Hydrodynamic flocking model with external potential forcing

Ruiwen Shu
University of Maryland, College Park

Joint work with Eitan Tadmor

October 25, 2018

The model

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \mathbf{u}) \\
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}
\end{array}\right. \\
=0 \\
=\int_{\text {Cucker-Smale interaction }} \phi(\|\mathbf{x}-\mathbf{y}\|)(\mathbf{u}(\mathbf{y}, t)-\mathbf{u}(\mathbf{x}, t)) \rho(\mathbf{y}) \mathrm{d} \mathbf{y} \\
\text { (non-local alignment) }
\end{array}\right. \\
& \begin{array}{c}
\text { pressureless } \\
\text { Euler equations }
\end{array}
\end{aligned}
$$

- ρ, \mathbf{u} : density and velocity field of a continuum of agents
- ϕ : Cucker-Smale interaction potential
- Ψ : external potential

Motivation

- Particle Cucker-Smale model

$$
\left\{\begin{array}{l}
\dot{\mathbf{x}}_{i}=\mathbf{v}_{i} \\
\dot{\mathbf{v}}_{i}=\frac{1}{N} \sum_{j \neq i} \phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right)\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right) \quad i=1, \ldots, N
\end{array}\right.
$$

- Flocking: under suitable assumptions on ϕ, there holds

$$
\left\|\mathbf{v}_{i}(t)-\mathbf{v}_{j}(t)\right\| \rightarrow 0, \quad \text { as } t \rightarrow \infty
$$

- Pairwise interaction -> global velocity alignment

Motivation

particle model $\left\{\begin{array}{l}\dot{\mathbf{x}}_{i}=\mathbf{v}_{i} \\ \dot{\mathbf{v}}_{i}=\frac{1}{N} \sum_{j \neq i} \phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right)\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right) \quad i=1, \ldots, N\end{array}\right.$
mean field limit

kinetic model $\quad \partial_{t} f+\mathbf{v} \cdot \nabla_{\mathbf{x}} f+\nabla_{\mathbf{v}} \cdot\left(f \int \phi(\|\mathbf{x}-\mathbf{y}\|)(\mathbf{w}-\mathbf{v}) f(\mathbf{y}, \mathbf{w}, t) \mathrm{d} \mathbf{w} \mathrm{d} \mathbf{y}\right)=0$

$$
\begin{gathered}
\text { mono-kinetic ansatz } \\
f(\mathbf{x}, \mathbf{v}, t)=\rho(\mathbf{x}, t) \delta(\mathbf{v}-\mathbf{u}(\mathbf{x}, t))
\end{gathered}
$$

(other ansatz (e.g. Maxwellian) leads to Euler equations with pressure)
hydrodynamic model

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \mathbf{u})=0 \\
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}=\int \phi(\|\mathbf{x}-\mathbf{y}\|)(\mathbf{u}(\mathbf{y}, t)-\mathbf{u}(\mathbf{x}, t)) \rho(\mathbf{y}) \mathrm{d} \mathbf{y}
\end{array}\right.
$$

Motivation

- Another aspect for the hydrodynamic model: existence of global smooth solutions - critical thresholds.
- Cucker-Smale interaction tends to suppress the finite time blow-up of the pressureless Euler equations.
- 1d: Tadmor-Tan (2014), Carrillo-Choi-Tadmor-Tan (2016), Shvydkoy-Tadmor $(2017,2018)$, Do-Kiselev-Ryzhik-Tan (2018)
- 2d: Tadmor-Tan (2014), He-Tadmor (2017)

Motivation

- In reality, moving agents are subject to pairwise interaction forces as well as external forces.
- These forces may compete with the alignment forces, make it harder to achieve the flocking state.
- In this talk we focus on the external potential forces. Its particle model counterpart is studied in Ha-Shu (2018), mainly in one spatial dimension.
- Potential forces is possibly the easiest type of external force to study, since there still holds the energy dissipation.

[^0]
Main results

- 'Smooth solutions must flock':
- (1) Harmonic potential $\Psi(\mathbf{x})=\frac{a}{2}\|\mathbf{x}\|^{2}$, general ϕ
- (2) General convex potential, constant and large
- Method: hypocoercivity (two different types)

Main results

- Existence of global smooth solutions: critical thresholds
- (1) 1d: thresholds for global smooth solutions and blow-up
- (2) 2d, harmonic potential (similar to He-Tadmor)
- (3) 2d, general potential (including those without a flocking estimate!)
- All thresholds depend on the size of $\nabla^{2} \Psi$: one reason why harmonic potential is special.
- Method: characteristics + spectral dynamics + L^{∞} estimates

Flocking: harmonic potential

Theorem 2.2. Let $\Psi(\mathbf{x})=\frac{a}{2}\|\mathbf{x}\|^{2}$ be the harmonic potential. Let (ρ, \mathbf{u}) be a global smooth solution to (1.1). Assume $\rho_{i n}$ has compact support. Then there holds the flocking estimate at exponential rate in both velocity and position:

$$
\begin{equation*}
\mathcal{E}(t):=\iint\left(\|\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{y})\|^{2}+a\|\mathbf{x}-\mathbf{y}\|^{2}\right) \rho(\mathbf{x}) \rho(\mathbf{y}) \mathrm{d} \mathbf{x} \mathrm{~d} \mathbf{y} \leq C \mathcal{E}(0) e^{-\lambda t} \tag{2.3}
\end{equation*}
$$

where $\lambda>0$ depends on $a, \phi_{-}, \phi_{+}, m_{0}$, and $C>0$ is an absolute constant.

- Velocity alignment happens together with spatial concentration! (because spatial deviation induces velocity deviation, if Ψ is convex.)
- In the limit $a \rightarrow 0$, one has $\lambda=O(a)$. This means the strength of external potential may have big influence on flocking rate!
- Reduce to the case: mean velocity/position zero
- Energy estimate

$$
\partial_{t} \int\left(\frac{1}{2}\|\mathbf{u}(\mathbf{x}, t)\|^{2}+\frac{a}{2}\|\mathbf{x}\|^{2}\right) \rho(\mathbf{x}, t) \mathrm{d} \mathbf{x} \leq-m_{0} \phi_{-} \int\|\mathbf{u}\|^{2} \rho \mathrm{~d} \mathbf{x}
$$

- Cross term

$$
\partial_{t} \int \mathbf{u}(\mathbf{x}, t) \cdot \mathbf{x} \rho(\mathbf{x}, t) \mathrm{d} \mathbf{x} \leq-\frac{a}{2} \int\|\mathbf{x}\|^{2} \rho \mathrm{~d} \mathbf{x}+\left(1+\frac{m_{0}^{2} \phi_{+}^{2}}{a}\right) \int\|\mathbf{u}\|^{2} \rho \mathrm{~d} \mathbf{x}
$$

- Use hypocoercivity to get exponential decay

Flocking: general convex potential

Theorem 2.3. Let $\Psi(\mathbf{x})$ be strictly convex with bounded Hessian:

$$
\begin{equation*}
a\|\mathbf{y}\|^{2} \leq \mathbf{y}^{T} \nabla^{2} \Psi(\mathbf{x}) \mathbf{y} \leq A\|\mathbf{y}\|^{2}, \quad \forall \mathbf{y} \neq 0, \quad 0<a<A \tag{2.4}
\end{equation*}
$$

and ϕ is constant, and satisfies

$$
\begin{equation*}
m_{0} \phi>\frac{A}{\sqrt{a}} \tag{2.5}
\end{equation*}
$$

Let (ρ, \mathbf{u}) be a global smooth solution to (1.1). Assume $\rho_{i n}$ has compact support. Then there holds the flocking at exponential rate in both velocity and position:

$$
\begin{equation*}
\mathcal{E}(t):=\iint\left(\|\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{y})\|^{2}+a\|\mathbf{x}-\mathbf{y}\|^{2}\right) \rho(\mathbf{x}) \rho(\mathbf{y}) \mathrm{d} \mathbf{x} \mathrm{~d} \mathbf{y} \leq C \mathcal{E}(0) e^{-\tilde{\lambda} t}, \tag{2.6}
\end{equation*}
$$

where $\tilde{\lambda}>0$ depends on $a, A, \phi_{-}, \phi_{+}, m_{0}$, and $C>0$ depends on $a, A, m_{0} \phi$.

- Cannot reduce to 'mean-zero' case
- Total energy does NOT measure position concentration: cannot apply hypocoercivity directly!
- A new Lyapunov functional

$$
\begin{aligned}
& F(t)=\frac{K}{2}\left|\|\mathbf{x}-\mathbf{y}\|\left\|\left.^{2}+\langle\mathbf{x}-\mathbf{y}, \mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{y})\rangle+\frac{\beta}{2} \right\rvert\,\right\| \mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{y})\| \|^{2} \quad K=m_{0} \phi\right. \\
& \langle f(\mathbf{x}, \mathbf{y}), g(\mathbf{x}, \mathbf{y})\rangle:=\iint f(\mathbf{x}, \mathbf{y}) \cdot g(\mathbf{x}, \mathbf{y}) \rho(\mathbf{x}) \rho(\mathbf{y}) \mathrm{d} \mathbf{x} \mathrm{~d} \mathbf{y}, \quad \mid\|f(\mathbf{x}, \mathbf{y})\| \|^{2}:=\langle f(\mathbf{x}, \mathbf{y}), f(\mathbf{x}, \mathbf{y})\rangle \\
& \frac{\mathrm{d} F}{\mathrm{~d} t}=\iint\left[-(K \beta-1)\|\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{y})\|^{2}-(\mathbf{x}-\mathbf{y}) \cdot(\nabla \Psi(\mathbf{x})-\nabla \Psi(\mathbf{y}))\right. \\
& \quad-\beta(\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{y})) \cdot(\nabla \Psi(\mathbf{x})-\nabla \Psi(\mathbf{y}))] \rho(\mathbf{x}) \rho(\mathbf{y}) \mathrm{d} \mathbf{x} \mathrm{~d} \mathbf{y}
\end{aligned}
$$

- The second term is a good term if Ψ is convex.
- If K is large enough, then one can choose a proper β to absorb the bad term (the last term)

Regularity: 1d

Theorem 2.7. Let the space dimension $d=1$. Assume $\Psi^{\prime \prime}$ is bounded below, and bounded above by:

$$
\begin{equation*}
\Psi^{\prime \prime}(x) \leq A, \quad \forall x \in \Omega \tag{2.12}
\end{equation*}
$$

with A being a constant satisfying

$$
\begin{equation*}
A<\frac{\left(m_{0} \phi_{-}\right)^{2}}{4} \tag{2.13}
\end{equation*}
$$

Further assume that

$$
\begin{equation*}
\max _{x \in \operatorname{supp} \rho_{i n}}\left(\partial_{x} u_{i n}(x)+\left(\phi * \rho_{i n}\right)(x)\right)>\frac{m_{0} \phi_{-}}{2}-\sqrt{\frac{\left(m_{0} \phi_{-}\right)^{2}}{4}-A} \tag{2.14}
\end{equation*}
$$

then (1.1) admits global smooth solution.
positive, if $A>0$;
negative, if $A<0$.

- Positive $\Psi^{\prime \prime}$ induces blow-up; negative $\Psi^{\prime \prime}$ suppresses.
- The assumptions do NOT imply flocking.

Theorem 2.8. Assume

$$
\Psi^{\prime \prime}(x) \geq B, \quad \forall x \in \Omega
$$

- If B is so large that

$$
B>\frac{\left(m_{0} \phi_{+}\right)^{2}}{4}
$$

holds, then $\partial_{x} u$ blows up to $-\infty$ in finite time for any initial data.

- If (2.18) does not hold but $B>0$, then $\partial_{x} u$ blows up to $-\infty$ in finite time if

$$
\partial_{x} u_{i n}(x)+\left(\phi * \rho_{i n}\right)(x)<\frac{m_{0} \phi_{+}}{2}-\sqrt{\frac{\left(m_{0} \phi_{+}\right)^{2}}{4}-B}
$$

for some x. (notice that in this condition $R H S>0$)

- If $B \leq 0$, then $\partial_{x} u$ blows up to $-\infty$ in finite time if

$$
\partial_{x} u_{i n}(x)+\left(\phi * \rho_{i n}\right)(x)<\frac{m_{0} \phi_{-}}{2}-\sqrt{\frac{\left(m_{0} \phi_{-}\right)^{2}}{4}-B}
$$

for some x. (notice that in this condition $R H S \leq 0$)

- The 'magic quantity' $\quad \mathrm{e}=\partial_{x} u+\phi * \rho$

$$
\begin{aligned}
& \rho^{\prime}=-\rho(\mathrm{e}-\phi * \rho) \\
& \mathrm{e}_{\uparrow}^{\prime}=-\mathrm{e}(\mathrm{e}-\phi * \rho)-\Psi^{\prime \prime}
\end{aligned}
$$

time derivative quadratic form in e along characteristics

Carrillo-Choi-Tadmor-Tan, Shvydkoy-Tadmor

Regularity: 2d, harmonic potential

Theorem 2.9. Let the space dimension $d=2$, and $\Psi(\mathbf{x})=\frac{a}{2}\|\mathbf{x}\|^{2}$. There exists a positive constant C_{1}, depending on $m_{0}, \phi_{-}, \phi_{+}, a$ and $\left|\phi^{\prime}\right|_{\infty}$ (the L^{∞} norm of ϕ^{\prime}), such that the following holds: Assume

$$
\begin{equation*}
c_{1}^{2}:=m_{0}^{2} \phi_{-}^{2}-\left(\max _{\mathbf{x} \in \operatorname{supp} \rho_{i n}}\left|\left(\eta_{S}\right)_{i n}(\mathbf{x})\right|+C_{1} \mathcal{E}_{\infty}(0)\right)^{2}-4 a>0 \tag{2.21}
\end{equation*}
$$

where η_{S} is the difference between the two eigenvalues of the symmetric matrix $\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right) / 2$. Assume

$$
\begin{equation*}
\max _{\mathbf{x} \in \operatorname{supp} \rho_{i n}}\left(\nabla \cdot \mathbf{u}_{i n}(\mathbf{x})+\left(\phi * \rho_{i n}\right)(\mathbf{x})\right) \geq 0 \tag{2.22}
\end{equation*}
$$

then (1.1) admits global smooth solution.

- The estimate is good only when the size of a is moderate: large a will blow up the 4 a term (the same reason as 1d), and small a will blow up the C_1 term (because flocking estimate is bad).

$$
\begin{gathered}
\partial_{t} M+\mathbf{u} \cdot \nabla M+M^{2}=-(\phi * \rho) M+R-\nabla^{2} \Psi \quad M_{i j}=\partial_{j} u_{i} \\
R_{i j}=\partial_{j} \phi *\left(\rho u_{i}\right)-u_{i}\left(\partial_{j} \phi * \rho\right)
\end{gathered}
$$

- Spectral dynamics

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{e}^{\prime}=\frac{1}{2}\left(4 \omega^{2}+(\phi * \rho)^{2}-\eta_{S}^{2}-\mathrm{e}^{2}-2 \Delta \Psi\right) \\
\mathrm{e}=\nabla \cdot \mathbf{u}+\phi * \rho \\
\omega=\left(\partial_{1} u_{2}-\partial_{2} u_{1}\right) / 2
\end{array} \\
& \eta_{S}^{\prime}+\mathrm{e} \eta_{S}=q:=\left\langle\mathbf{s}_{2}, R_{s y m} \mathbf{s}_{2}\right\rangle-\left\langle\mathbf{s}_{1}, R_{s y m} \mathbf{s}_{1}\right\rangle-\left\langle\mathbf{s}_{2}, \nabla^{2} \Psi \mathbf{s}_{2}\right\rangle+\left\langle\mathbf{s}_{1}, \nabla^{2} \Psi \mathbf{s}_{1}\right\rangle \\
& \mathbf{s}_{i}: \text { (orthonormal) eigenvectors of } \mathrm{S} \text {, the symmetric part of } \mathrm{M}
\end{aligned}
$$

- For harmonic potential,

$$
\left.\eta_{S}^{\prime}+\underset{-}{\mathrm{e}} \eta_{S}=q:=\left\langle\mathbf{s}_{2}, R_{s y m} \mathbf{s}_{2}\right\rangle-\left\langle\mathbf{s}_{1}, R_{s y m} \mathbf{s}_{1}\right\rangle-\left\langle\mathbf{s}_{2}, \nabla^{2} \Psi \mathbf{s}_{2}\right\rangle \mathbf{s}_{1}, \nabla^{2} \Psi \mathbf{s}_{1}\right\rangle
$$

- Flocking estimate $->$ exponential decay of R
- If $\mathrm{e}>=0$, then

$$
\left|\eta_{S}(t)\right| \leq\left|\left(\eta_{S}\right)_{i n}\right|+\int_{0}^{\infty}|R(s)| \mathrm{d} s, \quad \forall t
$$

- Use this to propagate $\mathrm{e}>=0$
require pointwise ($\mathrm{L} \wedge$ \infty) flocking estimate: this can be done by similar hypocoercivity on characteristics

Regularity: 2d, general potential

Theorem 2.10. Let the space dimension $d=2$. Assume $\nabla^{2} \Psi$ is bounded:

$$
\left\|\nabla^{2} \Psi(\mathrm{x})\right\| \leq A
$$

Assume that there is an a priori estimate

$$
\max _{t \geq 0, \mathbf{x} \in \operatorname{supp}}\|\mathbf{u}(\mathbf{x}, t)\| \leq u_{\max }
$$

for some constant $u_{\max }$. If there hold

$$
C_{2}:=8\left|\phi^{\prime}\right|_{\infty} m_{0} u_{\max }+2 A<m_{0}^{2} \phi_{-}^{2} / 2-2 A
$$

and

$$
\max _{\mathbf{x} \in \operatorname{supp} \rho_{i n}}\left|\left(\eta_{S}\right)_{i n}(\mathbf{x})\right| \leq \sqrt{\left(m_{0}^{2} \phi_{-}^{2} / 2-2 A\right)+\sqrt{\left(m_{0}^{2} \phi_{-}^{2} / 2-2 A\right)^{2}-C_{2}^{2}}}
$$

and

$$
\max _{\mathbf{x} \in \operatorname{supp} \rho_{\text {in }}}\left(\nabla \cdot \mathbf{u}_{i n}(\mathbf{x})+\left(\phi * \rho_{i n}\right)(\mathbf{x})\right)>\sqrt{\left(m_{0}^{2} \phi_{-}^{2} / 2-2 A\right)-\sqrt{\left(m_{0}^{2} \phi_{-}^{2} / 2-2 A\right)^{2}-C_{2}^{2}}}
$$

then (1.1) admits global smooth solution.
require strictly positive lower bound

- For general potential,

$$
\eta_{S}^{\prime}+\mathrm{e} \eta_{S}=q:=\left\langle\mathbf{s}_{2}, R_{s y m} \mathbf{s}_{2}\right\rangle-\left\langle\mathbf{s}_{1}, R_{s y m} \mathbf{s}_{1}\right\rangle-\left\langle\mathbf{s}_{2}, \nabla^{2} \Psi \mathbf{s}_{2}\right\rangle+\left\langle\mathbf{s}_{1}, \nabla^{2} \Psi \mathbf{s}_{1}\right\rangle
$$

- No flocking estimate: R does not decay. The best we can do is a uniform-in-time bound: the u_\{max\} assumption
- $\nabla^{2} \Psi$ is not identity matrix $\rightarrow>$ last two terms are $\mathrm{O}(1)$
- New idea: make use of the good term e η_{S}
- Need to propagate a positive lower bound of e

L^\infty estimate

This allows non-convex potentials (even with multiple local minima)

Proposition 2.11. Assume that there exists constant $A, a>0, X_{0}>0$ such that

$$
\begin{equation*}
\frac{a}{2}\|\mathbf{x}\|^{2} \leq \Psi(\mathbf{x}) \leq \frac{A}{2}\|\mathbf{x}\|^{2}, \quad a\|\mathbf{x}\| \leq\|\nabla \Psi(\mathbf{x})\| \leq A\|\mathbf{x}\|, \quad \forall \mathbf{x} \in \Omega,\|\mathbf{x}\| \geq X_{0} \tag{2.29}
\end{equation*}
$$

Then there exists a constant $u_{\max }$, depending on $a, A, \phi_{-}, \phi_{+}, m_{0}, E(0)$, where $E(t)$ is the total energy

$$
\begin{equation*}
E(t)=\int\left(\frac{1}{2}\|\mathbf{u}(\mathbf{x}, t)\|^{2}+\Psi(\mathbf{x})\right) \rho(\mathbf{x}, t) \mathrm{d} \mathbf{x} \tag{2.30}
\end{equation*}
$$

such that

$$
\begin{equation*}
\max _{t \geq 0, \mathbf{x} \in \operatorname{supp} \rho_{i n}}\|\mathbf{u}(\mathbf{x}, t)\| \leq u_{\max } \tag{2.31}
\end{equation*}
$$

- Method: hypocoercivity along characteristics

$$
F(\mathbf{x}, t)=\frac{1}{2}\|\mathbf{u}(\mathbf{x}, t)\|^{2}+\Psi(\mathbf{x})+c \mathbf{u}(\mathbf{x}, t) \cdot \nabla \Psi(\mathbf{x})
$$

Conclusion

- 'Smooth solutions must flock':
- (1) Harmonic potential $\Psi(\mathbf{x})=\frac{a}{2}\|\mathbf{x}\|^{2}$, general ϕ
- (2) General convex potential, constant and large ϕ
- Existence of global smooth solutions: critical thresholds
- (1) 1d: thresholds for global smooth solutions and blow-up
- (2) 2d, harmonic potential (similar to He-Tadmor)
- (3) 2d, general potential (including those without a flocking estimate!)

[^0]: Pairwise interaction: Carrillo-Choi-Tadmor-Tan (2016), Carrillo-Choi-Tse (2018), ...

