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The model

O+ Vu [ (= vl (ay.t) - ulx,0)p(y) dy| - VI
pressureless Cucker-Smale interaction external
Euler equations (non-local alignment) forcing

e p, u: density and velocity field of a continuum of agents
e ¢ : Cucker-Smale interaction potential

e U : external potential



Motivation

e Particle Cucker-Smale model

Xi — V;

1
Vi = 5 > ollxi — x5 () (v = vi)
j#i

i=1,....N

* Flocking: under suitable assumptions on ¢, there holds

|vi(t) —v,;(t)|| =0, ast— o0

e Pairwise interaction —> global velocity alignment

Cucker-Smale (2007), Ha-Tadmor (2008), Ha-Liu (2009)



particle model

Motivation

f.
Xi = Vj

1
Vi = 5 > olllxi = x50 (vy = vi)
\ Ve

i=1,....N

mean field limit

kinetic model 0:«f+v-Vyif+ V- (f/cb(HX—yII)(W —v)f(y,w,1) dwdy> =0

hydrodynamic
model

mono-kinetic ansatz

f(x,v,t) = p(x,t)o(v —u(x,t)) , (other ansatz (e.g. Maxwellian)
e leads to Euler equations

with pressure)

ff)tp+V-(pu) =0

dru+ - Vu — / o1 — ylI) (uly, ) — u(x, £)p(y) dy

\

Ha-Tadmor (2008)



Motivation

Another aspect for the hydrodynamic model: existence of
global smooth solutions — critical thresholds.

Cucker-Smale interaction tends to suppress the finite
time blow-up of the pressureless Euler equations.

1d: Tadmor-Tan (2014), Carrillo-Choi-Tadmor-Tan (2016),
Shvydkoy-Tadmor (2017, 2018), Do-Kiselev-Ryzhik-Tan
(2018)

2d: Tadmor-Tan (2014), He-Tadmor (2017)




Motivation

In reality, moving agents are subject to pairwise interaction
forces as well as external forces.

These forces may compete with the alignment forces,
make it harder to achieve the flocking state.

In this talk we focus on the external potential forces. lts
particle model counterpart is studied in Ha-Shu (2018),
mainly in one spatial dimension.

Potential forces is possibly the easiest type of external
force to study, since there still holds the energy dissipation.

Pairwise interaction: Carrillo-Choi-Tadmor-Tan (2016), Carrillo-Choi-Tse (2018), ...



Main results

e ‘Smooth solutions must flock’:
e (1) Harmonic potential ¥(x) = %HXHQ, general ¢
e (2) General convex potential, constant and large ¢

e Method: hypocoercivity (two different types)



Main results

* Existence of global smooth solutions: critical thresholds
e (1) 1d: thresholds for global smooth solutions and blow-up
e (2) 2d, harmonic potential (similar to He-Tadmor)

e (3) 2d, general potential (including those without a flocking
estimate!)

* All thresholds depend on the size of V?U : one reason why
harmonic potential is special.

* Method: characteristics + spectral dynamics + L°°estimates



Flocking:
harmonic potential

Theorem 2.2. Let U(x) = %|x[|* be the harmonic potential. Let (p,u) be a global smooth

solution to (1.1). Assume p;, has compact support. Then there holds the flocking estimate at
exponential rate in both velocity and position:

E(t) == / / (lu(x) = u(@)|2 + allx — y*)p(x)p(y) dx dy < CE0)e ™, (2.3)

where A > 0 depends on a,p_, o, mg, and C > 0 is an absolute constant.

* Velocity alignment happens together with spatial

concentration! (because spatial deviation induces velocity
deviation, if ¥ is convex.)

In the limit a« — 0, one has A = O(a). This means the

strength of external potential may have big influence on
flocking rate!



Reduce to the case: mean velocity/position zero

Energy estimate

1 a
00 [ Gllute DI + 11200, 1) ax < = mod [ [ull?pax

Cross term

a m2 2
0 [ ulxt) xplx.ydx < = 5 [ Ixoax+ 1+ 2% [ ujpax

a

Use hypocoercivity to get exponential decay



Flocking:
general convex potential

Theorem 2.3. Let W(x) be strictly convex with bounded Hessian:

allyl? <y' ViU (x)y < Aly[?, Yy #0, 0<a<A (2.4)
and ¢ 1s constant, and satisfies
A
mo¢p > Ja (2.5)

Let (p,u) be a global smooth solution to (1.1). Assume p;, has compact support. Then there

holds the flocking at exponential rate in both velocity and position:

£(0) = [ [ (lut) — uly) P+ alx - y*)p(x)p(y) dxdy < CEO, (26)
where A > 0 depends on a, A, ¢_, O, mg, and C' > 0 depends on a, A, myo.

e Cannot reduce to ‘mean-zero’ case

* Total energy does NOT measure position concentration: cannot
apply hypocoercivity directly!



e A new Lyapunov functional

P . 2 futx) - uly)ll?
Ft) = S |lx =yl + x —y,ux) —uy)) + 5luk) —aly)] K = mog
D= [ [ fcy) gl ylpeonty)dxdy, 173 = (Fxy). 03}

// (8 = 1)]lux) — u(y) [ - (x ~y) - (V) - V()
u(y)) - (VE(x) = T¥(y))p(x)p(y) dxdy

e The second term is a good term if ¥ is convex.

e |f Kis large enough, then one can choose a proper 3 to
absorb the bad term (the last term)



Regularity: 1d

Theorem 2.7. Let the space dimension d = 1. Assume W is bounded below, and bounded above

by:
’ U'(z) <A, VreQ (2.12)
with A being a constant satisfying
A< (mof‘)z (2.13)
Further assume that
Lomax  (Dotin(€) + (9% pin) () > m02¢_ - \/ (m(’f‘)Q ~ A (2.14)
then (1.1) admits global smooth solution. positive, if A > 0;

negative, if A < 0.

e Positive ¥”induces blow-up; negative ¥” suppresses.

e The assumptions do NOT imply flocking.



Theorem 2.8. Assume
v’ (x) > B, Vxel

o [f B is so large that

(m0q5+)2
4

holds, then O,u blows up to —oo in finite time for any tnitial data.

B >

o If (2.18) does not hold but B > 0, then 0,u blows up to —oco in finite time if

Moy \/(m0¢+)2 B
2 1

Optiin () + (¢ * pin) () <
for some x. (notice that in this condition RHS > 0)

o [f B <0, then 0, u blows up to —oo in finite time if

OxUin () + (@ * pin)(x) < mOqu_ — \/(mof—)Q — B

for some x. (notice that in this condition RHS < 0)



e The ‘magic quantity’ e=0,u+ ¢ x*p

p = —ple—¢x*p)
e’T:—e(e—¢>|<p)—\If”

time derivative quadratic form in e
along characteristics

Y.
A

<

>
blow up remain smooth

Carrillo-Choi-Tadmor-Tan, Shvydkoy-Tadmor

blow up



Regularity:
2d, harmonic potential

Theorem 2.9. Let the space dimension d = 2, and VU(x) = &||x||*. There exists a positive

constant Cy, depending on mqg, d_, ¢1,a and |¢'|so (the L norm of ¢’ ), such that the following
holds: Assume

XESupp pPin

2
¢l = mip? — ( max  |[(ns)in(X)] + 01500(())> —4a >0 (2.21)

where ng is the difference between the two eigenvalues of the symmetric matriz (Vu+ (Vu)l)/2.

Assume
max (V- (x) + (¢ * pin)(x)) >0 (2.22)

XESUpp Pin
then (1.1) admits global smooth solution.

* The estimate is good only when the size of a is
moderate: large a will blow up the 4a term (the same
reason as 1d), and small a will blow up the C_1 term
(because flocking estimate is bad).




OM+u-VM+ M? = —(¢pxp)M + R— VT M;; = dju;

Rij = 0;¢ * (pu;) — u;i(9;¢ * p)

e Spectral dynamics

1
o m (@) - =2AW)  e=Viutonp
o S o a W = (01’&2 — 82U1)/2

s 815 = 4= {82, Roymsa) — (51, Royms1) — {82, V' Us2) + {31,V Us1)

S; . (orthonormal) eigenvectors of S, the symmetric part of M

H. Liu-Tadmor (2002), He-Tadmor



 For harmonic potential,

77{5’ + ens = q = <S27 Rsyms2> — <517 Rsymsl> — <S27 \Ifsl>

e Flocking estimate —> exponential decay of R

e |f e>=0, then

> require pointwise (LA\infty)
‘775 (t)‘ < |(773)zn| + / |R(3)|d37 Vit flocking estimate:
0 this can be done by

, similar hypocoercivity
* Use this to propagate e>=0 on characteristics

Similar to He-Tadmor



Regularity:
2d, general potential

Theorem 2.10. Let the space dimension d = 2. Assume V?U is bounded:
V22 (x)]| < A
Assume that there is an a priori estimate

max  |[u(x,t)]| < tmaz
t>0, xEsupp

for some constant wp,qq. If there hold
Cy := 8|9 | coMoUmaz + 24 < m3¢2_/2 —2A

and

max | (1s)in (0] < /(302 /2~ 24) +[m3o? /2~ 247 — C3

XESUpPp Pin

and

max (V1 () + (6 pun) () | (m3e? /2~ 24) = lmde? /2~ 24 — 3

XESUPP Pin

then (1.1) admits global smooth solution. require strictly positive lower bound




For general potential,

N+ ens = q = (S2, ReymS2) — (s1, ReymS1) — (82, V"Usy) + (51, V" Usy)

e

No flocking estimate: R does not decay. The best we can
do is a uniform-in-time bound: the u_{max} assumption

V2¥ is not identity matrix —> last two terms are O(1)
New idea: make use of the good term  es

Need to propagate a positive lower bound of e



L M\infty estimate

This allows non-convex potentials
(even with multiple local minima)

Proposition 2.11. Assume that there exists constant A,a > 0, Xg > 0 such that
¢ 2 Ao
Slxl® = ¥x) < x|, allx]| < [[VE)[| < Allx]l,  Vx e Q, x| = Xo (2.29)

Then there exists a constant Umqaz, depending on a, A, ¢_, ¢, mg, E(0), where E(t) is the total

enerqy
B(t) = [ Gllutx )] + ) plx. 1) dx (2.30)
such that

< .
150, hax [u(x, )] < Umax (2.31)

e Method: hypocoercivity along characteristics

F(x,t) = %Hu(x, t))|* 4+ ¥(x) + cu(x,t) - VU (x)



Conclusion

e ‘Smooth solutions must flock’:
e (1) Harmonic potential ¥(x) = ngH? general ¢
* (2) General convex potential, constant and large ¢
e Existence of global smooth solutions: critical thresholds
e (1) 1d: thresholds for global smooth solutions and blow-up
* (2) 2d, harmonic potential (similar to He-Tadmor)

* (3) 2d, general potential (including those without a flocking
estimate!)



