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Intro

The long range Coulomb collisions in plasma can be modeled by
Landau-Fokker-Planck (LFP) equation

of
5 Qurr(f. 1),

with binary collision term

QLFP(fvf) =

Bl
Q.'alm

fR u3(u2s; - uiuj)(a%—aiwj)f(w)f(V>dW~

@ Bilinear;
@ Conserves density, momentum and energy;
@ Dissipates entropy. f - mast — co. Q_gp(m,m) = 0
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Intro

Probabilistic methods— Direct Simulation Monte Carlo

DSMC for binary collisions
@ Rarefied gas: Bird 76, Nanbu-Babovsky 83
@ Coulomb gas: Takizuka-Abe 77, Nanbu 97
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Intro

Probabilistic methods— Direct Simulation Monte Carlo

DSMC for binary collisions
@ Rarefied gas: Bird 76, Nanbu-Babovsky 83
@ Coulomb gas: Takizuka-Abe 77, Nanbu 97

How? Initially sample particles from f(v,t = 0), then in each time step,
@ Randomly pick up N, pairs of particles.
@ For each pair (v and w),

@ Sample a collision angle n.
@ Update v,w — v/, W'

X

w
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Intro

Probabilistic methods— Direct Simulation Monte Carlo

DSMC for binary collisions
@ Rarefied gas: Bird 76, Nanbu-Babovsky 83
@ Coulomb gas: Takizuka-Abe 77, Nanbu 97

How? Initially sample particles from f(v,t = 0), then in each time step,
@ Randomly pick up N, pairs of particles.
@ For each pair (v and w),

@ Sample a collision angle n.
@ Update v,w — v/, W'

X

@ For rarefied gas (charge neutral), N. = O(AtN).
@ For Coulomb gas (charged), N. = N/2.
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Problem in DSMC

Near fluid regime, where f ~ m,

@ Most computation is spent on the collision between
particles sampled from m.

@ Q_rp(m m) = 0. The major part of collisions has no net
effect.

Highly inefficient!
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Intro

Hybrid methods

Apply splitting
f(v) = m(v) + fo(v),

@ Equilibrium m(v): evolved according to a fluid equation — cheap
@ Deviation fy(v) > O: represented by particles — expensive

Example: an energetic particle stream injected in a plasma
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Intro

Hybrid methods

Apply splitting
f(v) = m(v) + fo(v),

@ Equilibrium m(v): evolved according to a fluid equation — cheap
@ Deviation fy(v) > O: represented by particles — expensive

Example: an energetic particle stream injected in a plasma
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Hybrid methods

Apply splitting
f(v) = m(v) + fo(v),

@ Equilibrium m(v): evolved according to a fluid equation — cheap
@ Deviation fy(v) > O: represented by particles — expensive

Collision type #

N3
P-P 2Nt
NpNm
P-M Niot
NZ :
M-M Fr Omitted

with NtOt = Nm + Np.
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Hybrid methods

Apply splitting
f(v) = m(v) + fo(v),

@ Equilibrium m(v): evolved according to a fluid equation — cheap
@ Deviation fy(v) > O: represented by particles — expensive

However, Maxwellian part might have defect.
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Hybrid meth

Apply splitting
f(v) = m(v) + fo(v),

@ Equilibrium m(v): evolved according to a fluid equation — cheap
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Hybrid meth

Apply splitting
f(v) = m(v) + fo(v),

@ Equilibrium m(v): evolved according to a fluid equation — cheap
@ Deviation fy(v) > O: represented by particles — expensive

However, Maxwellian part might have defect.
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Hybrid methods

Apply splitting
f(v) = m(v) + fo(v),

@ Equilibrium m(v): evolved according to a fluid equation — cheap
@ Deviation fy(v) > O: represented by particles — expensive

To minimize the deviation part, we allow f,(v) < 0. Write

f(v) = m(v) + fo(v) = fu(V),
with f(v) > 0, f,(v) > 0.

We introduce “negative particles” to represent f,.
@ f, and f, are represented by P and N particles.

@ Qrp is bilinear = Need to perform P-P, P-N, N-N, P-M and N-M
collisions.
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Negative particle methods for rarefied gas

(Hadjiconstantinou 05)

One negative particle means the number of particle is —1.

@ An N particle cancels a P particle with the same velocity
w, +w_ = 0 particle.
@ A P-N collision cancels a regular P-P collision

P-P: vi,w, -V, W,
P-N: v,,w_ — 2v,,V_ ,w.

This can be derived from the Boltzmann equation.
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Old

Collision rules with negative particles

P-P: vi,wy > Vi, W,
P-N: v,,w_ — 2v,,v_,w,
+ +
N-N: v_,w_ — 2v_,2w_,V., W,
+> Wt
P-M: myv, - mw_,V,,w,,
N-M: mv_ - mw,,V_ ,w..
+
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Old

Collision rules with negative p

P-P: vi,wy > Vi, W,
P-N: v,,w_ — 2v,,v_,w,
+ +
N-N: v_,w_ — 2v_,2w_,V., W,
+> Wt
P-M: myv, - mw_,V,,w,,
N-M: mv_ - mw,,V_ ,w..
+

Problem: particle number increases!
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Collision with negative particles

Problem: Particle number increases!

In rarefied gas (charge free),
@ short range collision = # collisions in one time step = O (At)
@ The particle number grows in the physical scale

(Np + Np) oal (1 + cAt) (Np + Ny) -
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Collision with negative particles

Problem: Particle number increases!

In rarefied gas (charge free),
@ short range collision = # collisions in one time step = O (At)
@ The particle number grows in the physical scale

(Np + Np) oal (1 + cAt) (Np + Ny) -

@ OK...
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Collision with negative particles

Problem: Particle number increases!

In rarefied gas (charge free),
@ short range collision = # collisions in one time step = O (At)
@ The particle number grows in the physical scale

(Np + Np) oal (1 + cAt) (Np + Ny) -

@ OK...
In Coulomb gas (charged),
@ long range collision = # collisions in one time step = N
@ The particle number grows in the numerical scale in Coulomb collisions!

_ ( 1 Nm + 2N
t+At

Ny + N Dt T
(No -+ No) " N+ Np — Ny

)(Np + Np)

t'
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Collision with negative particles

Problem: Particle number increases!

In rarefied gas (charge free),
@ short range collision = # collisions in one time step = O (At)
@ The particle number grows in the physical scale

(Np + Np) oal (1 + cAt) (Np + Ny) -

@ OK...
In Coulomb gas (charged),
@ long range collision = # collisions in one time step = N
@ The particle number grows in the numerical scale in Coulomb collisions!

_ ( 1 Nm + 2N
t+At

Ny + N Dt T
(No -+ No) " N+ Np — Ny

)(Np + Np)

t'

@ Not OK!
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@ The existing method
@ designed for collisions in rarefied gas
@ does not apply on Coulomb collision
@ We develop a new negative particle method

o for general binary collisions
@ can be applied to Coulomb collision
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New

Combine collisions to reduce new particles

@ Problem: too many collisions.
@ Some collisions can be “combined”. For example,

N-P: w_,v, = 2v,,V_,W_
can be combined with
P-P: w,,v, =V, W,
or M-P: mv, - (mw_,w,,v,) > mw_,V,

- Vi

/
w,.

@ Collide first vs “combine” first.
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New

Key idea # 1. Combine collisions

The notation
Bilinear operator Q(f, g): the change in g due to collisions with f.

Ex:
@ Boltzmann

Qs(f.0) = f f B(v - v., cosd) (g  f.q) dv, dor
R3xS?2

@ Landau

10 0 0
Queelt.0) = 570 [0S - uw) (a—v, - a—wj)f(w)g<v) aw.
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New

Key idea # 1. Combine collisions

For f = m+f, — f, the equation of = Q(f, f) is reformulated

af = Q. f) = Q(f. ) - Q(f. ) + Q(f. m)
= Q(F.fp) = Q(F. ) + Qfp — . m) + Q(m. m),
=0
and split:
dm = Q(m,m) = 0,
Aty = Q(f, fp) + (Qfp — fn. M),
At = Q(f, fn) + (Q(fp — fn, M)
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New

Key idea # 1. Combine collisions

For f = m+f, — f, the equation of = Q(f, f) is reformulated

af = Q(f.f) = Q(f. fp) - Q(f. fn) + Q(f. m)
= Q(F.fp) = Q(F. ) + Qfp — . m) + Q(m. m),
=0
and split:
om= Q(m,m) =0,
Afp = Q(f, fp) + (Qfp — fn. M),
9tfn = Q(F, ) + (Q(fp — fn, m))-.
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New

Key idea # 1. Combine collisions

Apply a forward Euler method in time,

m(t + At) = m,
fo(t + At) = fp + AtQ(f, fp) + At(Q(fp — fn, M),
fa(t + At) = f + AtQ(f, fn) + At(Q(fp — fn, M))_.

The dependence on t is omitted in notations.

A Monte Carlo method can be designed accordingly.
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New

Key idea # 1. Combine collisions

A Monte Carlo method

ot + At) = fy + AtQ(F, f) + AHQ(F, — fr, M), .

/ N
regular collisions source term,
between f and f,, N, increases by
N, not change O(At(Np + Nn))

The particle number grows in the physical scale for any binary
collisions
(Np + Np)

= (1 + cAt) (Np + Np)

t+A t
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New

Key idea # 1. Combine collisions

A Monte Carlo method

ot + At) = fy + AtQ(F, f) + AHQ(F, — fr, M), .

/ N
regular collisions source term,
between f and f,, N, increases by
N, not change O(At(Np + Nn))

The particle number grows in the physical scale for any binary
collisions

(Np + Np)

= (1 + cAt) (Np + Np)

t+A t
Summary: Combine collisions to reduce the total number of
collisions.
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New

Step 1, collisions between f and f,

ot + At) = T, + AQ(F, fy) + AUQ(F, — fr, M),

Sample a particle from f and collide with a P particle.
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New

Step 1, collisions between f and f,

ot + At) = T, + AQ(F, fy) + AUQ(F, — fr, M),

Sample a particle from f and collide with a P particle.

How?
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New

Step 1, collisions between f and f,

ot + At) = T, + AQ(F, fy) + AUQ(F, — fr, M),

Sample a particle from f and collide with a P particle.

How?

@ Need to recover the distributions f, and f, from P and N
particles = computationally expensive and inaccurate.
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New

Step 1, collisions between f and f,

We introduce F particles
@ give a solution to the original equation o;f = Q(f, ).

@ Initially sampled from f(v,t = 0) directly. Then perform
regular DSMC method.

@ To sample a particle from f, just randomly pick one sample from F
particles.

One only needs
#(F particles) > N, + Nn.

Hence
@ F particles give a coarse approximation of f.
@ P and N particles are finer approximation of f — m.
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The new method

A new Monte Carlo method with negative particles

om= 0,
Afp = Q(f, fp) + (Q(fp — fn. M),
Otfn = Q(f, fn) + (Q(fp — fn, M)
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The new method

A new Monte Carlo method with negative particles

af = Q)

om= 0,

arfp = Q(F, ) + (Qfp — fn, M))-,
dtfn = Q(F, fn) + (Q(fp — fr, ).

o f: coarse solution. Simulated by F particles.

o f = m+fy - fi: finer solution, the desired result. Simulated
by P and N patrticles.

Bokai Yan (UCLA) Monte Carlo method with negative particles



The new method

A new Monte Carlo method with negative particles

f(t+At) = f + AtQ(f, ),

m(t + At) = m,

fo(t + At) = f + AQ(F, fp) + AL(Q(fy — fr, )4,
fo(t + At) = fy + AQ(F, ) + AUQ(Tp — fr, M))-.

o f: coarse solution. Simulated by F particles.

o f = m+fy - fi: finer solution, the desired result. Simulated
by P and N patrticles.
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New

Step 2, Sample from the source term

fit+at) = + atQd, f),

m(t + At) = m,

fo(t + At) = f, + AtQ(F, f) + AL(Q(F, — fo, M),

fo(t + At) = f, + ALQ(F, f,) + AQ(F, — fo, m))_.
Source term

Qlfp = s M) = Nert D Q(6(v = vp) M(v)) = Nett | Q(6(V = V), m(v))

Need to know how to sample from Q(cS(v - Vp), m(v)).

o Q(é(v —Vp), m(v)) exhibits singularities at v = vp.
@ For different particle interaction, the singularity behaves differently.
@ Later we show how to sample when Q represents the Coulomb collision.
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New

Apply to Coulomb collision

Apply the previous ideas
@ combine collisions
@ approximate f by F particles
to Bobylev-Nanbu’s formulation of Coulomb collision,

fv,t+at) = }ffo(w/)f(v’)dwdn, regular collisions

m(v, t + At) = m(v, t), m not changed

1 -
fo(vt+AY = ffo(W’)fp(v’)dwdn +(Am(v)), , E-P E-N collisions

f(v L+ Al = f f DF (W) f,(v") dw dn + (Am(v)). . Am = AtQ(f, — fr. M)
o
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New

Coulomb collision — Sample from the source term

The source term

AtQrp(fp — fn, M) = Negt Z oM(V; Vp) — Nest Z om(V; vp),
Vp Vn

where sm(v; v;) describes the change in m due to collisions with particles with
velocity v;.

ém(v;vy) is a 5D integral, can be simplified to 2D, then approximated by a 1D
integral. The upper bounds:

IKV)
< . <
0 = 6m(v, V1) = au—lv V1|2’

0 < om_(v;vy) < aym(v).

with two constants «ay, a; > 0.
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To summarize

@ Combine collisions to reduce the total number of collisions.
@ Use F particles to perform the combined collisions.

af = Q(f. 1),

om= 0,

arfp = Q(F . f) + (Qfp — fro M),
atfn = Q(F. f) + (Qfp — fr. M))-.
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To summarize

@ Combine collisions to reduce the total number of collisions.
@ Use F particles to perform the combined collisions.

af = Q(f. 1),

om= 0,

arfo = Q(F, o) + (Q(fp — fr, M),

atfn = Q(F. f) + (Qfp — fr. M))-.
Notice that

@ We need Ny > (Np + N). However N, and N, grow with
time, while Ny is constant.

@ f, - mand f, — mas time evolves, hence they have
overlap.

Reducing Ny and N, is both necessary and efficient.
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New

An extra step: Particle Resampling

Global

interpolation

0.4

Resample
—

Bokai Yan ( Carlo method with negative particles



New

Control of particle number — Particle Resampling

Evolution of Particle Numbers

x10* # of particles
T

@ Particle resampling is accurate but expensive. But it is only
needed whenever N; > (N, + Np) is violated.

@ After resampling, only need to keep a subset of the F
particles.
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Numerics
Bump on Tail problem

The initial value

pr VIE), (A=A v — upl®
0~ G o ) e )

a central Maxwellian a small bump with high energy

where

p=1 =09, T=1 Tp=00L up=I500]
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Numerics

Bump on Tail problem

Negative TA method
- = - Regular TA method

Figure : The snaps of time evolution of marginal distribution
(V. W, V) dvy dv, in Bump-on-Tail problem.
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Numerics

Bump on Tail problem

t=0.00 1=5.00

Figure : The snaps of time evolution of the components m, f, and f, in
Bump-on-Tail problem.




Numerics
Rosenbluth’s problem

Volcano-like initial data:
f'(v) = 0.01 exp(-10(v| - 1)?).

The distribution f stays radially symmetric for all time.
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Numerics

Rosenbluth’s problem

t=0.00 t=0.40
01 01
0.05 0.05
0 [}
o 1 2 3 0 1 2 3
v r
t=141 t=2.93
0.15 0.15
0.1 01
0.05 0.05
0 [}
(] 1 2 3 0 1 2 3
v r
t=5.96 t=9.90
0.15 0.15
0.1 01
0.05 0.05
0 [}
0 1 2 3 0 1 2 3

Negative TA method|
- = = Regular TA method

Figure : The snaps of time evolution of the radial symmetric
distribution rf(r) in Rosenbluth’s test problem.
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Numerics

Rosenbluth’s problem

t=0.00 =050
0.08 0.08
A
0.06 Fos 0.06
[ 3
0.04 v 0.04
o w
o 0,
0.02 002 s
1 A Ay
0 0
) 1 2 3 ) 1 2 3
r r
t=1.00 t=2.00
0.08 0.08
0.06 0.06
0.04 5 0.04
0.02 o 0.02
b . P
0 0 =
) 1 2 3 ) 1 2 3
r r
t=4.00 t=8.00
0.08 0.08
0.06 0.06
0.04 0.04
002 002
0 — 0
0 1 2 3 0 1 2 3

Figure : The snaps of time evolution of the components r?m, r2f, and
r?f, in Rosenbluth’s test problem.




Numerics

Convergence test

P

coarse solution:  [|f — fiefl| ~ —
N
, , p
fine solution:  [[f — frefll ~ o + -0
Np Ny
= L* error
10 . .
17 = frell
107 |
e - S = Fre
10’30 1 2 3 4 5 6 7 s Y
time
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Numerics

Convergence test

T
—6— T = 0.4, fine solution
= © =T =0.4, coarse solution
—&— T = 2.0, fine solution
T~ = B =T =2.0, coarse solution
Tl _ slope = -1/2 —O— T = 9.0, fine solution
2 -
5 10 -
=
HJ
107

Initial N
p

Figure : The convergence rate for fine solution f and coarse solution f
at different times. Test on Rosenbluth’s problem.
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Numerics

Efficiency test

—O— t = 5/16; Negative TA
10732 = © =t=5/16; Regular TA

—+—t = 5/4; Negative TA
10733 = + =t=5/4; Regular TA

—6— t = 5; Negative TA
104 = @ =t=5; Regular TA

\
3.5 *
5 10°°t L4 ]
% \
\
_ \
10 3.6 L \ \ 4
* ¥y
. \
10770 N A 4
N \
. 4
10*3.8 L 4
10*3.9 L ) 4
v
10t 107 10° 10" 10°
cputime

Figure : The efficiency test on Rosenbluth’s problem.
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Numerics
Summarize

For f = m+ f, — f, the equation of = Q(f, f) is reformulated

af = Q)

om= 0,

arfo = QF . f) + (Qfp — fr, M),
arfn = Q(F fr) + (Q(fp — ., M)-_.

Bokai Yan (UCLA) Monte Carlo method with negative particles



Numerics
Summarize

For f = m+ f, — f, the equation of = Q(f, f) is reformulated

af = Q)

om= 0,

arfo = QF . f) + (Qfp — fr, M),
arfn = Q(F fr) + (Q(fp — ., M)-_.

A compact form:
For f = m+ f4, we can solve

af = Q(f, ),
om=0,
afa = Q(F, fa) + Q(fa, ),
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Numerics
Future work

@ Multi-component plasma.
@ Evolve Maxwellian part mto further improve the efficiency.
@ General non-linear operators.

@ Spatial inhomogeneous. Design a hybrid method which
uses very few particles in the fluid regime.
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Numerics
Inhomogeneous system

Let f = m+ fgy, the Vlasov-Poisson-Landau system
of +v-Vuf + E-Vf = Q(f,f),

E =V,0, —Axd):ffdv

can be rewritten (with negative particle method, micro-macro, PIC)
af + 71 = Q. 7).
G (Fg) + V- (W) + V- (Mag) = (0, pE, pu - E)',
dfa+7fa = Q. fo) + S
E=V®, —AD={(m+fy)
with
T =v-Vy+E-V,
S=—(I = IIn) (T M) + (7 fa) + Q(fa, m).
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Negative particle methods for rarefied gas

Insert the splitting f(v) = m(v) — fa(v) + fp(v),
df

i Q(m,m) M-M
+gQ+(fp,fp) - Q (f)fy) P-P
+ _Q+(fn, fp) - Q+(fpa fn) + Qi(fn)fp + Qi(fp)fn) P-N
+(Q*(fn. fn) = Q (f)fn) N-N
+(Q" (fpr m) + Q" (M.fp) - Q(f)m - Q () P-M
+(=Q* (fa, m) — Q* (M. o) + Q” (fa)m + Q" (M)fy) N-M

Bokai Yan (UCLA) Monte Carlo method with negative particles



Negative particle methods for rarefied gas

Insert the splitting f(v) = m(v) — fa(v) + fp(v),

df
dt

+

(Q* (for fo) — Q(Fp)f) P-P
+(=Q* (fa, Fp) = Q*(fo, fa) + Q (F)f + Q (o)) P-N
(
(-

+
+(Q* (fo.m) + Q* (M fy) = Q (fp)m — Q" (M)f,) P-M
+ Q+(f m) — Q*(m.f,) + Q (f)m + Q~(M)f,) N - M
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Negative particle methods for rarefied gas

Insert the splitting f(v) = m(v) — fa(v) + fp(v),

da
dt
+(Q* (fo. fp) = Q (Fo)fy) P-P
+(=Q* (. fo) = Q" (fo Fo) + Q (f)fy + Q (fo)fn) P-N
+
+Q* (fo, m) + Q" (M f) — Q" (f)m— Q" (m)fy) P-M
Q" (fn 1) — Q (M) + Q- () + Q- ()T N-M
Reorganize,
dm
e =0
df,
5t = (Q (M) + Q" (fp. m) + Q" (. ) + )
—(Q (M +Q (f) - Q (f) fp + Q (f)m,
% = (Q7 (M) + Q" (fo, M) + Q" (5, fn) + Q" (fo, )

—(Q M +Q (f) - Q () fa+ Q (f)m
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Bobylev-Nanbu approximation

Not solving the LFP equation directly, but the Bobylev-Nanbu approximation
(2000’),

f(v,t+At)=3f D(ﬂ,AA—;)f(v')f(w/)dwdn,
P Jr3xs? u u

with A = cqp, and

2+ 1

D(u.7) = Ar

1=0

Pi(u) expEl(l + 1)7).

This is a first order approximation (in At) of LFP equation.

@ Takizuka and Abe (TA) 1977’

1 1 ., d
D — (4]2t
e e W
with u = cos(2 arctad).
@ Nanbu 1997’

A
DNanbu(ll,T) = WQ‘A,

where Ais defined by cothA- 2 = e,
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Apply to Coulomb collision

Apply the negative particle method to Bobylev-Nanbu's reformulation,

F(v,t + At) = Eff D(ﬂ,Aﬁg)f(w',t)f(v/,t)dwdn = Lo,
P JIRr3xs2 u P

u
Split as
Pm
m(v,t + At) = —m(v, t),
P

Pme

2 2
fvt+ A = 2P 1) + 2P, £ + 270 mp" P f) + PP, ),
P P

PpPn

P, f,) + 222
P

P, ) + ‘MP(m, f) + " o P(,. M),
P P P

fa(v,t + At) =
with

:ff(v,t)dv, pm:fm(v,t)dv, pp:ffp(v,t)dv, pn:ffn(V,t)dV,
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Numerics
Error analysis

What's the error by approximating Q(f, f,) and Q(f, f,) with
Q(f, fp) and Q(f, f)?
arfp = Q(F. ) + (Q(Fp — f, M) )
= Q(f, fp) + (Q(fp — fn, M), + Q(f -1, fy),

original equation drift term

@ Solving the original equation with N, P-particles introduces a statistical
error O (pp(Np)2).

@ The drift term is O (p,(Ny) ¥/2), since f(t) = f(t) + O (o(Nr)2).

@ Aslong as N > N,, one has

O (pp(N) %) < O pp(Np) 2).

Bokai Yan (UCLA) Monte Carlo method with negative particles



Numerics

Rosenbluth’s problem

entropy

- = = Negative TA method
Regular TA method
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Figure : Time evolution of entropy H(t)/H(0) in Rosenbluth’s test
problem. Blue solid line: regular TA method with 10° particles. Red
dashed line: negative particle method with N, = 40000initially.
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