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The non-equilibrium plasma can be modeled by Vlasov-Poisson-Landau
(VPL) system
Of +v-Vuf —E-Vf =Q.(f,f),

- Vy-E=p(t,Xx) = ff(t,x,v)dv,
where the Landau (or Landau-Fokker-Planck) operator
Ad d d
Q0N =370 [ wre(ers; —uw) (- - o ) c
models the binary collisions due to the long range Coulomb interaction.
@ Q is bilinear.
@ Q.(g,f) is asymmetric. It describes the change in f due to collisions with
g.
@ Conserve density, momentum and energy;
@ Dissipate entropy. f - M ast — co. Q.(M,M) = 0.
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Probabilistic methods

The PIC-MCC (or PIC-DSMC) method is widely used in plasma simulation

@ Particle-In-Cell method (PIC) for collisionless plasma. Dawson 83,
Birdsall-Langdon 85 . ..

@ Direct Simulation Monte Carlo (DSMC) for binary collisions.
Takizuka-Abe 77, Nanbu 97, Bobylev-Nanbu 2000.
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Probabilistic methods

The PIC-MCC (or PIC-DSMC) method is widely used in plasma simulation

@ Particle-In-Cell method (PIC) for collisionless plasma. Dawson 83,
Birdsall-Langdon 85 . ..

@ Direct Simulation Monte Carlo (DSMC) for binary collisions.
Takizuka-Abe 77, Nanbu 97, Bobylev-Nanbu 2000.

Problem: near fluid regime, where f ~ M,

@ Most computation is spent on the collisions between particles sampled
from M.

@ Q.(M,M) = 0. Collisions of M have no net effect.

Highly inefficient!
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Hybrid methods

Apply decomposition
f(t,x,v) = M(t, X, V) + f4(t,x, v),

@ Equilibrium M(t, x, v): evolved according to a fluid equation — cheap
@ Deuviation fy4(t, X, v): represented by particles — expensive
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Hybrid methods

Apply decomposition
f(t,x,v) = M(t, X, V) + f4(t,x, v),

@ Equilibrium M(t, x, v): evolved according to a fluid equation — cheap
@ Deuviation fy4(t, X, v): represented by particles — expensive

To minimize the deviation part, we allow f4(t, x, v) < 0.
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Intro

Hybrid methods

Apply decomposition

f(t,x,v) = M(t, X, V) + f4(t,x, v),

@ Equilibrium M(t, x, v): evolved according to a fluid equation — cheap
@ Deuviation fy4(t, X, v): represented by particles — expensive

To minimize the deviation part, we allow f4(t, x, v) < 0.
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(fa)+ and (fg)- are represented by positive and negative deviational particles.
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Hybrid methods

To solve the VPL system:
@ Need to evolve M and fq in advection.

@ Q is bilinear = Need to consider P-P, P-N, N-N, P-M and
N-M collisions. M-M collisions are omitted.
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Hybrid methods

Related works,

@ Caflisch-Wang-Dimarco-Cohen-Dimits (2008),
Ricketson-Rosin-Caflisch-Dimits (2013)

@ Hadjiconstantinou et.al. (2005)
@ Crestetto-Crouseilles-Lemou (2012)
@ 5f methods (1988)
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Hybrid methods

Related works,

@ Caflisch-Wang-Dimarco-Cohen-Dimits (2008),
Ricketson-Rosin-Caflisch-Dimits (2013)

@ Hadjiconstantinou et.al. (2005)
@ Crestetto-Crouseilles-Lemou (2012)
@ 5f methods (1988)

Our goal: to design a hybrid method with deviational particles for the spatial
inhomogeneous VPL system

@ much more efficient than PIC-MCC near fluid regime
@ applicable to all regimes
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Collision Landau

In our methods:

@ Deviational particles have 0 density, momentum and
energy in each spatial cell, i.e. for ¢ = 1,v, |v[?/2,

(#falt. X V) = Netr ), ¢(vp) = Netr ), ¢(vn) = 0,

VpeCk VneCk

in each cell Cy.

@ Nggf, the effective number of deviational particles, is a
prescribed constant.

These restrictions can be relaxed in applications.
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Collision Landau

First, apply an operator splitting.
@ Collision substep: in each cell,
of = Qu(f).

M is invariant in this substep.
@ Advection substep:

atf+V‘fo_E‘va :O,
— Vx - E = p(t, X).
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Collision Landau

Deviational particles in Collisions
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Collision

Collisions — Landau

Q. is bilinear = Need to perform P-P, P-N, N-N, P-M and N-M collision.

A straightforward method: perform each type of collision individually.

1Hadjiconstantinou 2005, for rarefied gas
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Collision

Collisions — Landau

Q. is bilinear = Need to perform P-P, P-N, N-N, P-M and N-M collision.
A straightforward method: perform each type of collision individually.
Consider the P-N collisions. Plug f = M + f, — f, into ;f = Q(f,f).

At (+fp) = Q(~Fn, +p) + ..
0i(—fn) = Q(+fp, —fo) + ...

1Hadjiconstantinou 2005, for rarefied gas
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Collision

Collisions — Landau

Q. is bilinear = Need to perform P-P, P-N, N-N, P-M and N-M collision.
A straightforward method: perform each type of collision individually.
Consider the P-N collisions. Plug f = M + f, — f, into ;f = Q(f,f).

ity = —Q(fn o) + ...
ity = Q) + ...

Collision rules?
P-P: v, w, -V, W,

P-N: v, w_ —2v,,V_,W.

1Hadjiconstantinou 2005, for rarefied gas
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Collision

Collisions — Landau

Q. is bilinear = Need to perform P-P, P-N, N-N, P-M and N-M collision.
A straightforward method: perform each type of collision individually.
Consider the P-N collisions. Plug f = M + f, — f, into ;f = Q(f,f).

ity = —Q(fn o) + ...
ity = Q) + ...

Collision rules?
P-P: v, w, -V, W,

P-N: v, w_ —2v,,V_,W.

Particle number increases!
#(particle created) o« #(collision).

1Hadjiconstantinou 2005, for rarefied gas

Bokai Yan (UCLA) HDP methods for plasma



Collision

Collisions — Landau

In rarefied gas (charge free),
@ short range collision = # collisions in one time step = O (At)
@ The particle number grows in the physical scale

Na| = (1+CAON|.

In Coulomb gas (charged),
@ long range collision = # collisions in one time step = N

@ The particle number grows in the numerical scale in
Coulomb collisions!

Nm + 2N,
N =1+ ——|Ng|.
e at ( Nm + Np — Nn) d|t
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Collision

Collisions — Landau

A new method: group the collisions.

For a general bilinear collision operator

Q(f.f) = Q(F. fa) + Q(f, M) = Q(f. fa) + Q(fa, M) + QM. M)..

=0

o = Q(f,f) becomes

difa = Q(f. fa) + Qlfa. M). |
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Collision

Collisions — Landau

A new method: group the collisions.

For a general bilinear collision operator

Q(f.f) = Q(F. fa) + Q(f, M) = Q(f. fa) + Q(fa, M) + QM. M)..

=0

o = Q(f,f) becomes

difa = Q(F. fg) + Qlfa. M). ]

Q(f. fa) = Q(F. o) — Q(F. n).
Q(f, fp) groups three terms: Q(M, ), Q(fy, ), —Q(fn, fp).
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Collision

Collisions — Landau

A Monte Carlo method

fa(t + Ab) = fg + AtQ(F, fa) + AtQ(fg, M).

/ N
regular collisions source term,
between f and fg, Ny increases by
Ng not change O (AtNg)

The particle number grows in the physical scale for any binary

collisions
NG.|t+At = (1+ cAt) Nd|t.

Bokai Yan (UCLA) HDP methods for plasma



Collision

Collisions — Landau

fa(t + AY) = fg + AtQ(F, fy) + AtQ(Fg, M).

Sample a particle from f and collide with a deviational particle.
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Collision

Collisions — Landau

fa(t + AY) = fg + AtQ(F, fy) + AtQ(Fg, M).

Sample a particle from f and collide with a deviational particle.

How?
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Collision

Collisions — Landau

fa(t + AY) = fg + AtQ(F, fy) + AtQ(Fg, M).

Sample a particle from f and collide with a deviational particle.

How?

@ f=M+f,

@ Need to recover the distribution fy from deviational particles =
computationally expensive and inaccurate.

15
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Collision

Collisions — Landau

We introduce coarse particles
@ give an approximationto f.

@ Initially sampled from f(v,t = 0) directly.
@ Then perform regular PIC-MCC method.

@ To sample a particle from f, just randomly pick one sample from coarse
particles.
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Collision

Collisions — Landau

We introduce coarse particles
@ give an approximationto f.

@ Initially sampled from f(v,t = 0) directly.
@ Then perform regular PIC-MCC method.

@ To sample a particle from f, just randomly pick one sample from coarse
particles.
One only needs, in each cell
Nc > Ng. A small number!

Hence
@ Coarse particles give a coarse, direct approximation of f.

@ Deviational particles give a finer, deviational approximation of (f — M).
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Collision

Collisions — Landau

The collision step is solved by?

dfa = Q(F . fa) + Q(fa. M),

15

-0.5,

2Yan-Caflisch, J. Comput. Phys. 2015

Bokai Yan (UCLA) HDP methods for plasma



Collision

Collisions — Landau

The collision step is solved by?

dfa = Q(fc, fa) + Q(fa, M),
otfe = Q(fe, o).

2Yan-Caflisch, J. Comput. Phys. 2015
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Collision

Collisions — Landau

Step 2, Sample from the source term.

fd(t + At) = fd + AtQ(fc,fd) + AtQ(fd, M),
fo(t + At) = fo + AtQ(fc, o).

Source term

Q(fa, M) = Netr ) Q(6(V = Vp). M(V)) = Nett ) Q(6(V = V). M(v))

models the change on Maxwellian due to collisions with deviational particles.
Need to know how to sample from Q(5(v - vp), M(v)).

) Q(é(v —Vp), M(v)) exhibits singularities at v = vp,.
@ We derived an efficient approximation for the Landau operator Q (6, M).
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Collision

Collisions — summarize

For Landau operator,

dtfa = Q(fc, fa) + Q(fa, M),
atfc = Q(fc, fc)-

@ Both N, and N, grow due to the source Q(fg, M).

@ But their distributions approach each other due to the
collisions with f¢, i.e. Q(fe, fg).

@ As aresult, fg = (fg)+ — (fq)- decays.
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Deviational particles in Advection
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Advection
Advection of Maxwellian

Apply the macro-micro decomposition® to evolve M and fy.
Advection of M:

With ¢ = 1, v, |v|?/2, take moments of
of +v-V,f —E-V,f =0,

one has

0
ot (M) + Vi (VM) + Ve (Vi) = (0, —pE, —pu-E)".

3Bennoune-Lemou-Mieussens 2008
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Advection
Advection of Maxwellian

Apply the macro-micro decomposition® to evolve M and fy.
Advection of M:

With ¢ = 1, v, |v|?/2, take moments of
of +v-V,f —E-V,f =0,

one has
% (M) + V- (VM) + V- (VEggp) = (0, —pE, —pu - E)".

The moments of M can be updated by a compressible Euler system + electric
field terms + corrections from deviational particles.

3Bennoune-Lemou-Mieussens 2008
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Advection

Advection of deviational particles

Denote 7 =v-V,—E-V,. Rewrite 6if +7f =0as
6tfd + de = —atM - TM (1)
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Advection

Advection of deviational particles

Denote 7 =v-V,—E-V,. Rewrite 6if +7f =0as
6tfd + de = —atM - TM (1)

To remove ;M term, define a projection operator ITy by

_ M (V—um) - ((v-umy) 1 (lv-uwf IV — upl?
g = 1o+ Sl (R )[R o)

Iy is in the form of M(v)P,(v), and has same moments of .
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Advection

Advection of deviational particles

Denote 7 =v-V,—E-V,. Rewrite 6if +7f =0as
6tfd + de = —atM - TM (1)
To remove ;M term, define a projection operator ITy by
M V—up)-{(v-u 1 (Iv—upf V — Uy ?
HM!//=—(lﬂ)+( ) AV —umly) LIV =uMl® (V= Ul —d)s.
oM Tm 2d Tm

Iy is in the form of M(v)P,(v), and has same moments of .
Note

(#fay =0 = Mwufs = Ou(dfs) = (I - Im)(:M) = 0.
Apply (I - ITy) on both sides of (1),

fa + Tty = —(1 = Tly) (TM) + I (T fo). )
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Advection

Advection of deviational particles

Denote 7 =v-V,—E-V,. Rewrite 6if +7f =0as
6tfd + de = —(9tM - TM (1)
To remove ;M term, define a projection operator ITy by
M V—up)-{(v-u 1 (Iv—upf V — Uy ?
HM!//=—(lﬂ)+( ) AV —umly) LIV =uMl® (V= Ul —d)s.
oM Tm 2 Tm

Iy is in the form of M(v)P,(v), and has same moments of .
Note

(#fay =0 = Mwufs = Ou(dfs) = (I - Im)(:M) = 0.
Apply (I - ITy) on both sides of (1),

Afg + Tfq = —(1 = Ty) (TM) + Ty (7 F). J

@ Left: advection of deviational particles, as in PIC.

@ Right: source term. The Maxwellian form cannot be preserved in
advection. O(At (N;f} + Nd)) deviational particles are created.
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Advection
summarize — HDP methods

Hybrid methods with Deviational Particles* for VPL. Coarse particles are
needed.

Collision step:
aife = Q(fe, fo),
(9tM = 0,
oty = Q(fe, fa) + Q(fa, M).
Advection step:
ofe + 71, =0,
0
=5 (M@) + V- (VM@) + V- (Vi) = (0, —pE, —pu - ),
6tfd + de = —(l - HM) (TM) + HM (de),
= Vi E = pm(X).

This method is also applied on VP-BGK system. Coarse particles are not
needed in VP-BGK.

4Yan. arXiv:1510.03893
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Resample deviational coarse

Resample Deviational and Coarse Particles

Bokai Yan ( HDP methods for plasma



Resample deviational coarse

Resample Particles

How?

@ Recover fq from deviational particles

@ Discard old deviational and/or coarse particles, sample
new ones from fg and/or M + fy

Why do we need to resample particles?
One needs in each cell,

NC > Nd

However Ng grows with time, while N is constant. Whenever
this condition fails, two options:

@ Reduce Ny. & Resample deviational particles.

@ Increase N;. & Resample coarse particles.
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Resample deviational coarse

Resample deviational particles
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Resample deviational coarse

Resample deviational particles

Evolution of Particle Numbers in homogeneous case,

x 10° # of particles
T

Particle resampling is accurate but expensive. But it is only
needed whenever N; > Ny is violated.
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Resample deviational coarse

Resample coarse particles

When do we need to resample coarse particles?
@ Resampling of deviational particles may fail to reduce Ng.

@ Ny increases in the advection
= small overlap between (fg). and (fq)-
= Increase N; to satisfy N; > Ng.

@ After a relatively long time, f. is not a “good” coarse approximation of f.
= Need to be refreshed.
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Resample deviational coarse

Resample coarse particles

Evolution of Particle Numbers in HDP method for
inhomogeneous VPL system:

# numerical particles

x 10°

—Nn
——Nc/2

time
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Numerics homo inhomo

Numerical Tests
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Numerics homo inhomo

Homogeneous tests

Solve the homogeneous equation 0;f = Q. (f,f) by

(9th = QL(fc, fc),
ofq = QL(fe, fa) + QL(fa, M).

We take v € R3.
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Numerics homo

Bump on Tail problem

t=0.00

inhomo

1=5.00

0.4

0.4
0.2_/ \_JL " _/\A
0 0

0.4 0.4

0.2’/\/\ OZJ\\
0 0

0.4 0.4

o.z-k oz_k
0 0

Negative TA method
- - — Regular TA method

Figure : [[ f(vx, W, V) dvy dv; in Bump-on-Tail problem.
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Numerics homo inhomo

Bump on Tail problem
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Figure : M, (fq); and (f3)- in Bump-on-Tail problem.
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Numerics homo inhomo

Efficiency test

—O— t = 5/16; Negative TA
10732 = © =t=5/16; Regular TA

—+—t = 5/4; Negative TA
10733 = + =t=5/4; Regular TA

—6— t = 5; Negative TA
164 = @ =t=5; Regular TA

\
3.5 *
= 10 0 4
% \
\
_ \
10 3.6 L \ \ 4
» ¥y
. \
10770 \ A 4
. \
. 4
10*3.8 L 4
10*3.9 L ) 4
v
10t 107 10° 10" 10°

cputime

Figure : The efficiency test on Rosenbluth’s problem.
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Numerics homo inhomo

Inhomogeneous tests

Apply HDP methods on spatial inhomogeneous VPL systems.

Test on the Landau damping problems, with f(t = 0,x,v) = M(t = 0, x, V),
pt=0,x)=1+asinK),
u(t=0,x) =0,
Tt=0,x)=1,

with x € [0, 4n], v € RS.

Linear Landau damping, a = 0.01
Nonlinear Landau damping, @ = 0.4
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Numerics homo inhomo

Linear Landau dampling in VPL system
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Numerics homo inhomo

Linear Landau dampling in VPL system

), ).

PIC-MCC

Figure : The distribution in the x — v; phase space at time t = 1.25in
the linear Landau damping problem of the VPL system.
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Numerics homo inhomo

Nonlinear Landau dampling in VPL system

time
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Numerics homo inhomo

Nonlinear Landau dampling in VPL system

y ), ()

HDP PIC-MCC

Figure : The distribution in the x — v; phase space at time t = 1.25in
the nonlinear Landau damping problem of the VPL system.
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Numerics homo inhomo

Convergence tests on VPL system

107

error
error
=
o
&

——HDP
——PIC-MCC
> -6
10 10 =
10° 10° 10° 107
Effective number At

Figure : Left: half order convergence in effective number in nonlinear
Landau damping. Right: first order convergence in At in linear
Landau damping for the HDP method.

Bokai Yan (UCLA) HDP methods for plasma



Numerics homo inhomo

Efficiency test on VPL system

p(t=0,X) =1+ asinK)

10

- © - PIC-MCC,a =0.1

—e—HDP,a = 0.1

- - # =PIC-MCC, a = 0.01
==®| ——tpP,a=001

10 & -4 - PIC-MCC, a = 0.001

——é— HDP,a = 0.001

0‘6-;.

error

10 &

-4
10 ‘
10° 10* 10

cputime

5

Figure : The efficiency test of the HDP method on the VPL system for
different « in the initial density.
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Numerics homo inhomo

Conclusion and Future work

We have designed a hybrid method with deviational particles for
the VP-BGK and VPL system,

@ much more efficient than PIC-MCC near the fluid regime,
@ applicable to kinetic regime.

@ Even in the worst case, at least we have a solution from
PIC-MCC method, that is the coarse particles.

Next,
@ Multi-component plasma.
@ Other effective ways to reduce particle number.
@ Mixed regimes.
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Backup slides

Bokai Yan ( A) HDP met



Negative particle methods for rarefied gas

Insert the splitting f(v) = m(v) — fa(v) + fp(v),

2 =omm M
+Q* (fo. f) — Q (Fp)f) P
+ _Q+(fn, fp) - Q+(fpa fn) + Q_(fn)fp + Q_(fp)fn) P-
+(Q*(fn, fn) — Q" (f)fn) N
+(Q*(fp, M) + Q" (M f) — Q~(f)m — Q~(M)fy) P
+(=Q* (fo, m) — Q* (M. o) + Q" (f)m + Q" (M)fy) N
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Negative particle methods for rarefied gas

Insert the splitting f(v) = m(v) — fa(v) + fp(v),

df

dt
+§Q+(fp, fo) - Q (f)fy) P-P
+(=Q" (. fo) = Q" (fp Fo) + Q () + Q (fo)fn) P-N
+
+Q* (fo. M) + Q" (M f) — Q" (f)m— Q" (M)fy) P-M

+(=Q"(fo, m) — Q* (M. f,) + Q" (F)m + Q" (M)f)) N-M
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Negative particle methods for rarefied gas

Insert the splitting f(v) = m(v) — fa(v) + fp(v),

df
dt
+§Q+(fp, fo) - Q (f)fy) P-P
+(=Q* (fn. Fp) = Q" (fo fo) + Q (Fu)fp + Q (Fo)n) P-N
+
+Q* (fo. M) + Q" (M f) — Q" (f)m— Q" (M)fy) P-M
+(=Q* (fr, m) - Q* (M. ) + Q" (f)m+ Q~(m)fy) N-M
Reorganize,
dm o
E - — Y
df,
5t = (Q (M) + Q" (fp. m) + Q" (. ) + )
—(Q (M +Q (f) - Q (f) fp + Q (f)m,
% = (Q (M) + Q" (fo, M) + Q" (fy, fa) + Q" (fn. )

—(Q M +Q (f) - Q () fa+ Q (f)m
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Collision rules with negative particles

P-P: vi,wy > Vi, W,

P-N: v,,w_ — 2v,,vV_, W,
N-N: v_,w_ — 2v_,2w_,V|, W,
P-M: myv, - mw_,V,,w,,
N-M: mv_. - mw,,V_ ,w".
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Collision rules with negative particles

P-P: vi,wy > Vi, W,

P_N V+’W— - 2V+’V,_’W,_’
N-N: v_,w_ — 2v_,2w_,V|, W,
P-M: myv, - mw_,V,,w,,
N-M: mv_. - mw,,V_ ,w".

Problem: particle number increases!
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Bobylev-Nanbu approximation

Not solving the LFP equation directly, but the Bobylev-Nanbu approximation
(2000,

f(v,t+At)=5f D(ﬂ,AA—:)f(v')f(w')dwdn,
P Jr3xs? u u

with A = c¢ep, and

o0

D(u,7) = ) 2'4—+1P.(,1) exp(I(l + 1)r).

7T
1=0
This is a first order approximation (in At) of LFP equation.

@ Takizuka and Abe (TA) 1977’

1 1 ., d
D — (4]2t
R a7
with u = cos(2 arctad).
@ Nanbu 1997’

A
Dranbu(ut, 7) = me"A,

where Aiis defined by cothA- 1 = e .

Bokai Yan (UCLA) HDP methods for plasma



Apply to Coulomb collision

Apply the negative particle method to Bobylev-Nanbu's reformulation,

F(v,t + At) = Eff D(”—'",Aﬁg)f(w',t)f(v/,t)dwdn = Lpip).
P JIRr3xs2 u P

u
Split as
m(v,t + At) = m(v 1),
P

Pme

2 2
fvt+ A = 2P 1) + 2P, £ + 270 mp" P f) + PP, ),
P P

PpPn

P, ) + e
)

AR " oo P(m, fn)
P I4

fo(V, T+ AL) =

ns
with
- [t00dv pn= [mwndn o= [Hedd po= [Tnn

~ o f N
(L N AL LU L R A
P Pm Pp Pn
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Error analysis

What's the error by approximating Q(f, f,) and Q(f, f,) with
Q(fe, fp) and Q(fc, fn)?
atfp = Q(fC’ fp) + (Q(fp - fn’ m))+
= Q(f. fp) + (Qfp — fn. M) + Q(fc — 1. 1p),

original equation drift term

@ Solving the original equation with N, P-particles introduces a statistical
error O (pp(Np)2).

@ The drift term is O (pp(Nr) /%), since fo(t) = f(t) + O (o(N)*2).

@ Aslong as N > N,, one has

O (pp(Ne)™2) < O (0p(Np) 2.
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Rosenbluth’s problem

entropy

- = = Negative TA method
Regular TA method

0.8

0.6

0.2~

)
10

‘.
Y
©

Figure : Time evolution of entropy H(t)/H(0) in Rosenbluth’s test
problem. Blue solid line: regular TA method with 10° particles. Red
dashed line: negative particle method with N, = 40000initially.
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Apply to Coulomb collision

Apply the previous ideas
@ combine collisions
@ approximate f by F particles
to Bobylev-Nanbu’s formulation of Coulomb collision,

fo(v, t + At) = }ffoc(w’)fc(v/)dwdn, regular collisions
P

M(v, t + At) = M(v, t), M not changed

fa(v,t + At) = 1 ffoc(w’)fd(v’)dwdn + AM(V), C-D caollisions
P

AM = AtQ(fg, M).
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Apply to Coulomb collision

Bobylev-Nanbu'’s formulation
u-n
f(v,t+Af) = = ff ( A—)f(w Of (v, t)dvvdn_—P(f f),
R3xS2
can be split by pluginf = M +f, — f,,
f(v,t+At) = 1P(M, M) + }P(f,fp) - EP(f,fn) + }P(fp —fn, M)
P p P

:M(V)+1'P(f,fp)— 1P(f,fn)+( P(f, —fn,M)— M( ),
p p
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Apply to Coulomb collision

Apply the previous method

fo(v,t + At) = lffoc(w’)fc(v’)dwdn,
P

M(v,t + At) = M(v, t),

fo(v,t+ At) = lffoC(w’)fp(v’)dwdn + (AM(V)), ,
P

fa(v,t + At) = lffoC(w’)fn(v’)dwdn + (AM(V))_,
P

with

Pp — Pn
e

1
AM(v) = > f f D (fp(W') — fa(w')) M(v") dw dn — M (V).
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summarize — HDP methods

Hybrid methods with Deviational Particles for VP-BGK

Collision step:
oM =0,
atfd = —/de.

Advection step:

% (M) + V- (VM) + Vi - (Vg = (0, —pE, —pu - E)T,
Ofg + THg = —(I = IIy) (T M) + Iy (7 1g).
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Linear Landau
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