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The model

•      : density and velocity field of a continuum of agents


•     : Cucker-Smale interaction potential


•     : external potential
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Abstract

to be written

** I used Ckitty, Cmeow, Cmi just to distinguish the important constants (if I use C1, C2, C3,

it will be easier to mess up...) We can change them to any reasonable names later.

1 Introduction

In this paper we are concerned with the hydrodynamic Cucker-Smale model with external

potential forcing:
8
><

>:

@t⇢+r · (⇢u) = 0

@tu+ u ·ru =

Z
�(kx� yk)(u(y, t)� u(x, t))⇢(y) dy �r (x)

(1.1)

Here x 2 ⌦ = Rd or Td is space, and t 2 R�0 is time. ⇢(x, t) is the local density of a continuum of

agents, and u(x, t) is the velocity field. The integral term represents the Cucker-Smale alignment

force between agents, with � = �(r) � 0 being the Cucker-Smale interaction potential, which

describes the strength of the interaction between a pair of agents. We also assume that each

agent is subject to an external potential force, whose potential is given by a smooth function

 (x).

Cucker-Smale type flocking models [2] have been studied intensively in the recent decade.

These models describe the motion of a group of agents which try to align its velocity with others.

In reality, such agents could be a flock of birds, a school of fish, etc. The particle Cucker-Smale

model (without external force) reads

8
><

>:

ẋi = vi

v̇i =
1

N

X

j 6=i

�(kxi � xjk)(vj � vi)
i = 1, . . . , N (1.2)

where xi(t) 2 ⌦, vi(t) 2 Rd, i = 1, . . . , N are the position and velocity of the i-th agent. The

most important feature of Cucker-Smale models is the flocking behavior [4]: under suitable

assumptions on �, one can show that the velocity variation converges to zero for large time:

kvi(t)� vj(t)k ! 0, as t ! 1 (1.3)
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Motivation
• Particle Cucker-Smale model


• Flocking: under suitable assumptions on     , there holds


• Pairwise interaction —> global velocity alignment
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which means the pairwise interaction leads to global alignment of velocity.

As the number of particles N tends to infinity, one could derive the mean field limit of (1.2)

as a kinetic equation [4]

@tf + v ·rxf +rv ·
✓
f

Z
�(kx� yk)(w � v)f(y,w, t) dw dy

◆
= 0 (1.4)

where f(x,v, t) is the particle distribution function. Using suitable ansatz for f and taking mo-

ments of (1.4) gives hydrodynamic systems for the macroscopic quantities. One typical example

is the mono-kinetic ansatz

f(x,v, t) = ⇢(x, t)�(v � u(x, t)) (1.5)

where � is the Dirac delta function. This gives the pressureless Euler equations with alignment

force 8
><

>:

@t⇢+r · (⇢u) = 0

@tu+ u ·ru =

Z
�(kx� yk)(u(y, t)� u(x, t))⇢(y) dy

(1.6)

for the macroscopic density ⇢(x, t) and bulk velocity u(x, t). This system has been well-studied

by [8, 1, 6, 7, 5], where the flocking phenomenon for smooth solutions and the critical thresholds

for the existence of global smooth solutions were proved.

In reality, moving agents with alignment force could be subject to other forces as well: for

example, external forces from environment, pairwise attractive-repulsive forces [1], etc. Such

forces may compete with the alignment force, which makes the large time behavior very di↵erent

from the original Cucker-Smale model and far more interesting. One of the simplest type of

external forces is potential force, given by a fixed external potential  (x). The particle Cucker-

Smale model with external potential force

8
><

>:

ẋi = vi

v̇i =
1

N

X

j 6=i

�(kxi � xjk)(vj � vi)�r (xi)
i = 1, . . . , N (1.7)

is studied in [3], where for some special choices of  , it is shown that both position and velocity

align for large time:

kvi(t)� vj(t)k ! 0, kxi(t)� xj(t)k ! 0, as t ! 1 (1.8)

and such convergence is shown to be exponential for some cases. The reason behind is as follows:

since the force r (x) may vary for di↵erent positions (which tends to drive the particle velocity

apart), the only choice for the agents to keep their velocities aligned is to stay at the same

position (for convex potentials, at least).

The same formal derivation of the particle-kinetic-fluid limits starting from (1.7) gives the

model (1.1). We focus on the following two aspects of (1.1):

• The flocking phenomena for smooth solutions, if they exist. Such results are straightforward

for the Cucker-Smale model without external potential (if one has a lower bound on �),

but the presence of external potential makes this problem much more interesting. Our

results in this direction are basically generalization of the one-dimensional results in [3] to

multi-dimension, for a class of convex potentials.
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ẋi = vi

v̇i =
1

N

X

j 6=i

�(kxi � xjk)(vj � vi)�r (xi)
i = 1, . . . , N (1.7)

is studied in [3], where for some special choices of  , it is shown that both position and velocity

align for large time:

kvi(t)� vj(t)k ! 0, kxi(t)� xj(t)k ! 0, as t ! 1 (1.8)

and such convergence is shown to be exponential for some cases. The reason behind is as follows:

since the force r (x) may vary for di↵erent positions (which tends to drive the particle velocity

apart), the only choice for the agents to keep their velocities aligned is to stay at the same

position (for convex potentials, at least).

The same formal derivation of the particle-kinetic-fluid limits starting from (1.7) gives the

model (1.1). We focus on the following two aspects of (1.1):

• The flocking phenomena for smooth solutions, if they exist. Such results are straightforward

for the Cucker-Smale model without external potential (if one has a lower bound on �),

but the presence of external potential makes this problem much more interesting. Our

results in this direction are basically generalization of the one-dimensional results in [3] to

multi-dimension, for a class of convex potentials.

2

mean field limit

mono-kinetic ansatz

particle model

kinetic model

hydrodynamic 

model

(other ansatz (e.g. Maxwellian) 

leads to Euler equations


 with pressure)

Ha-Tadmor (2008)
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ẋi = vi

v̇i =
1

N

X

j 6=i

�(kxi � xjk)(vj � vi)�r (xi)
i = 1, . . . , N (1.7)

is studied in [3], where for some special choices of  , it is shown that both position and velocity

align for large time:

kvi(t)� vj(t)k ! 0, kxi(t)� xj(t)k ! 0, as t ! 1 (1.8)

and such convergence is shown to be exponential for some cases. The reason behind is as follows:

since the force r (x) may vary for di↵erent positions (which tends to drive the particle velocity

apart), the only choice for the agents to keep their velocities aligned is to stay at the same

position (for convex potentials, at least).

The same formal derivation of the particle-kinetic-fluid limits starting from (1.7) gives the

model (1.1). We focus on the following two aspects of (1.1):

• The flocking phenomena for smooth solutions, if they exist. Such results are straightforward

for the Cucker-Smale model without external potential (if one has a lower bound on �),

but the presence of external potential makes this problem much more interesting. Our

results in this direction are basically generalization of the one-dimensional results in [3] to

multi-dimension, for a class of convex potentials.

2



Motivation
• Another aspect for the hydrodynamic model: existence of 

global smooth solutions — critical thresholds.


• Cucker-Smale interaction tends to suppress the finite 
time blow-up of the pressureless Euler equations.


• 1d: Tadmor-Tan (2014), Carrillo-Choi-Tadmor-Tan (2016), 
Shvydkoy-Tadmor (2017, 2018), Do-Kiselev-Ryzhik-Tan 
(2018)


• 2d: Tadmor-Tan (2014), He-Tadmor (2017)



Motivation
• In reality, moving agents are subject to pairwise interaction 

forces as well as external forces.


• These forces may compete with the alignment forces, 
make it harder to achieve the flocking state.


• In this talk we focus on the external potential forces. Its 
particle model counterpart is studied in Ha-Shu (2018), 
mainly in one spatial dimension.


• Potential forces is possibly the easiest type of external 
force to study, since there still holds the energy dissipation.

Pairwise interaction: Carrillo-Choi-Tadmor-Tan (2016), Carrillo-Choi-Tse (2018), …



Main results

• ‘Smooth solutions must flock’: 


• (1) Harmonic potential                       , general    


• (2) General convex potential, constant and large 


• Method: hypocoercivity (two different types)

 (x) =
a

2
kxk2 �

�



Main results
• Existence of global smooth solutions: critical thresholds


• (1) 1d: thresholds for global smooth solutions and blow-up     


• (2) 2d, harmonic potential (similar to He-Tadmor)


• (3) 2d, general potential (including those without a flocking 
estimate!)


• All thresholds depend on the size of         : one reason why 
harmonic potential is special.


• Method: characteristics + spectral dynamics +       estimatesL1

r2 



Flocking:  
harmonic potential

• Velocity alignment happens together with spatial 
concentration! (because spatial deviation induces velocity 
deviation, if      is convex.)


• In the limit             , one has               . This means the 
strength of external potential may have big influence on 
flocking rate!

 

a ! 0 � = O(a)

• Critical thresholds for the existence of global smooth solutions. [8, 1, 6] (for one-dimension)

and [5] (for two-dimension) derived critical thresholds on ruin, the initial gradient of

velocity field, for the existence of global smooth solutions to (1.6), in the absence of external

force. When there is an external potential, we discover that the critical thresholds still

exist, but are a↵ected by the external potential  . In particular, the size of the Hessian

r2 plays an important role in the thresholds. Most interestingly, in two-dimensional

space, the external potential may significantly a↵ect the dynamics of the spectral gap of

ru, which is a crucial step of the regularity result in [5]. We develop a new type of estimate

for the spectral dynamics to handle the influence from external potential.

This paper is organized as follows: ...

2 Assumptions and statement of main results

We always assume that (⇢in,uin) is smooth enough, and ⇢in is compact supported and non-

negative. Denote the total mass

m0 :=

Z
⇢in(x) dx > 0 (2.1)

We always assume that the Cucker-Smale interaction potential � is bounded below and above:

0 < ��  �(r)  �+ < 1 (2.2)

Remark 2.1. In order to generalize our result to the cases when �(r) ⇠ 1/(1 + r)↵, ↵ > 0, one

could propagate the compact support condition in ⇢, and then one could use �(maxx,y2supp ⇢(·,t) kx�
yk) as the lower bound of �. We will leave this as future work.

2.1 Flocking phenomena for smooth solutions

We state our results on the flocking phenomena for smooth solutions to (1.1). We first

consider the harmonic potential:

Theorem 2.2. Let  (x) = a
2kxk

2 be the harmonic potential. Let (⇢,u) be a global smooth

solution to (1.1). Assume ⇢in has compact support. Then there holds the flocking estimate at

exponential rate in both velocity and position:

E(t) :=
Z Z

(ku(x)� u(y)k2 + akx� yk2)⇢(x)⇢(y) dx dy  CE(0)e��t, (2.3)

where � > 0 depends on a,��,�+,m0, and C > 0 is an absolute constant.

The proof of this theorem is a standard application of hypocoercivity, i.e., adding a small cross

term to the energy estimate to compensate the lack of dissipation in x. However, this proof relies

on the special structure of the harmonic potential, which no longer holds for a general convex

potential, even if it is convex.

For general convex potentials, we develop another type of hypocoercivity argument, which

gives the flocking estimate under some extra assumptions on �:

3



• Reduce to the case: mean velocity/position zero


• Energy estimate


• Cross term


• Use hypocoercivity to get exponential decay

3.1 The special case of harmonic potential

We start with the harmonic potential

 (x) =
a

2
kxk2 (3.1)

where a > 0 is a constant. One special property about the harmonic potential is that the motion

of the mean location and the mean velocity

xc =
1

m0

Z
x⇢(x) dx

uc =
1

m0

Z
u(x)⇢(x) dx

(3.2)

is explicitly given by the harmonic oscillator

ẋc = uc

u̇c = �axc

(3.3)

and the translated quantities ⇢̂(x) := ⇢(xc + x) and û(x) := u(xc + x) � uc satisfy the same

system (1.1) with mean location and mean velocity stay at zero.

Proof of Theorem 2.2. Since E defined in (2.6) is the same for (⇢,u) and (⇢̂, û), it su�ces to

study (1.1) with

xc = 0, uc = 0 (3.4)

at the beginning, without loss of generality. Under this assumption, one has

E = 2m0

Z
(kuk2 + akxk2)⇢ dx (3.5)

There holds the energy estimate

@t

Z
(
1

2
ku(x, t)k2 + a

2
kxk2)⇢(x, t) dx

=�
Z

(
1

2
kuk2 + a

2
kxk2)r · (⇢u) dx+

Z
u ·

✓
�u ·ru+

Z
�(x� y)(u(y)� u(x))⇢(y) dy � ax

◆
⇢ dx

=

Z Z
�(x� y)u(x) · (u(y)� u(x))⇢(x)⇢(y) dx dy

=� 1

2

Z Z
�(x� y)ku(y)� u(x)k2⇢(x)⇢(y) dx dy

� ��
2

Z Z
ku(y)� u(x)k2⇢(x)⇢(y) dx dy

=�m0��

Z
kuk2⇢ dx

(3.6)
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Then we compute the cross term

@t

Z
u(x, t) · x⇢(x, t) dx

=�
Z

(u(x, t) · x)r · (⇢u) dx+

Z
x ·

✓
�u ·ru+

Z
�(x� y)(u(y)� u(x))⇢(y) dy � ax

◆
⇢ dx

=� a

Z
kxk2⇢ dx+

Z
kuk2⇢ dx+

Z Z
�(x� y)x · (u(y)� u(x))⇢(x)⇢(y) dx dy

� a

Z
kxk2⇢ dx+

Z
kuk2⇢ dx+

�+

2

Z Z
(

a

m0�+
kxk2 + m0�+

a
ku(y)� u(x)k2)⇢(x)⇢(y) dx dy

=� a

2

Z
kxk2⇢ dx+ (1 +

m2
0�

2
+

a
)

Z
kuk2⇢ dx

(3.7)

Therefore, we conclude that

@t

Z
(
1

2
ku(x, t)k2+a

2
kxk2+✏u(x, t)·x)⇢(x, t) dx  �(m0���✏(1+
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0�

2
+

a
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Z
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2

Z
akxk2⇢ dx
(3.8)
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0�
2
+

a ) + 1
2

,

p
a

2
} (3.9)
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Z
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2
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1

2
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1

2

Z
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Z
(kuk2 + akxk2)⇢ dx (3.12)
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p
a
2 . Then
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2
V (t) (3.13)
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◆
⇢ dx

=� a

Z
kxk2⇢ dx+

Z
kuk2⇢ dx+

Z Z
�(x� y)x · (u(y)� u(x))⇢(x)⇢(y) dx dy

� a

Z
kxk2⇢ dx+

Z
kuk2⇢ dx+

�+

2

Z Z
(

a

m0�+
kxk2 + m0�+

a
ku(y)� u(x)k2)⇢(x)⇢(y) dx dy

=� a

2

Z
kxk2⇢ dx+ (1 +

m2
0�

2
+

a
)

Z
kuk2⇢ dx

(3.7)

Therefore, we conclude that

@t

Z
(
1

2
ku(x, t)k2+a

2
kxk2+✏u(x, t)·x)⇢(x, t) dx  �(m0���✏(1+

m2
0�

2
+

a
))

Z
kuk2⇢ dx� ✏

2

Z
akxk2⇢ dx
(3.8)

which means the LHS is a Lyapunov functional if ✏ > 0 is small enough. In fact, one can take

✏ = min{ m0��

(1 +
m2

0�
2
+

a ) + 1
2

,

p
a

2
} (3.9)

Then

@t

Z
(
1

2
ku(x, t)k2 + a

2
kxk2 + ✏u(x, t) · x)⇢(x, t) dx  � ✏

2

Z
(kuk2 + akxk2)⇢ dx (3.10)

Define

V (t) =

Z
(
1

2
ku(x, t)k2 + a

2
kxk2 + ✏u(x, t) · x)⇢(x, t) dx (3.11)

which satisfies
1

2

Z
(kuk2 + akxk2)⇢ dx  V (t) 

Z
(kuk2 + akxk2)⇢ dx (3.12)

since ✏ 
p
a
2 . Then

V 0(t)  � ✏

2
V (t) (3.13)

which implies

V (t)  V (0)e�✏t/2 (3.14)

This finishes the proof, since V is comparable to E/m0 by an absolute constant.

By using a similar method and using the previous conclusion, we prove Proposition 2.6:
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Flocking: 
general convex potential

• Cannot reduce to ‘mean-zero’ case


• Total energy does NOT measure position concentration: cannot 
apply hypocoercivity directly!

Theorem 2.3. Let  (x) be strictly convex with bounded Hessian:

akyk2  y
Tr2 (x)y  Akyk2, 8y 6= 0, 0 < a < A (2.4)

and � is constant, and satisfies

m0� >
Ap
a

(2.5)

Let (⇢,u) be a global smooth solution to (1.1). Assume ⇢in has compact support. Then there

holds the flocking at exponential rate in both velocity and position:

E(t) :=
Z Z

(ku(x)� u(y)k2 + akx� yk2)⇢(x)⇢(y) dx dy  CE(0)e��̃t, (2.6)

where �̃ > 0 depends on a,A,��,�+,m0, and C > 0 depends on a,A,m0�.

Now one can see that the harmonic potential is a special prototype: it is the only case for

which we can prove the flocking phenomena for all initial data and all �.

Remark 2.4. If one assumes � is constant, then the particle Cucker-Smale model with external

potential becomes (
ẋi = vi

v̇i = � · (v̄ � vi)�r (xi)
i = 1, . . . , N (2.7)

with v̄ = 1
N

P
j vj being the average velocity. This system seems to have simple coupling among

particles, and one may guess that the flocking phenomenon is trivial. However, this is indeed

not the case: [3] discovered examples of ’orbital instability’ for 1d non-convex potentials, which

basically means that even if for the initial data kxi � xjk and kvi � vjk are arbitrarily small,

they may grow to O(1) at some time. Therefore the conclusion of Theorem 2.3 is nontrivial.

Remark 2.5. In fact, one could develop small-data results for both Theorem 2.2 and Theorem

2.3: for the former, one could extend to the case when  is closed to a harmonic potential;

for latter, one could extend to the case when �0 is small enough. Both types of results would

inevitably require the smallness of initial data (in some sense) as well.

From the proof of Theorem 2.2, one can take the decay rate

� =
1

8
min{ m0��

m2
0�

2
+

a + 3
2

,

p
a

2
} (2.8)

If one fixes m0 and � and considers the asymptotic behavior for a ! 0, then the decay rate

� = O(a). For a ! 1, the decay rate � = O(1). This shows that the strength of external

potential force may have significant influence on the rate of flocking, and a weak potential tends

to give a slower decay. One could interpret this as follows: to achieve an equilibrium, both

velocity and position have to align; if the potential force is weak, then the alignment of position

happens on a slower time scale, since the Cucker-Smale interaction do not provide any position

alignment.

In the case of harmonic potential, we improve the L2 flocking estimate in Theorem 2.2 into

an L1 estimate:

4



• A new Lyapunov functional


• The second term is a good term if      is convex.


• If K is large enough, then one can choose a proper      to 
absorb the bad term (the last term)

with x0 being the point traced back from (x, t) by characteristics. This finishes the proof, since

F is comparable to E2
1, and V is comparable to E = O(E2

1):

1

8
E2
1  F  1

2
E2
1 (3.26)

V (0)  2E(0)  2m0E2
1 (3.27)

3.2 The case of general convex potentials

For the case of general convex potentials, the mean location xc and mean velocity uc do not

satisfy a closed system, in contrast to (3.3) in the harmonic potential case. Therefore one cannot

reduce the problem with xc = uc = 0, for which E is equivalent to the total energy. Therefore

one cannot using hypocoercivity on the energy estimate to obtain the decay of E .
In fact, we will construct a Lyapunov functional which is equivalent to E directly.

Proof of Theorem 2.3. Recall that we assumed � is constant. Denote

K = m0� (3.28)

Then the convolution of � with any function is a constant function:

(� ⇤ f)(x) = K

Z
f dx, 8x (3.29)

We will use the notation

hf(x,y), g(x,y)i :=
Z Z

f(x,y) · g(x,y)⇢(x)⇢(y) dx dy, |kf(x,y)k|2 := hf(x,y), f(x,y)i
(3.30)

for any scalar or vector functions f, g, where we suppress its dependence on t.

We compute the time derivative of the following quantity (where � > 0 to be determined):

F (t) =
K

2
|kx� yk|2 + hx� y,u(x)� u(y)i+ �

2
|ku(x)� u(y)k|2 (3.31)

dF

dt
=

Z Z
[(
K

2
kx� yk2 + (x� y) · (u(x)� u(y)) +

�

2
ku(x)� u(y)k2)(�rx · (⇢(x)u(x))⇢(y)�ry · (⇢(y)u(y))⇢(x))

+ (x� y + �(u(x)� u(y))) · (�u(x) ·rxu(x) + u(y) ·ryu(y)

�Ku(x) +Ku(y)�r (x) +r (y))⇢(x)⇢(y)] dx dy

=

Z Z
[K(x� y) + (u(x)� u(y)) +rxu(x)(x� y + �(u(x)� u(y)))) · u(x)

+ (�K(x� y)� (u(x)� u(y))�ryu(y)(x� y + �(u(x)� u(y)))) · u(y)

+ (x� y + �(u(x)� u(y))) · (�u(x) ·rxu(x) + u(y) ·ryu(y)

�Ku(x) +Ku(y)�r (x) +r (y))]⇢(x)⇢(y) dx dy

=

Z Z
[�(K� � 1)ku(x)� u(y)k2 � (x� y) · (r (x)�r (y))

� �(u(x)� u(y)) · (r (x)�r (y))]⇢(x)⇢(y) dx dy

(3.32)
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with x0 being the point traced back from (x, t) by characteristics. This finishes the proof, since

F is comparable to E2
1, and V is comparable to E = O(E2
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V (0)  2E(0)  2m0E2
1 (3.27)

3.2 The case of general convex potentials

For the case of general convex potentials, the mean location xc and mean velocity uc do not

satisfy a closed system, in contrast to (3.3) in the harmonic potential case. Therefore one cannot

reduce the problem with xc = uc = 0, for which E is equivalent to the total energy. Therefore

one cannot using hypocoercivity on the energy estimate to obtain the decay of E .
In fact, we will construct a Lyapunov functional which is equivalent to E directly.

Proof of Theorem 2.3. Recall that we assumed � is constant. Denote

K = m0� (3.28)

Then the convolution of � with any function is a constant function:

(� ⇤ f)(x) = K

Z
f dx, 8x (3.29)

We will use the notation

hf(x,y), g(x,y)i :=
Z Z

f(x,y) · g(x,y)⇢(x)⇢(y) dx dy, |kf(x,y)k|2 := hf(x,y), f(x,y)i
(3.30)

for any scalar or vector functions f, g, where we suppress its dependence on t.

We compute the time derivative of the following quantity (where � > 0 to be determined):

F (t) =
K

2
|kx� yk|2 + hx� y,u(x)� u(y)i+ �

2
|ku(x)� u(y)k|2 (3.31)

dF

dt
=
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K

2
kx� yk2 + (x� y) · (u(x)� u(y)) +

�

2
ku(x)� u(y)k2)(�rx · (⇢(x)u(x))⇢(y)�ry · (⇢(y)u(y))⇢(x))
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�Ku(x) +Ku(y)�r (x) +r (y))⇢(x)⇢(y)] dx dy
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Z Z
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+ (�K(x� y)� (u(x)� u(y))�ryu(y)(x� y + �(u(x)� u(y)))) · u(y)

+ (x� y + �(u(x)� u(y))) · (�u(x) ·rxu(x) + u(y) ·ryu(y)
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� �(u(x)� u(y)) · (r (x)�r (y))]⇢(x)⇢(y) dx dy

(3.32)
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Regularity: 1d

• Positive      induces blow-up; negative      suppresses.


• The assumptions do NOT imply flocking.

 00  00

Proposition 2.6. Let  (x) = a
2kxk

2. Then

E1(t) := max
x,y2supp ⇢(·,t)

(ku(x, t)� u(y, t)k+
p
akx� yk)  CkittyE1(0)e��t, 8t � 0 (2.9)

where � > 0 is the same as in Theorem 2.2 (given by (2.8)), and Ckitty > 0 is given by

Ckitty = 4

 
1 +

s
1

m0���
+

1

a
m0�+

!
(2.10)

Notice that one clearly has

E  m2
0E2

1 (2.11)

Therefore Proposition 2.6 is an improvement of Theorem 2.2. This improvement will be crucial

in the study of existence of global smooth solution for 2d.

Also notice that for a ! 0, one has Ckitty = O(1/
p
a). For a ! 1, one has Ckitty = O(1).

The blow-up of Ckitty as a ! 0 is because of the following: in the proof we estimate the term

� ⇤ (⇢u) as a source term by using Theorem 2.2, the L2 exponential decay result. As a ! 0, the

decay rate � of the L2 estimate deteriorates, and therefore the e↵ect of this source term blows

up, which leads to the blow-up of Ckitty.

2.2 Critical thresholds for the existence of global smooth solution

We state our results on the critical thresholds for the existence of global smooth solution, for

one and two space dimensions. We start from one-dimension (for which x is a scalar, written

as x). The following two theorems state the situations where we can guarantee the existence of

global smooth solution and those where we can guarantee a finite time blow-up.

Theorem 2.7. Let the space dimension d = 1. Assume  00 is bounded below, and bounded above

by:

 00(x)  A, 8x 2 ⌦ (2.12)

with A being a constant satisfying

A <
(m0��)2

4
(2.13)

Further assume that

max
x2supp ⇢in

(@xuin(x) + (� ⇤ ⇢in)(x)) >
m0��

2
�
r

(m0��)2

4
�A (2.14)

then (1.1) admits global smooth solution.

??? how can we make the RHS of (2.14) local in x? For example, if  (x) = A
2 x

2 and

@xuin(x) + (� ⇤ ⇢in)(x) =
(� ⇤ ⇢in)(x)

2
�
r

(� ⇤ ⇢in)(x)2
4

�A (2.15)

for some x, then e0(x) = 0. If (� ⇤ ⇢)0(x) < 0 then after a short time e will be out of the e0 > 0

region, since the former stays there, but the latter shrinks.

(� ⇤ ⇢)0 = � ⇤ @t⇢+ u(� ⇤ @x⇢) = �� ⇤ @x(⇢u) + u(� ⇤ @x⇢) (2.16)

This doesn’t seem to have a sign...

???
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positive, if A > 0;

negative, if A < 0.



Theorem 2.8. Assume

 00(x) � B, 8x 2 ⌦ (2.17)

• If B is so large that

B >
(m0�+)2

4
(2.18)

holds, then @xu blows up to �1 in finite time for any initial data.

• If (2.18) does not hold but B > 0, then @xu blows up to �1 in finite time if

@xuin(x) + (� ⇤ ⇢in)(x) <
m0�+

2
�

r
(m0�+)2

4
�B (2.19)

for some x. (notice that in this condition RHS > 0)

• If B  0, then @xu blows up to �1 in finite time if

@xuin(x) + (� ⇤ ⇢in)(x) <
m0��

2
�

r
(m0��)2

4
�B (2.20)

for some x. (notice that in this condition RHS  0)

In Theorem 2.7 the lower bound assumption  00 � a is to make sure that the particle trajec-

tory does not reach infinity in finite time, and has nothing to do with the threshold phenomena.

Notice that for the case  = 0, the two theorems reduce to the known results for the hydro-

dynamic Cucker-Smale model without external potential: the sign of @xuin(x) + (� ⇤ ⇢in)(x)

determines whether blow-up happens or not, see [1, 6].

When the external potential  is non-zero, these theorems mean that convex  makes the

solution to (1.1) easier to blow up, while concave  makes the solution harder to blow up. In

other words, the size of  00 determines the influence of the external potential on the threshold

for the existence of global smooth solution.

It is also interesting to see that the flocking phenomena is not relevant for the existence of

global smooth solution. In fact, (2.12) does not require  to be confining, i.e., lim|x|!1 (x) =

1. Even if  is confining, it may happen that flocking phenomena do not happen at a rate which

is uniform in initial data, see the ’orbital instability’ examples in [3]. All these complications do

not a↵ect the existence of global smooth solutions at all.

For two space dimensions when the existence of global smooth solution becomes more delicate,

since we already know that the second order derivatives of  play an important role, it is natural

to first look at the prototype: the harmonic potential  (x) = a
2kxk

2, for which the Hessian

r2 = aI is constant times the identity matrix.

Theorem 2.9. Let the space dimension d = 2, and  (x) = a
2kxk

2. There exists a positive

constant

Cmeow =
16Ckitty

�
|�0|1m0 (2.21)

where � given by (2.8) and |�0|1 is the L1 norm of �0, such that the following holds: Assume

c21 := m2
0�

2
� �

✓
max

x2supp ⇢in

|(⌘S)in(x)|+ CmeowE1(0)

◆2

� 4a > 0 (2.22)

6



e = @xu+ � ⇤ ⇢

Remark 3.2. One can obtain the explicit expression of µ1 from (3.35) by letting the good terms

absorb the bad term exactly, i.e., solving the quadratic equation

(K� � 1� µ1)(a� aµ1) =
A2�2

4
(3.44)

and get

µ1 =
aK2

A2
�
r

a2K4

A4
� aK2

A2
+ 1 > 0 (3.45)

Similar one obtains µ2,3 as

µ2,3 =
1

2a

 
a2K

A2
+

K

2
±
r
(
a2K

A2
+

K

2
)2 � 4a(

aK2

2A2
� 1

4
)

!
> 0 (3.46)

4 Existence of global smooth solutions

4.1 1d case

The proof of the existence of global smooth solutions for 1d follows the technique of [1]: we

analyze the ODE satisfied by the quantity @xu+ � ⇤ ⇢ along characteristics.

Proof of Theorem 2.7. Write d := @xu. Di↵erentiate the second equation of (4.1) with respect

to x to get

@t⇢+ u@x⇢ = �⇢d

@td+ u@xd+ d2 = �u

Z
@x�(x� y)⇢(y) dy �

Z
�(x� y)@t⇢(y) dy � d

Z
�(x� y)⇢(y) dy � 00(x)

(4.1)

Write

e = d+ � ⇤ ⇢ (4.2)

and denote the time derivative along characteristics by ’. Then

⇢0 = �⇢(e� � ⇤ ⇢)

e0 = �e(e� � ⇤ ⇢)� 00
(4.3)

If e > 0, then by (2.12),

e0 � �e(e�m0��)�A = �(e� m0��
2

)2 + (
(m0��)2

4
�A) (4.4)

Then by (2.13), one has

e0 > 0, for
m0��

2
�
r

(m0��)2

4
�A < e <

m0��
2

+

r
(m0��)2

4
�A (4.5)

By (2.14), initially e > m0��
2 �

q
(m0��)2

4 �A for all x. Therefore the same inequality persists

for all time.

Also notice that

e0  �e2

2
� a (4.6)
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quadratic form in e
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e’

remain smoothblow up
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• The ‘magic quantity’




Regularity: 
2d, harmonic potential

• The estimate is good only when the size of a is 
moderate: large a will blow up the 4a term (the same 
reason as 1d), and small a will blow up the C_1 term 
(because flocking estimate is bad).

Theorem 2.8. Assume

 00(x) � B, 8x 2 ⌦ (2.17)

• If B is so large that

B >
(m0�+)2

4
(2.18)

holds, then @xu blows up to �1 in finite time for any initial data.

• If (2.18) does not hold but B > 0, then @xu blows up to �1 in finite time if

@xuin(x) + (� ⇤ ⇢in)(x) <
m0�+

2
�

r
(m0�+)2

4
�B (2.19)

for some x. (notice that in this condition RHS > 0)

• If B  0, then @xu blows up to �1 in finite time if

@xuin(x) + (� ⇤ ⇢in)(x) <
m0��

2
�

r
(m0��)2

4
�B (2.20)

for some x. (notice that in this condition RHS  0)

In Theorem 2.7 the lower bound assumption  00 � a is to make sure that the particle trajec-

tory does not reach infinity in finite time, and has nothing to do with the threshold phenomena.

Notice that for the case  = 0, the two theorems reduce to the known results for the hydro-

dynamic Cucker-Smale model without external potential: the sign of @xuin(x) + (� ⇤ ⇢in)(x)

determines whether blow-up happens or not, see [1, 6].

When the external potential  is non-zero, these theorems mean that convex  makes the

solution to (1.1) easier to blow up, while concave  makes the solution harder to blow up. In

other words, the size of  00 determines the influence of the external potential on the threshold

for the existence of global smooth solution.

It is also interesting to see that the flocking phenomena is not relevant for the existence of

global smooth solution. In fact, (2.12) does not require  to be confining, i.e., lim|x|!1 (x) =

1. Even if  is confining, it may happen that flocking phenomena do not happen at a rate which

is uniform in initial data, see the ’orbital instability’ examples in [3]. All these complications do

not a↵ect the existence of global smooth solutions at all.

For two space dimensions when the existence of global smooth solution becomes more delicate,

since we already know that the second order derivatives of  play an important role, it is natural

to first look at the prototype: the harmonic potential  (x) = a
2kxk

2, for which the Hessian

r2 = aI is constant times the identity matrix.

Theorem 2.9. Let the space dimension d = 2, and  (x) = a
2kxk

2. There exists a positive

constant C1, depending on m0,��,�+, a and |�0|1 (the L1 norm of �0), such that the following

holds: Assume

c21 := m2
0�

2
� �

✓
max

x2supp ⇢in

|(⌘S)in(x)|+ C1E1(0)

◆2

� 4a > 0 (2.21)

where ⌘S is the di↵erence between the two eigenvalues of the symmetric matrix (ru+(ru)T )/2.

Assume

max
x2supp ⇢in

(r · uin(x) + (� ⇤ ⇢in)(x)) � 0 (2.22)

then (1.1) admits global smooth solution.
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• Spectral dynamics


•

– If (2.18) does not hold, then if

e <
m0�+

2
�

r
(m0�+)2

4
�B (4.8)

then e0 < 0.

• If e < 0 then

e0  �e(e�m0��)�B = �(e� m0��
2

)2 + (
(m0��)2

4
�B) (4.9)

– If B > 0, then e0 < 0.

– If B  0, then if

e <
m0��

2
�

r
(m0��)2

4
�B (4.10)

then e0 < 0.

Notice that for all the e0 < 0 cases above, we actually have e0 < �✏ < 0. Therefore, as long

as one stays in the e0 < 0 cases, e will keep decreasing until it is negative enough so that the

�e2 term blows it up. Therefore, we have the following situations where we can guarantee a

finite time blow-up:

• If (2.18) holds, then any negative values of e will have e0 < 0 since B > 0, and any positive

values of e will have e0 < 0.

• If (2.18) does not hold but B > 0 and (2.19) holds (which means (4.8) holds initially), then

(4.8) will propagate since e0 < 0 for positive or negative values of e.

• If (2.18) does not hold and B  0 but (2.20) holds (which means (4.10) holds initially: in

particular, e starts with negative values), then (4.10) will propagate since e0 < 0 (because

e stays negative).

4.2 2d case

We first follow [5] and derive the dynamics of the matrix Mij = @jui. Since most steps here

are the same as in Theorem 2.1 of [5] except for the external potential term, we outline the

derivation and omit some details. (the STEP notations follow [5], and can be adjusted finally)

STEP 1: M satisfies

@tM + u ·rM +M2 = �(� ⇤ ⇢)M +R�r2 (4.11)

where

Rij = @j� ⇤ (⇢ui)� ui(@j� ⇤ ⇢) (4.12)

and I stands for the identity matrix. Define d = r · u. Then d satisfies

@td+ u ·rd+TrM2 = �(� ⇤ ⇢)d+TrR�� (4.13)
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STEP 1: M satisfies

@tM + u ·rM +M2 = �(� ⇤ ⇢)M +R�r2 (4.11)
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4
�B) (4.9)

– If B > 0, then e0 < 0.

– If B  0, then if

e <
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2
�

r
(m0��)2

4
�B (4.10)

then e0 < 0.

Notice that for all the e0 < 0 cases above, we actually have e0 < �✏ < 0. Therefore, as long

as one stays in the e0 < 0 cases, e will keep decreasing until it is negative enough so that the

�e2 term blows it up. Therefore, we have the following situations where we can guarantee a

finite time blow-up:

• If (2.18) holds, then any negative values of e will have e0 < 0 since B > 0, and any positive

values of e will have e0 < 0.

• If (2.18) does not hold but B > 0 and (2.19) holds (which means (4.8) holds initially), then

(4.8) will propagate since e0 < 0 for positive or negative values of e.

• If (2.18) does not hold and B  0 but (2.20) holds (which means (4.10) holds initially: in

particular, e starts with negative values), then (4.10) will propagate since e0 < 0 (because

e stays negative).

4.2 2d case

We first follow [5] and derive the dynamics of the matrix Mij = @jui. Since most steps here

are the same as in Theorem 2.1 of [5] except for the external potential term, we outline the

derivation and omit some details. (the STEP notations follow [5], and can be adjusted finally)

STEP 1: M satisfies

@tM + u ·rM +M2 = �(� ⇤ ⇢)M +R�r2 (4.11)

where

Rij = @j� ⇤ (⇢ui)� ui(@j� ⇤ ⇢) (4.12)

and I stands for the identity matrix. Define d = r · u. Then d satisfies

@td+ u ·rd+TrM2 = �(� ⇤ ⇢)d+TrR�� (4.13)

15

H. Liu-Tadmor (2002), He-Tadmor

One has

TrR = �(� ⇤ ⇢)0 (4.14)

and then

(d+ � ⇤ ⇢)0 +TrM2 = �(� ⇤ ⇢)d�� (4.15)

Then using TrM2 = d2+⌘2
M

2 where ⌘M is the di↵erence between the two eigenvalues of M , we get

(d+ � ⇤ ⇢)0 = �1

2
⌘2M � 1

2
d(d+ 2� ⇤ ⇢)�� (4.16)

Decompose M = S + ⌦ (symmetric+antisymmetric), then

⌘2M = ⌘2S � 4!2 (4.17)

where ⌘S is the di↵erence between the two eigenvalues of S, and ! = (@1u2 � @2u1)/2 is the

scaled vorticity. Then by introducing

e = d+ � ⇤ ⇢ (4.18)

we have

e0 =
1

2
(4!2 + (� ⇤ ⇢)2 � ⌘2S � e2 � 2� ) (4.19)

STEP 2: The dynamic of S is

S0 + S2 = !2I � (� ⇤ ⇢)S +Rsym �r2 , Rsym =
1

2
(R+RT ) (4.20)

The dynamic of the eigenvalues µi of S is

µ0
i + µ2

i = !2 � (� ⇤ ⇢)µi + hsi, Rsymsii � hsi,r2 sii (4.21)

where s1, s2 are the orthonormal eigenpair of S. Taking their di↵erence,

⌘0S + e⌘S = q := hs2, Rsyms2i � hs1, Rsyms1i � hs2,r2 s2i+ hs1,r2 s1i (4.22)

STEP 3: Then we need to estimate ⌘S based on (4.22). This will be done in di↵erent ways

for the harmonic potential and general potentials. A good estimate of ⌘S will give a non-negative

lower bound of e.

STEP 4: Finally we need an upper bound of e. The dynamic of ! is

!0 + e! =
1

2
Tr(JR), J = [0,�1; 1, 0] (4.23)

since the forcing term r2 in (4.11) is symmetric. Therefore we can bound ! in the same way

as we bound ⌘S , and this yields an upper bound of e. This would conclude the proof of the

uniform boundedness of d = r · u. Combined with the uniform boundedness of ⌘S and !, we

get the uniform boundedness of ru.

In the rest of this section, we will elaborate STEP 3 and STEP 4 for the harmonic potential

and general potentials separately.
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In the rest of this section, we will elaborate STEP 3 and STEP 4 for the harmonic potential
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• For harmonic potential,


• Flocking estimate —> exponential decay of R


• If e>=0, then 


• Use this to propagate e>=0

One has

TrR = �(� ⇤ ⇢)0 (4.14)

and then

(d+ � ⇤ ⇢)0 +TrM2 = �(� ⇤ ⇢)d�� (4.15)

Then using TrM2 = d2+⌘2
M

2 where ⌘M is the di↵erence between the two eigenvalues of M , we get

(d+ � ⇤ ⇢)0 = �1

2
⌘2M � 1

2
d(d+ 2� ⇤ ⇢)�� (4.16)

Decompose M = S + ⌦ (symmetric+antisymmetric), then

⌘2M = ⌘2S � 4!2 (4.17)

where ⌘S is the di↵erence between the two eigenvalues of S, and ! = (@1u2 � @2u1)/2 is the

scaled vorticity. Then by introducing

e = d+ � ⇤ ⇢ (4.18)

we have

e0 =
1

2
(4!2 + (� ⇤ ⇢)2 � ⌘2S � e2 � 2� ) (4.19)

STEP 2: The dynamic of S is
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1

2
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The dynamic of the eigenvalues µi of S is

µ0
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i = !2 � (� ⇤ ⇢)µi + hsi, Rsymsii � hsi,r2 sii (4.21)

where s1, s2 are the orthonormal eigenpair of S. Taking their di↵erence,

⌘0S + e⌘S = q := hs2, Rsyms2i � hs1, Rsyms1i � hs2,r2 s2i+ hs1,r2 s1i (4.22)

STEP 3: Then we need to estimate ⌘S based on (4.22). This will be done in di↵erent ways

for the harmonic potential and general potentials. A good estimate of ⌘S will give a non-negative

lower bound of e.

STEP 4: Finally we need an upper bound of e. The dynamic of ! is

!0 + e! =
1

2
Tr(JR), J = [0,�1; 1, 0] (4.23)

since the forcing term r2 in (4.11) is symmetric. Therefore we can bound ! in the same way

as we bound ⌘S , and this yields an upper bound of e. This would conclude the proof of the

uniform boundedness of d = r · u. Combined with the uniform boundedness of ⌘S and !, we

get the uniform boundedness of ru.

In the rest of this section, we will elaborate STEP 3 and STEP 4 for the harmonic potential

and general potentials separately.
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Similar to He-Tadmor

require pointwise (L^\infty)

flocking estimate:


this can be done by

similar hypocoercivity 


on characteristics

|⌘S(t)|  |(⌘S)in|+
Z 1

0
|R(s)|ds, 8t



Regularity: 
2d, general potential

where ⌘S is the di↵erence between the two eigenvalues of the symmetric matrix (ru+(ru)T )/2.

Assume

max
x2supp ⇢in

(r · uin(x) + (� ⇤ ⇢in)(x)) � 0 (2.23)

then (1.1) admits global smooth solution.

This result can be viewed as a generalization of the main result of [5]. Compared to the

latter, besides the pointwise smallness requirements for ⌘S , the L1 variation of u, and the

quantity r ·uin +(� ⇤ ⇢in), we also require the smallness of the L1 variation in x, see (2.9), the

definition of E1. This is because the e↵ect of the external potential may convert variation in x

into variation in u of the same order after some time.

For a ! 0, one has Cmeow = O(a�3/2), and for a ! 1, one has Cmeow = O(1). Therefore,

the condition (2.22) cannot hold if a is either too small (the Cmeow term will blow up) or too

large (the 4a term will blow up). Intuitively speaking, the reason for blow-up in the first case is

that one does not have a good flocking estimate, and thus the velocity variation may a↵ect the

dynamics of ru in an uncontrollable way. The reason in the second case is similar to the 1d

case: a ’very convex’ potential tends to induce blow-up directly. Therefore, in order to guarantee

the existence of 2d global smooth solution, one first needs m0�� large enough, and then taking

moderately size a will satisfy (2.22), if the initial data is well-chosen (⌘S , E1 not too large and

r · uin + (� ⇤ ⇢in) non-negative).
For the existence of global smooth solution for general external potentials, one di�culty is as

follows: a critical property of the harmonic potential used in the proof of Theorem 2.9 is that it

has no e↵ect on the dynamics of ⌘S (which is a crucial ingredient of the proof), since the Hessian

r2 is constant multiple of the identity matrix. However, this is not true in general, and the

e↵ect of the external potential on ⌘S can be as large as the distance between the two eigenvalues

of r2 . Another di�culty is that for many cases of  we do not have a large time flocking

estimate, and the contribution from the variation of u to the dynamics of ⌘S may accumulate

over time. Interestingly, we discover that both issues can be resolved by requiring slightly more

than the assumption (2.23): instead of requiring the quantity r · uin + � ⇤ ⇢in nonnegative, we

require it to have a positive lower bound. (In fact, one expects the second di�culty not to be

essential, since the 1d case suggests that flocking estimates should not be a necessary ingredient

for the existence of global smooth solution.)

Theorem 2.10. Let the space dimension d = 2. Assume r2 is bounded:

kr2 (x)k  A (2.24)

Assume that there is an a priori estimate

max
t�0,x2supp

ku(x, t)k  umax (2.25)

for some constant umax. If there hold

C2 := 8|�0|1m0umax + 2A < m2
0�

2
�/2� 2A (2.26)

and

max
x2supp ⇢in

|(⌘S)in(x)| 
r

(m2
0�

2
�/2� 2A) +

q
(m2

0�
2
�/2� 2A)2 � C2

2 (2.27)

7and

max
x2supp ⇢in

(r · uin(x) + (� ⇤ ⇢in)(x)) >
r
(m2

0�
2
�/2� 2A)�

q
(m2

0�
2
�/2� 2A)2 � C2

2 (2.28)

then (1.1) admits global smooth solution.

This theorem requires an L1 a priori estimate, which is true for a broad class of external

potentials:

Proposition 2.11. Assume that there exists constant A, a > 0, X0 > 0 such that

a

2
kxk2   (x)  A

2
kxk2, akxk  kr (x)k  Akxk, 8x 2 ⌦ (2.29)

Then there exists a constant umax, depending on a,A,��,�+,m0, E(0), where E(t) is the total

energy

E(t) =

Z
(
1

2
ku(x, t)k2 + (x))⇢(x, t) dx (2.30)

such that

max
t�0,x2supp ⇢in

ku(x, t)k  umax (2.31)

Remark 2.12. Notice that (2.4) clearly implies (2.29), if one further assumes that the unique

global minimum of  is  (0) = 0 (without loss of generality). However, (2.29) allows  to

have more than one local minima. Therefore Theorem 2.10 together with Proposition 2.11 guar-

antees the existence of global smooth solutions for suitable � and initial data, for all strictly

convex potentials and many other potentials with complicated topography (for which the flocking

phenomena are far from clear).

Also, it is not hard to generalize Proposition 2.11 to the case when (2.29) only holds for

su�ciently large kxk. We omit it for simplicity.

Remark 2.13. For a fixed potential  satisfying (2.29), the condition (2.26) is satisfied if one

first takes m0�� large enough so that m2
0�

2
�/2 > 8A, and then takes |�0|1 small enough. In

fact, from the proof of Proposition 2.11, umax is given by

umax = 2

s
2A

ca2
(

2

m0��
+ 4c)�2

+m0E(0)max{1, 1 + c2A

2
} (2.32)

with c given by

c = min

⇢
m0��

A+ 2(A+m2
0�

2
+)

,

r
a

4A2

�
(2.33)

??? The scaling with respect to � is not satisfactory! For a given  , one needs the condition

number to be close to 1!

3 Flocking phenomena: hypocoercivity theory

In this section we study the flocking phenomena of (1.1) using hypocoercivity theory.
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require strictly positive lower bound



• For general potential,


• No flocking estimate: R does not decay. The best we can 
do is a uniform-in-time bound: the u_{max} assumption


•           is not identity matrix —> last two terms are O(1)


• New idea: make use of the good term 

• Need to propagate a positive lower bound of e

One has

TrR = �(� ⇤ ⇢)0 (4.14)

and then

(d+ � ⇤ ⇢)0 +TrM2 = �(� ⇤ ⇢)d�� (4.15)

Then using TrM2 = d2+⌘2
M

2 where ⌘M is the di↵erence between the two eigenvalues of M , we get

(d+ � ⇤ ⇢)0 = �1

2
⌘2M � 1

2
d(d+ 2� ⇤ ⇢)�� (4.16)

Decompose M = S + ⌦ (symmetric+antisymmetric), then

⌘2M = ⌘2S � 4!2 (4.17)

where ⌘S is the di↵erence between the two eigenvalues of S, and ! = (@1u2 � @2u1)/2 is the

scaled vorticity. Then by introducing

e = d+ � ⇤ ⇢ (4.18)

we have

e0 =
1

2
(4!2 + (� ⇤ ⇢)2 � ⌘2S � e2 � 2� ) (4.19)

STEP 2: The dynamic of S is

S0 + S2 = !2I � (� ⇤ ⇢)S +Rsym �r2 , Rsym =
1

2
(R+RT ) (4.20)

The dynamic of the eigenvalues µi of S is

µ0
i + µ2

i = !2 � (� ⇤ ⇢)µi + hsi, Rsymsii � hsi,r2 sii (4.21)

where s1, s2 are the orthonormal eigenpair of S. Taking their di↵erence,

⌘0S + e⌘S = q := hs2, Rsyms2i � hs1, Rsyms1i � hs2,r2 s2i+ hs1,r2 s1i (4.22)

STEP 3: Then we need to estimate ⌘S based on (4.22). This will be done in di↵erent ways

for the harmonic potential and general potentials. A good estimate of ⌘S will give a non-negative

lower bound of e.

STEP 4: Finally we need an upper bound of e. The dynamic of ! is

!0 + e! =
1

2
Tr(JR), J = [0,�1; 1, 0] (4.23)

since the forcing term r2 in (4.11) is symmetric. Therefore we can bound ! in the same way

as we bound ⌘S , and this yields an upper bound of e. This would conclude the proof of the

uniform boundedness of d = r · u. Combined with the uniform boundedness of ⌘S and !, we

get the uniform boundedness of ru.

In the rest of this section, we will elaborate STEP 3 and STEP 4 for the harmonic potential

and general potentials separately.
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r2 

e⌘S



L^\infty estimate

• Method: hypocoercivity along characteristics

STEP 4: Similarly we obtain from (4.23) that ! is uniformly bounded:

|!|  max

⇢
max
x

|!in(x)|,
4|�0|1m0umax

c2

�
=: !max (4.43)

Then (4.19) shows

e0  1

2
(4!2

max +m2
0�

2
+ + 4A� e2) (4.44)

since |� |  2A. Thus we get the upper bound of e:

e  max

⇢
max
x

ein(x),
q

4!2
max +m2

0�
2
+ + 4A

�
(4.45)

Proof of Proposition 2.11. We define

F (x, t) =
1

2
ku(x, t)k2 + (x) + cu(x, t) ·r (x) (4.46)

with c > 0 being small, to be chosen. Then it follows from the assumptions on  that

F � 1

4
kuk2 � 1

4
kuk2+ (x)� c

2
(
1

4c
kuk2+4ckr (x)k2) � 1

8
kuk2+ (x)�2c2kr (x)k2 (4.47)

It then follows from (2.29) that

F � 1

4
kuk2 � 1

8
kuk2 + a

2
kxk2 � 2c2A2kxk2 � 0 (4.48)

if

c 
r

a

4A2
(4.49)

Then we compute the derivative of F along characteristics:

F 0 =@tF + u ·rF

=(u+ cr (x)) ·
✓
�u ·ru+

Z
�(x� y)(u(y)� u(x))⇢(y) dy �r (x)

◆

+ u · (u ·ru) + u ·r (x) + cuTr2 (x)u+ cr (x) · (u ·ru)

=� ckr (x)k2 + (u+ cr (x)) ·
✓Z

�(x� y)(u(y)� u(x))⇢(y) dy

◆
+ cuTr2 (x)u

=� ckr (x)k2 � (� ⇤ ⇢)kuk2 + u · (� ⇤ (⇢u)) + cr (x) · ((� ⇤ (⇢u))� (� ⇤ ⇢)u) + cuTr2 (x)u

(4.50)

Notice that

m0��  (� ⇤ ⇢)(x)  m0�+, 8x (4.51)

k(� ⇤ (⇢u))(x)k =

����
Z

�(x� y)u(y)⇢(y) dy

����  �+

Z
ku(y)k⇢(y) dy

�+

Z
ku(y)k⇢(y) dy  �+m

1/2
0

✓Z
kuk2⇢ dy

◆1/2

 2�+m
1/2
0 E(0)1/2, 8x

(4.52)

where

E(t) =

Z
(
1

2
ku(x, t)k2 + (x))⇢(x, t) dx (4.53)
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This allows non-convex potentials

(even with multiple local minima)

and

max
x2supp ⇢in

(r · uin(x) + (� ⇤ ⇢in)(x)) >
r

(m2
0�

2
�/2� 2A)�

q
(m2

0�
2
�/2� 2A)2 � C2

mi (2.28)

then (1.1) admits global smooth solution.

This theorem requires an L1 a priori estimate, which is true for a broad class of external

potentials:

Proposition 2.11. Assume that there exists constant A, a > 0, X0 > 0 such that

a

2
kxk2   (x)  A

2
kxk2, akxk  kr (x)k  Akxk, 8x 2 ⌦, kxk � X0 (2.29)

Then there exists a constant umax, depending on a,A,��,�+,m0, E(0), where E(t) is the total

energy

E(t) =

Z
(
1

2
ku(x, t)k2 + (x))⇢(x, t) dx (2.30)

such that

max
t�0,x2supp ⇢in

ku(x, t)k  umax (2.31)

Remark 2.12. Notice that (2.4) clearly implies (2.29), if one further assumes that the unique

global minimum of  is  (0) = 0 (without loss of generality). However, (2.29) allows  to

have more than one local minima. Therefore Theorem 2.10 together with Proposition 2.11 guar-

antees the existence of global smooth solutions for suitable � and initial data, for all strictly

convex potentials and many other potentials with complicated topography (for which the flocking

phenomena are far from clear).

Also, it is not hard to generalize Proposition 2.11 to the case when (2.29) only holds for

su�ciently large kxk. We omit it for simplicity.

Remark 2.13. For a fixed potential  satisfying (2.29), the condition (2.26) is satisfied if one

first takes m0�� large enough so that m2
0�

2
�/2 > 8A, and then takes |�0|1 small enough. In

fact, from the proof of Proposition 2.11, umax is given by

umax = 2

s
2A

ca2
(

2

m0��
+ 4c)�2

+m0E(0)max{1, 1 + c2A

2
} (2.32)

with c given by

c = min

⇢
m0��

A+ 2(A+m2
0�

2
+)

,

r
a

4A2

�
(2.33)

??? The scaling with respect to � is not satisfactory! For a given  , one needs the condition

number to be close to 1!

3 Flocking phenomena: hypocoercivity theory

In this section we study the flocking phenomena of (1.1) using hypocoercivity theory.

8



Conclusion
• ‘Smooth solutions must flock’: 


• (1) Harmonic potential                       , general    


• (2) General convex potential, constant and large 


• Existence of global smooth solutions: critical thresholds


• (1) 1d: thresholds for global smooth solutions and blow-up     


• (2) 2d, harmonic potential (similar to He-Tadmor)


• (3) 2d, general potential (including those without a flocking 
estimate!)

 (x) =
a

2
kxk2 �

�


