onto

$$\mathcal{H}_+ = \ell^2(\mathbb{N}) \otimes \mathbb{C}^{2N}$$
 ,

so $\hat{\Pi} = \begin{pmatrix} \Pi & 0 \\ 0 & \Pi \end{pmatrix}$ where Π projects $\ell^2(\mathbb{Z}) \otimes \mathbb{C}^N$ onto $\ell^2(\mathbb{N}) \otimes \mathbb{C}^N$.

Let $\hat{\Pi}$ denote the projection of ${\cal H}$ onto

$$\mathcal{H}_+ = \ell^2(\mathbb{N}) \otimes \mathbb{C}^{2N}$$
,

so $\hat{\Pi} = \begin{pmatrix} \Pi & 0 \\ 0 & \Pi \end{pmatrix}$ where Π projects $\ell^2(\mathbb{Z}) \otimes \mathbb{C}^N$ onto $\ell^2(\mathbb{N}) \otimes \mathbb{C}^N$. • The cleanest expression of the index of such this system is

ind $(\Pi A \Pi)$

where this is the usual index for Fredolm operators on $\ell^2(\mathbb{N}) \otimes \mathbb{C}^N$.

Let $\hat{\Pi}$ denote the projection of ${\cal H}$ onto

$$\mathcal{H}_+ = \ell^2(\mathbb{N}) \otimes \mathbb{C}^{2N}$$
,

so $\hat{\Pi} = \begin{pmatrix} \Pi & 0 \\ 0 & \Pi \end{pmatrix}$ where Π projects $\ell^2(\mathbb{Z}) \otimes \mathbb{C}^N$ onto $\ell^2(\mathbb{N}) \otimes \mathbb{C}^N$.

• The cleanest expression of the index of such this system is

ind $(\Pi A \Pi)$

where this is the usual index for Fredolm operators on $\ell^2(\mathbb{N}) \otimes \mathbb{C}^N$. Generalized to higher dimensions by Prodan and Schulz-Baldes.

Let $\hat{\Pi}$ denote the projection of ${\cal H}$ onto

$$\mathcal{H}_+ = \ell^2(\mathbb{N}) \otimes \mathbb{C}^{2N}$$
,

so $\hat{\Pi} = \begin{pmatrix} \Pi & 0 \\ 0 & \Pi \end{pmatrix}$ where Π projects $\ell^2(\mathbb{Z}) \otimes \mathbb{C}^N$ onto $\ell^2(\mathbb{N}) \otimes \mathbb{C}^N$.

• The cleanest expression of the index of such this system is

ind $(\Pi A \Pi)$

where this is the usual index for Fredolm operators on $\ell^2(\mathbb{N}) \otimes \mathbb{C}^N$. Generalized to higher dimensions by Prodan and Schulz-Baldes.

• If $\sigma(H) = \pm 1$ then $\Pi A \Pi$ represents a general unitary in the Calkin algebra, while

$$\hat{\Pi}H\hat{\Pi} = \begin{bmatrix} 0 & \Pi A\Pi \\ \Pi A^*\Pi & 0 \end{bmatrix}$$

represents a unitary with spectrum ± 1 .

To relate to the finite systems, we need two basic things.
To relate to the finite systems, we need two basic things.

• Patch growing finite systems together to involve operators that are compact plus scalar, so in

$$\left(\mathbb{K}\left(\mathcal{H}_{+}\right)\right)^{\sim}=\mathbb{K}\left(\mathcal{H}_{+}\right)+\mathbb{C}I.$$

To relate to the finite systems, we need two basic things.

• Patch growing finite systems together to involve operators that are compact plus scalar, so in

$$\left(\mathbb{K}\left(\mathcal{H}_{+}\right)\right)^{\sim}=\mathbb{K}\left(\mathcal{H}_{+}\right)+\mathbb{C}I.$$

• Work with the boundary map in K-theory associated to

$$0 \to \mathbb{K}(\mathcal{H}_{+}) \to \mathbb{B}(\mathcal{H}_{+}) \to \mathbb{B}(\mathcal{H}_{+}) / \mathbb{K}(\mathcal{H}_{+}) \to 0,$$

specifically

$$\partial: \mathcal{K}_{1}\left(\mathbb{B}\left(\mathcal{H}_{+}\right) \big/ \mathbb{K}\left(\mathcal{H}_{+}\right)\right) \to \mathcal{K}_{0}\left(\mathbb{K}\left(\mathcal{H}_{+}\right)\right).$$

Given radius ρ , define a finite system on sites at X position less that ρ , put on Dirichet boundary conditions, with new observables H_{ρ} and X_{ρ} .

Given radius ρ , define a finite system on sites at X position less that ρ , put on Dirichet boundary conditions, with new observables H_{ρ} and X_{ρ} .

Need to adjust scale of X to better match that of H so need a tuning parameter $\kappa > 0$.

Given radius ρ , define a finite system on sites at X position less that ρ , put on Dirichet boundary conditions, with new observables H_{ρ} and X_{ρ} .

Need to adjust scale of X to better match that of H so need a tuning parameter $\kappa > 0$.

Theorem

(2017 with Schulz-Baldes) Assuming H is invertible, with gap $g = \|H^{-1}\|^{-1}$, if $\|[X, H]\| \le \frac{g^3}{18\|H\|\kappa}$ and $\frac{2g}{\kappa} \le \rho$,

then

$$\frac{1}{2}\operatorname{sig}\left(\left(\kappa X_{\rho}+iH_{\rho}\right)\Gamma\right)=\operatorname{ind}\left(\Pi A\Pi\right).$$

In addition to a C*-algebra A, have $a \mapsto a^{\sigma}$ implementing and action of $\mathbb{Z}/2$, determining even $(a^{\sigma} = a)$ and odd $(a^{\sigma} = -a)$.

For example, $A = \mathbf{M}_{2n}$ and for a matrix a define $a = \Gamma a \Gamma$ with $\Gamma = \begin{pmatrix} l & 0 \\ 0 & -l \end{pmatrix}$.

Trout picture of K_0	Van Daele of K_1	
	$u^*u = uu^* = 1$	
$u^*u = uu^* = 1$	$u^* = u$	
$u^{\sigma} = u^*$	$u^{\sigma} = -u$	
u^{-1} exists	u^{-1} exists	
$u^{\sigma} = u^*$	$u^* = u$	
	$u^{\sigma} = -u$	

As always, compute homotopy classes, and stabilize by using *a* in *A*, $M_2(A)$, $M_3(A)$, etc.

Trout picture of K_0	Van Daele of K_1	
	$u^*u = uu^* = 1$	
$u^*u = uu^* = 1$	$u^* = u$	
$u^{\sigma} = u^*$	$u^{\sigma} = -u$	
		Can lead to bad numerics
u^{-1} exists	u^{-1} exists	No formula for boundary map
$u^{\sigma} = u^*$	$u^* = u$, , , , , , , , , , , , , , , , , , ,
	$u^{\sigma} = -u$	

As always, compute homotopy classes, and stabilize by using *a* in *A*, $M_2(A)$, $M_3(A)$, etc.

If we use Hermitian and anti-Hermitian parts, a = x + iy, then this becomes more familiar.

Trout picture of K_0	Van Daele of K_1	
	$u^*u = uu^* = 1$	
$u^*u = uu^* = 1$	$u^* = u$	
$u^{\sigma} = u^*$	$u^{\sigma} = -u$	
		numerics
u^{-1} exists	u^{-1} exists	No formula for boundary map
$u^{\sigma} = u^*$	$u^* = u$	
	$u^{\sigma} = -u$	

As always, compute homotopy classes, and stabilize by using a in A, $\mathbf{M}_2(A)$, $\mathbf{M}_3(A)$, etc.

If we use Hermitian and anti-Hermitian parts, a = x + iy, then this becomes more familiar.

Trout picture of K_0	Van Daele of K_1	
$x^2 + y^2 = 1$		
xy = yx		
$x^{\sigma} = x$	$x^2 = 1$	
$y^{\sigma} = -y$	$x^{\sigma} = -x$	Can lead to bad numerics
$(x+iy)^{-1}$ exists	x^{-1} exists	No formula for boundary map
	$x^{\sigma} = -x$	

As always, compute homotopy classes, and stabilize by using a in A, $\mathbf{M}_2(A)$, $\mathbf{M}_3(A)$, etc.

Spectral Flattening, etc.

In the Calkin algebra, we need only apply spectral flattening to H, so

$$H \rightsquigarrow \frac{H}{|H|}.$$

Spectral Flattening, etc.

In the Calkin algebra, we need only apply spectral flattening to H, so

$$H \rightsquigarrow \frac{H}{|H|}.$$

In $\mathbb{B}(\mathcal{H}_+)$ and approximating finite matrices, we need first to rescale so $-1 \leq X \leq 1$.

Spectral Flattening, etc.

In the Calkin algebra, we need only apply spectral flattening to H, so

$$H \rightsquigarrow \frac{H}{|H|}.$$

In $\mathbb{B}(\mathcal{H}_+)$ and approximating finite matrices, we need first to rescale so $-1 \leq X \leq 1$. Then we attenuate H near boundaries, so

$$H \rightsquigarrow (1 - X^2)^{\frac{1}{4}} \frac{H}{|H|} (1 - X^2)^{\frac{1}{4}}$$

$$\begin{array}{c} x^2 + y^2 = 1 \\ xy = yx \\ x^{\sigma} = x \\ y^{\sigma} = -y \end{array} \qquad \begin{array}{c} \underset{\text{exponential}}{\leftarrow} \\ \text{exponential} \\ x^{\sigma} = -x \\ x^{\sigma} = -x \end{array}$$

 $\uparrow\,$ spectral flattening, etc.

$$(x+iy)^{-1}$$
 exists

$$x^{-1}$$
 exists
 $x^{\sigma} = -x$

