Adiabatic cycles, surface anomalous Hall conductivity, and Chern-Simons axion coupling

David Vanderbilt Rutgers University

Collaborators & Grants

Maryam **Taherinejad**

Thomas Olsen

Ivo Souza

Sinisa Coh

Andrei Malashevich

Andrew Essin Moore

Joel

Ari Turner

Surface charge

Surface anomalous Hall conductivity

<u>Anomalous Hall Conductivity = "AHC"</u>

Insulating surface of bulk insulator

Adiabatic charge pump

Adiabatic AHC pump ?

Semi-infinite bulk

Outline

- Polarization in 1D
- Polarization in 3D
 - -Hybrid Wannier representation
 - Surface charge theorem
- Axion magnetoelectric coupling
 - -Hybrid Wannier representation
 - Surface AHC theorem
- Adiabatic loop
 - Charge pump / axion pump
- Summary & Conclusions

Berry phase and curvature in the BZ

ERS

Berry potential:

$$\mathbf{A}(\mathbf{k}) = -\mathrm{Im} \langle u_{\mathbf{k}} |
abla_{\mathbf{k}} | u_{\mathbf{k}} \rangle$$

Berry phase:

$$\phi = \oint \mathbf{A}(\mathbf{k}) \cdot d\mathbf{k}$$

Berry curvature:

 $\Omega(\mathbf{k}) = \nabla imes \mathbf{A}$

$$\Omega_z(\mathbf{k}) = -2\mathrm{Im} \left\langle \left. \frac{du}{dk_x} \right| \left. \frac{du}{dk_y} \right\rangle \right\rangle$$

Stoke's theorem:

$$\phi = \int \Omega_z({f k}) \, d^2 k$$

Gauge dependence

• Gauge change:

$$|u_{n\mathbf{k}}\rangle \to e^{-i\beta(\mathbf{k})}|u_{n\mathbf{k}}\rangle$$

• Result:

$$\begin{aligned} \mathbf{A}(\mathbf{k}) &\to \mathbf{A}(\mathbf{k}) + \nabla_{\mathbf{k}}\beta \\ \phi &\to \phi + 2\pi n & \longleftarrow & \text{Winding of } \beta \\ \Omega(\mathbf{k}) &\to \Omega(\mathbf{k}) \end{aligned}$$

1D: BZ is really a loop

- Reciprocal space is really periodic
- Brillouin zone can be regarded as a loop

Berry phase ⇔ Wannier center

$$\phi = \oint A(k) dk$$

= $\oint i \langle u_k | \partial_k u_k \rangle dk$
 $x_c = \langle w_n | \hat{x} | w_n \rangle$
 $w_n(x-R) = \sum_k e^{ik(x-R)} \psi_{nk}(x)$
 $x_c = \frac{\phi}{2\pi}$

Polarization and Wannier centers (1D)

Quantum of polarization: $\Delta P = e$

Adiabatic cycle - No pumped charge

Adiabatic cycle - Quantum charge pump

RUTGERS

Wannier centers: Extended and finite

$$\frac{\text{Infinite chain:}}{x_{\rm c}} = \frac{\phi}{2\pi}$$

Equivalently, x_{c} = eigenvalues of $\mathcal{P}x\mathcal{P}$ where

$$\mathcal{P} = \sum_{n}^{\text{occ}} \int |\psi_{nk}\rangle \langle \psi_{nk}| \, dk$$

Finite chain

 $x_{\rm c} =$ eigenvalues of $\mathcal{P}x\mathcal{P}$ where $\mathcal{P} = \sum_{n}^{\rm occ} |\psi_n\rangle \langle \psi_n|$ (finite chain eigenvectors)

$$Q_{\text{surf}} = P_{\text{bulk}} \text{ modulo } e$$
Surface
$$Q_{\text{surf}} = P_{\text{bulk}} \text{ modulo } e$$
Surface
$$Q_{\text{a}} = P_{\text{bulk}} \quad Q_{\text{b}} = N e$$

$$Q_{\text{a}} = P_{\text{bulk}} \quad Q_{\text{b}} = N e$$

$$P = \sum_{n}^{\text{occ}} |\psi_n\rangle\langle\psi_n|$$

$$Q_{surf} = P_{bulk} + Q_{B}$$
 Surface

$$Q_{A} = P_{bulk} \quad Q_{B} = Ne$$

$$Q_{A} = P_{bulk} \quad Q_{B} = Ne$$

$$P = \sum_{n}^{occ} |\psi_{n}\rangle\langle\psi_{n}|$$

Conclusions:

- $Q_{surf} = P_{bulk} \mod e$
- To get correct branch choice, compute Wannier centers at the end of the chain

 $(k,\lambda) \Rightarrow (k_x,k_y)$

1D insulator with adiabatic parameter

2D insulator

Hybrid Wannier centers: y_c vs. k_x

ERS

Quantum Anomalous Hall (QAH)

ERS

Edge states Wannier center flow

Polarization in 3D: Hybrid WFs again

Hybrid Wannier representation

<u>Define hybrid WFs</u>: (maximally localized along *z*)

$$|h_{\kappa ln}\rangle = e^{-i\kappa \cdot r} \int_0^1 dk_3 \, e^{-i2\pi k_3 l} |\psi_{(\kappa,k_3)n}\rangle,$$

where $\kappa = k_x \hat{x} + k_y \hat{y}$

Construct hybrid WF sheets:

Real space z

Hybrid WF sheets

First-principles Bi₂Se₃ Wannier centers

Polarization in 3D

Insulating surface of bulk insulator

ϕ is ill-defined modulo 2π

Hybrid Wannier centers at surface

- Diagonalize $\mathcal{P}z\mathcal{P}$ at each (k_x,k_y)
- Plot these "sheets" at surface and into bulk

Conclusions:

- $\sigma_{surf} = P_{bulk} \mod e/A_{surf}$
- To get correct branch choice, compute hybrid Wannier sheets at the surface

Outline

- Polarization in 1D
- Polarization in 3D
 - -Hybrid Wannier representation
 - Surface charge theorem
- Axion magnetoelectric coupling
 - Hybrid Wannier representation
 - Surface AHC theorem
 - Adiabatic loop
 - Charge pump / axion pump
 - Summary & Conclusions
Linear magnetoelectric coupling (MEC)

$$\alpha_{ij} = \frac{-\partial^2 E}{\partial \mathcal{E}_i \partial B_j} = \frac{dP_i}{dB_j} = \frac{dM_j}{d\mathcal{E}_i}$$

Remainder of this talk:

Only orbital contribution to frozen-ion MEC.

Full theory of orbital MEC

$$\alpha_{da} = \alpha_{da}^{LC} + \alpha_{da}^{IC} + \alpha_{da}^{geom} \qquad \text{NG = non-geometric}$$

$$\alpha_{da}^{LC} = -\frac{e}{\hbar c} \epsilon_{abc} \int \frac{d^3 k}{(2\pi)^3} \sum_{n}^{N} \text{Im} \langle \widetilde{\partial}_b u_{nk} | (\partial_c H_k) | \widetilde{\partial}_{\mathcal{E}_d} u_{nk} \rangle$$

$$\alpha_{da}^{IC} = -\frac{e}{\hbar c} \epsilon_{abc} \int \frac{d^3 k}{(2\pi)^3} \sum_{mn}^{N} \text{Im} \left\{ \langle \widetilde{\partial}_b u_{nk} | \widetilde{\partial}_{\mathcal{E}_d} u_{mk} \rangle \langle u_{mk} | (\partial_c H_k) | u_{nk} \rangle \right\}$$

$$\alpha_{da}^{geom} = \frac{\theta}{2\pi} \frac{e^2}{hc} \delta_{da}$$

$$\theta_{geom} = -\frac{1}{4\pi} \int d^3 k \epsilon_{abc} \text{tr} \left[A_a \partial_b A_c - \frac{2i}{3} A_a A_b A_c \right]$$

ERS

CS = Chern-Simons Columbia Workshop on Topological States, May 1, 2017

Theory of geometric orbital MEC

$$heta = -rac{1}{4\pi}\int d^3k\,\epsilon_{abc} {
m tr}\left[A_a\partial_bA_c -rac{2i}{3}A_aA_bA_c
ight]$$

Berry connection: $\mathcal{A}_{nn'}^{a}(\mathbf{k}) = i \langle u_{n\mathbf{k}} | \partial_{k_{a}} u_{n'\mathbf{k}} \rangle$

Qi, Hughes and Zhang, PRB **78**, 195424 (2008) *Essin, Moore and Vanderbilt, PRL* **120**,146805 (2009)

- Integrand is not gauge-invariant
- But integral over 3D BZ *is* gauge-invariant, modulo 2π

Physical understanding of "modulo 2π "?

Orbital MEC \Leftrightarrow Surface dissipationless σ_{xy}

Interpret magnetization = M = K

$$-\mathbf{K} = \sigma_{\mathbf{yx}} \vec{\mathcal{E}} \times \hat{\mathbf{n}}$$

$$\sigma_{yx}^{\rm surf} = -\alpha^{\rm CS} = \frac{-e^2}{h} \frac{\theta}{2\pi}$$

α^{CS} only defined modulo 2π

Suppose we start with crystal having α^{CS} given by θ . Now glue to each surface an extra 2D QAH insulator layer having *C*=1:

This increments
$$\sigma_{xy}^{
m surf}$$
 by $rac{e^2}{h}$, i.e., $\, heta_{
m new}= heta+2\pi$

So θ as a bulk property is ill-defined modulo 2π !

Indeterminacy modulo 2π

P is ill-defined modulo 2π

 θ is ill-defined modulo 2π

Indeterminacy modulo 2π

P is ill-defined modulo 2π

 θ is ill-defined modulo 2π

ME coupling of TR-invariant insulator

- The *T* symmetry operator maps θ into $-\theta$
- But θ is only well defined modulo 2π
- Case of $\theta=0 \Leftrightarrow$ normal insulator
- Case of $\theta = \pi \Leftrightarrow$ strong topological insulator!

Qi, Hughes and Zhang, PRB **78**, 195424 (2008) *Essin, Moore and Vanderbilt, PRL* 120,146805 (2009)

Polarization and surface charge

CS coupling and surface AHC

Hybrid Wannier representation

<u>Define hybrid WFs</u>: (maximally localized along *z*)

$$|h_{\kappa ln}\rangle = e^{-i\kappa \cdot r} \int_0^1 dk_3 \, e^{-i2\pi k_3 l} |\psi_{(\kappa,k_3)n}\rangle,$$

where $\kappa = k_x \hat{x} + k_y \hat{y}$

Construct hybrid WF sheets:

$$z_{\kappa ln} = \langle h_{\kappa ln} | z | h_{\kappa ln} \rangle = z_{\kappa 0n} + lc$$

Real space z

Hybrid Wannier representation

Define Berry connection and curvature on the sheets:

$$\begin{aligned} A_{ln,l'm}^{i} &= i \left\langle h_{ln} \left| \partial_{k_{i}} h_{l'm} \right\rangle = A_{0n,(l'-l)m}^{i}, \\ \Omega_{ln,l'm}^{ij} &= \partial_{k_{i}} A_{ln,l'm}^{j} - \partial_{k_{j}} A_{ln,l'm}^{i} = \Omega_{0n,(l'-l)m}^{ij}, \\ i, j &= x, y. \end{aligned}$$

Chern number of each sheet:

$$C_{ln}=\frac{1}{2\pi}\int d\boldsymbol{\kappa}\;\Omega_{ln,ln}^{xy}$$

Axion coupling in the HWF representation

Bulk Bloch represenatation

$$\begin{aligned} \theta &= -\frac{1}{4\pi} \int d^3k \, \epsilon^{ijk} \operatorname{Tr}[A_i \partial_j A_k - i\frac{2}{3}A_i A_j A_k] \\ & \underbrace{\mathsf{HWF \ representation}}_{\theta &= \theta_{z\Omega} + \theta_{\Delta xy}} & \operatorname{Berry \ curvature}_{\text{on } n'\text{th sheet}} \\ \theta_{z\Omega} &= -\frac{1}{c} \int d^2k \sum_n \bar{z}_n \Omega_{xy,0n,0n} & \operatorname{Berry \ potential}_{\text{between sheets}} \\ \theta_{\Delta xy} &= -\frac{i}{c} \int d^2k \sum_{lmn} (\bar{z}_{lm} - \bar{z}_{0n}) A_{x,0n,lm} A_{y,lm,0n} \end{aligned}$$

Surface charge theorem: 1D

Surface $\sigma^{\rm AH}$ theorem

Outline

- Polarization in 1D
- Polarization in 3D
 - -Hybrid Wannier representation
 - Surface charge theorem
- Axion magnetoelectric coupling

 Hybrid Wannier representation
 Surface AHC theorem
- Adiabatic loop
 - Charge pump / axion pump
 - Summary & Conclusions

Parametric 1D Ham. (Open path)

Parametric 1D Ham. (Closed path)

(k, λ) space

Under an adiabatic cycle,

$$\Delta P = \frac{e}{2\pi} \oint d\lambda \oint dk \ \Omega(k,\lambda)$$

By Chern theorem,

ERS

$$\Delta P = n e$$
 ($n = \text{TKNN}$ invariant = integer)

 $\Omega(K, \Lambda)$

Parametric 3D Ham. (Open path)

Parametric 3D Ham. (Closed path)

 (k_x, k_y, k_z, λ) space

Under an adiabatic cycle,

$$\Delta \theta = 2\pi N_2$$

where N_2 = "second Chern number"

Adiabatic charge pump

Metallic surface of bulk insulator

Surface charge

ϕ is ill-defined modulo 2π

Adiabatic axion pump

- Bulk *H* undergoes cyclic evolution: $\theta \rightarrow \theta/2\pi$ without gap closure
- What happens to bulk Wannier sheets?

Modified TB model of Qi, Hughes & Zhang

TB model of Fu, Kane & Mele

TB model of coupled Haldane layers: Bulk

Axion charge pump

- Bulk *H* undergoes cyclic evolution: $\theta \rightarrow \theta/2\pi$ without gap closure
- What happens to surface AHC?
- Two scenarios to consider:
 - *H*_{surf} changes so as to keep surface insulating
 - $-H_{\rm surf}$ returns to itself

Adiabatic evolution of surface AHC

TB model of coupled Haldane layers: Slab

Adiabatic axion pump

- Bulk *H* undergoes cyclic evolution: $\theta \rightarrow \theta/2\pi$ without gap closure
- What happens to surface AHC?
- Two scenarios to consider:
 - H_{surf} changes so as to keep surface insulating

$$-H_{\rm surf}$$
 returns to itself

Adiabatic axion pump

Metallic surface of bulk insulator

Surface charge

ϕ is ill-defined modulo 2π

Metallic surface of bulk insulator

Surface charge Anom. Hall conductivity $\sigma = \frac{-e}{A} \left[\frac{\phi}{2\pi} + \operatorname{int} + \frac{A}{(2\pi)^2} \int d^2 k f(\mathbf{k}) \right] \qquad \sigma^{AH} = \frac{e^2}{h} \left[\frac{\theta}{2\pi} + \operatorname{int} + \frac{1}{2\pi} \int d^2 k f(\mathbf{k}) \Omega(\mathbf{k}) \right]$

 ϕ is ill-defined modulo 2π

 θ is ill-defined modulo 2π

Summary: Analogy

Polarization

Berry phase ϕ

Surface charge

Adiabatic charge pump

First Chern number

Orbital ME coupling

Axion angle θ

Surface AHC

Adiabatic axion pump

Second Chern number

References

PRL 114, 096401 (2015)

PHYSICAL REVIEW LETTERS

week ending 6 MARCH 2015

Adiabatic Pumping of Chern-Simons Axion Coupling

Maryam Taherinejad^{*} and David Vanderbilt Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-0849, USA (Received 7 November 2014; published 4 March 2015)

PHYSICAL REVIEW B 95, 075137 (2017)

Surface theorem for the Chern-Simons axion coupling

Thomas Olsen,^{1,2,*} Maryam Taherinejad,³ David Vanderbilt,⁴ and Ivo Souza^{5,6}

(Received 25 November 2016; published 21 February 2017)

Columbia Workshop on Topological States, May 1, 2017