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Motivation Moment system Numerics Model connections Conclusion

@ Application’

e Magnetic recording devices:
audio, video.

o Computer storage: floppy
disks, hard disks.

e Magnetic Memory:
Magnetoresistance Random
Access Memory (MRAM).

@ Methodology for detecting the orientation 2
Julliere’s model:

input.

e - Constant tunnelin
6‘@&‘ 946 @ matrix °
M TMR = e Ce _ AP
- o G, 1-PPs
69““iéaﬂ oo men
- f “nlanr % nhenk

'Science@Berkeley Lab: The Current Spin on Spintronics
2http://ducthe.wordpress.com/category/spintronics/



Motivation

The key is to control the relative orientation

@ Spin transfer torque (STT) 3

st [ o Two layers of different
& A & thickness: different switching
1 P 4 fields
N W s, g \s, z??? )
7 o The thin film is switched, and

the resistance measured.
@ Literature and references

e Proposed independently by Berger (1996) and Slonczewski
(1996).

e Theoretical and experimental studies: Bazaliy et al., 1998;
Tsoi et al., 1998; Myers et al., 1999; Sun, 2000; Waintal et
al. 2000; Stiles and Zangwill, 2002; Zhang et al. 2002; Zutic
et al. 2004 (Review); ...

Shttp://www.wpi-aimr.tohoku.ac.jp/miyazaki_ labo/spintorque.htm



Motivation

Model equations — Magnetization
@ Landau-Lifshitz-Gilbert (LLG) equation

oM oM
W ——’}/MX (he—|—CS)+OéMX W,
where the first term is precession, and the second is
Gilbert damping term.

@ The effective field h, is defined as
2K, 2C
he = ——“(m2e2+m3e3)+ eXAM—f— MUO (hs-l-ho),
Ms MS
@ The stray field, hs = —Vu is obtained by solving the
magnetostatic equation:

c

Au=divM, xeQ, Au=0, xecQ,
with jump boundary conditions

ou
[U]oa =0, [} =-M-v.
o | sq



Motivation

Model equations — Spin*
@ Quantum (Schrédinger equation)

h%’f (( §2V2+V( )>I+MZBA~M(X,1‘)>¢.

@ Kinetic (Boltzmann equation)
WX, v, 1)+ v - VxW(x,v,t) - %E- v, W(x, v, 1)

W—W 2

T Tsf

+ 5[5 - M(X. ), W(X, V. 1)] = —

—(W —
@ Hydrodynamic (Diffusion equation)

os . s sxM

Js = %BM® Je —2Dy(x) [Vs — BF'M @ (Vs - M)] .

*Piechon and Thiaville, PRB 2007, Gaspari, PR 1966, Zhang, Levy and
Fert, PRL 2002




Motivation

Ambitious goals

@ Set up the connections of the models at different levels of
physics.

@ Develop new models based on moment system.

@ Design efficient numerical algorithms that can capture
physical details at different scales.
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Moment system

Spin-orbital decomposition

Define o = o i + o—yf+ o -k, where

0 1 0 —i 1 0
w=(T0) = (V) (o 2)

W=wl+o- w,
where w is the orbital part and w is the spin part.
Macroscopic quantities

charge density n(x,t) = TrWdyv,
RS

charge current density j,(x,t) = / vTr(W)dyv,
RS

spindensity m(x,t)= [ Tr(eW)dv,
RS

spin current density  j,(x,t) = / v Tr(eW)dv.
R3
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Equations for w and w

e w—w
OW—+V -Vyw— —E -Vyw=— ,
m T

a,(a.w)+v.vx(a.w)—%s-vv(a.w)—%’a.wxw)

__(a.W);(U'W)_é(a'W)’

where we have used the fact

—[uge - M(x, 1), W(x, v, t)] = —“B5 . (M x w).
2h h
Equations live in 6-dimension, which creates numerical
difficulties.
Alternative: to develop and solve the moment system.



Moment system

Hierarchical moment system

on(x,t)+V-j,(x,t) =0,

Orfin(X. ) + / (vov) vwxv.tydv+ S En(x.t) = A%
R3 m =
(X, 1)+ V - o (%, 1) — “BM 5 m = — XD
h Tsf

Otim(X, 1) +/ (vev) -Vw(x,v, t)dv + %E@ m(x,t)
R3

, j (X, t
My G)i(x, 1) = Im D,

Unclosed! Need equations of state for the second order
moments.



Moment system

Closure assumption

@ Assumption |.
w(x, v,t) ~ Bon(x, t)+LBoM-m(x, t)+31-vni (X, t)+5iv-my (X, t),
then the charge current equation becomes
At (X, 1) + BoV2Vxn(X, t) + BLv2Vm(x, )M

+ EEn(x, t) = —M.
m T
@ Assumption II.
W(X7 v, t) ~ ﬁMn(X7 t)+ﬁ/m(xa t)+52 v (Xa t)+ﬂé V(M‘m1 (Xa t))a
then the spin current equation becomes
Otfm(X, 1) + BV2Vxn(X, 1) @ M+ 3'v2V ym(x, t)
jm(x. )

e .
+ E@m(x,1) - %Sjk/Mk(lm)//(X, B ="



Moment system
Motivation for the assumption

@ Introduce the spin-orbital coupling in the moment system.

@ Quasistatic approximation for the current equations yields

jo(x,t) = —%TEn(x, £) — BoV2rVxn(x, t)

— BhVvRTV xm(x, )M,

j(X, ) = —%TE © m(x, t) — BVErVn(x,t) @ M

+ %5//(/Mk(jm),’/(x, f) — ﬂ/ﬁTvxm(X, t)

This is consistent with the linear response relation used in
Zhang, Levy and Fert (PRL 2002) except the term in red.
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e Numerical comparison with Diffusion model
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Experiment setup

Figure: Device. From Bottom to Top: FM1 (128 x 64 x 200nm?);
Spacer (128 x 64 x 20nm?3); FM2 (128 x 64 x 60nm3). j, is applied
from FM1 to FM2.
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Several locally stable states
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Motivation

Several locally stable states
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Several locally stable states
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Numerics

Comparison results

m="12j, & M~ 2Do(x0)[Vm — 55/ (Vm- M) & M]

jmA(M) = %/n © M — 2Do(x)[Vm — 83/ (Vm - M) & M|

1 My M
AM=| My 1 —M,

M, M,

where

with eigenvalues 1, 1 £ /.
Initial states: random in FM1 and uniform in FM2



Numerics

Contd

Model St S1-82 S1-S3 S1-82
Diffusion <74 75~9.9 10.0 >10.1
Moment <90 91~96 97~101 >102

Table: Critical applied current j, for switching (unit: 10'°As)

A larger admissible window for effective switching by moment
model
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Figure: j, = 10.0 x 10'°As
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Contd

(Loading moment10.mpeg)



moment10.mpeg
Media File (video/mpeg)
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Contd
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Figure: j, = 9.8 x 10'9As
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Model connections

From moment system to diffusion®

@ For a clearer illustration, forget the coupling term for the
current moment, and rescale the moment system as

follows,

edm(x,t) + Oxjm(Xx,t) —eM x m = —em(x, t),

cOim(X, 1) + V2Om(x, 1) — Em(x, t) — M "8"(’“ 0 _ Jm(;’ H

@ Apply the following asymptotic expansion
m=ml+em' +2m? + ...

. . 1 .
Jm=im+eim+im+-

5A field with very rich literature: Bardos, Golse, Levermore, Degond, Ben
Abdallah, Gamba, Jin, ...



Model connections

To the leading order, we have the diffusion equation,

20im — (M - 9:m)M = v2d,.m(x, t) + v2M x 8,.m(x, t)
— Eoxym(x,t) — EM x oxm(x,t)
+Mx m—m,

Assuming M is uniform and only nonzero in z-direction,
oM (X, ) + V2O m? (X, 1)
— Eoxym?(x,t) — Mm?*(x,t) = —m?(x, t),

V20,m*(x, t)

Btmi(x, t) - Ty

1 + + _ +
+WE8Xm (x,t) — Mm=(x, t) = —m~(x, ).
This recovers the diffusion model in Zhang, Levy and Fert (PRL
2002) without the coupling term, which can be also included by
a similar procedure on the coupling moment system.
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From Schrédinger to Liouville

In physical units,

ih 2 ap(x, ) = (K, Eb(x, 1),
where
=~ hz 2 MBA
H(x,t):< ooV V(x )>I+ D5 M(x, 1)

What is the correct nondimensional regime? i — &?



Model connections
Define the Wigner transformation of 1 as

m3/2

Wix, v, t)= (@nh)

[, w5y o (x5 y. e Y ay.
To the leading order,
oW(x,v,t)+v-VxW(x,v,t)— %E- VveW(x,v,t)
+ ﬁ[,uga M(x,t).W(x,v,t)] =0.

Compare the order of the last two terms in physical units®,

e|E| 10719 x 10°

—_ e N ~ 1 —125-1

m\v] 109 %5105 ~ 10 5
10— 23 3 B
yM|N To-a ¥ 0-1=10 1261,

8Qi and Zhang, PRB 2003



Model connections

Semiclassical regime

Weak spinor term:

ie L wix, 1) = ((—ivi + V(x))7+

- & - M(x, t)) (X, 1).

N ™

The rescaled Wigner transform:
W(x,v,t)= 1/ P(x + = hH Y™ (x— - t)elvYd

Y Y - (27’{'5)3/2 Ra 2y7 2y7 y7
which leads to the Liouville equation in the leading order,

oW(x,v,t)+v-VyW(x,v,t)—E-V,W(x,v,t)
+ %[8 -M(x,t), W(x,v,t)] =0.

We still have the collision term missing in the picture.
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Conclusion

@ Summary
e Develop STT model based on moment closure that
introduces spin-orbital coupling.
o Numerically study the qualitative difference of moment
system model from the diffusion model.
e Preliminary results on the connections of models at
different scales.

@ Future works

e Further understand the connections of different models,
e.g. the origin of collision term, the modeling accuracy of
moment system in the long time and large space regime.

e Develop multiscale numerical methods, e.g. Heterogeneous
Multiscale Method (HMM), Asymptotic Preserving scheme
(AP), and domain decomposition method (DD).

e Simulating STT of magnetic devices in experiments.
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