Hybrid methods with Deviational Particles for spatial inhomogeneous plasma

Bokai Yan

Joint work with Russel Caflisch
Department of Mathematics, UCLA

KI-net: Young Researchers Workshop University of Maryland, College Park Nov 9-13, 2015

The non-equilibrium plasma can be modeled by Vlasov-Poisson-Landau (VPL) system

$$
\left\{\begin{array}{l}
\partial_{t} f+\mathbf{v} \cdot \nabla_{\mathbf{x}} f-\mathbf{E} \cdot \nabla_{\mathbf{v}} f=Q_{L}(f, f) \\
-\nabla_{\mathbf{x}} \cdot \mathbf{E}=\rho(t, \mathbf{x})=\int f(t, \mathbf{x}, \mathbf{v}) \mathrm{d} \mathbf{v}
\end{array}\right.
$$

where the Landau (or Landau-Fokker-Planck) operator

$$
Q_{L}(g, f)=\frac{A}{4} \frac{\partial}{\partial v_{i}} \int_{\mathbb{R}^{3}} u \sigma_{t r}(u)\left(u^{2} \delta_{i j}-u_{i} u_{j}\right)\left(\frac{\partial}{\partial v_{j}}-\frac{\partial}{\partial w_{j}}\right) g(\mathbf{w}) f(\mathbf{v}) \mathrm{d} \mathbf{w}
$$

models the binary collisions due to the long range Coulomb interaction.

- Q_{L} is bilinear.
- $Q_{L}(g, f)$ is asymmetric. It describes the change in f due to collisions with g.
- Conserve density, momentum and energy;
- Dissipate entropy. $f \rightarrow M$ as $t \rightarrow \infty$. $Q_{L}(M, M)=0$.

Probabilistic methods

The PIC-MCC (or PIC-DSMC) method is widely used in plasma simulation

- Particle-In-Cell method (PIC) for collisionless plasma. Dawson 83, Birdsall-Langdon 85 ...
- Direct Simulation Monte Carlo (DSMC) for binary collisions. Takizuka-Abe 77, Nanbu 97, Bobylev-Nanbu 2000.

Probabilistic methods

The PIC-MCC (or PIC-DSMC) method is widely used in plasma simulation

- Particle-In-Cell method (PIC) for collisionless plasma. Dawson 83, Birdsall-Langdon 85 ...
- Direct Simulation Monte Carlo (DSMC) for binary collisions. Takizuka-Abe 77, Nanbu 97, Bobylev-Nanbu 2000.

Problem: near fluid regime, where $f \approx M$,

- Most computation is spent on the collisions between particles sampled from M.
- $Q_{L}(M, M)=0$. Collisions of M have no net effect.

Highly inefficient!

Hybrid methods

Apply decomposition

$$
f(t, \mathbf{x}, \mathbf{v})=M(t, \mathbf{x}, \mathbf{v})+f_{d}(t, \mathbf{x}, \mathbf{v})
$$

- Equilibrium $M(t, \mathbf{x}, \mathbf{v})$: evolved according to a fluid equation - cheap
- Deviation $f_{d}(t, \mathbf{x}, \mathbf{v})$: represented by particles - expensive

Hybrid methods

Apply decomposition

$$
f(t, \mathbf{x}, \mathbf{v})=M(t, \mathbf{x}, \mathbf{v})+f_{d}(t, \mathbf{x}, \mathbf{v})
$$

- Equilibrium $M(t, \mathbf{x}, \mathbf{v})$: evolved according to a fluid equation - cheap
- Deviation $f_{d}(t, \mathbf{x}, \mathbf{v})$: represented by particles - expensive

To minimize the deviation part, we allow $f_{d}(t, \mathbf{x}, \mathbf{v})<0$.

Hybrid methods

Apply decomposition

$$
f(t, \mathbf{x}, \mathbf{v})=M(t, \mathbf{x}, \mathbf{v})+f_{d}(t, \mathbf{x}, \mathbf{v})
$$

- Equilibrium $M(t, \mathbf{x}, \mathbf{v})$: evolved according to a fluid equation - cheap
- Deviation $f_{d}(t, \mathbf{x}, \mathbf{v})$: represented by particles - expensive

To minimize the deviation part, we allow $f_{d}(t, \mathbf{x}, \mathbf{v})<0$.

$\left(f_{d}\right)_{+}$and $\left(f_{d}\right)_{-}$are represented by positive and negative deviational particles.

Hybrid methods

To solve the VPL system:

- Need to evolve M and f_{d} in advection.
- Q_{L} is bilinear \Rightarrow Need to consider P-P, P-N, N-N, P-M and $\mathrm{N}-\mathrm{M}$ collisions. M-M collisions are omitted.

Hybrid methods

Related works,

- Caflisch-Wang-Dimarco-Cohen-Dimits (2008), Ricketson-Rosin-Caflisch-Dimits (2013)
- Hadjiconstantinou et.al. (2005)
- Crestetto-Crouseilles-Lemou (2012)
- δf methods (1988)

Hybrid methods

Related works,

- Caflisch-Wang-Dimarco-Cohen-Dimits (2008), Ricketson-Rosin-Caflisch-Dimits (2013)
- Hadjiconstantinou et.al. (2005)
- Crestetto-Crouseilles-Lemou (2012)
- δf methods (1988)

Our goal: to design a hybrid method with deviational particles for the spatial inhomogeneous VPL system

- much more efficient than PIC-MCC near fluid regime
- applicable to all regimes

In our methods:

- Deviational particles have 0 density, momentum and energy in each spatial cell, i.e. for $\phi=1, \mathbf{v},|\mathbf{v}|^{2} / 2$,

$$
\left\langle\phi f_{d}\left(t, \mathbf{x}_{k}, \mathbf{v}\right)\right\rangle=N_{\mathrm{eff}} \sum_{\mathbf{v}_{p} \in C_{k}} \phi\left(\mathbf{v}_{p}\right)-N_{\mathrm{eff}} \sum_{\mathbf{v}_{n} \in C_{k}} \phi\left(\mathbf{v}_{n}\right)=0
$$

in each cell C_{k}.

- $N_{\text {eff }}$, the effective number of deviational particles, is a prescribed constant.

These restrictions can be relaxed in applications.

First, apply an operator splitting.

- Collision substep: in each cell,

$$
\partial_{t} f=Q_{L}(f)
$$

M is invariant in this substep.

- Advection substep:

$$
\left\{\begin{array}{l}
\partial_{t} f+\mathbf{v} \cdot \nabla_{\mathbf{x}} f-\mathbf{E} \cdot \nabla_{\mathbf{v}} f=0 \\
-\nabla_{\mathbf{x}} \cdot \mathbf{E}=\rho(t, \mathbf{x})
\end{array}\right.
$$

Deviational particles in Collisions

Collisions - Landau

Q_{L} is bilinear \Rightarrow Need to perform P-P, P-N, N-N, P-M and N-M collision.
A straightforward method: perform each type of collision individually.

Collisions - Landau

Q_{L} is bilinear \Rightarrow Need to perform P-P, P-N, N-N, P-M and N-M collision.
A straightforward method: perform each type of collision individually.
Consider the $\mathrm{P}-\mathrm{N}$ collisions. Plug $f=M+f_{p}-f_{n}$ into $\partial_{t} f=Q(f, f)$.

$$
\left\{\begin{array}{l}
\partial_{t}\left(+f_{p}\right)=Q\left(-f_{n},+f_{p}\right)+\ldots \\
\partial_{t}\left(-f_{n}\right)=Q\left(+f_{p},-f_{n}\right)+\ldots
\end{array}\right.
$$

${ }^{1}$ Hadjiconstantinou 2005, for rarefied gas

Collisions - Landau

Q_{L} is bilinear \Rightarrow Need to perform P-P, P-N, N-N, P-M and N-M collision.
A straightforward method: perform each type of collision individually.
Consider the $\mathrm{P}-\mathrm{N}$ collisions. Plug $f=M+f_{p}-f_{n}$ into $\partial_{t} f=Q(f, f)$.

$$
\left\{\begin{array}{l}
\partial_{t} f_{p}=-Q\left(f_{n}, f_{p}\right)+\ldots \\
\partial_{t} f_{n}=Q\left(f_{p}, f_{n}\right)+\ldots
\end{array}\right.
$$

Collision rules ${ }^{1}$

$$
\begin{array}{ll}
\text { P-P: } & \mathbf{v}_{+}, \mathbf{w}_{+} \rightarrow \mathbf{v}_{+}^{\prime}, \mathbf{w}_{+}^{\prime}, \\
\text { P-N: } & \mathbf{v}_{+}, \mathbf{w}_{-} \rightarrow 2 \mathbf{v}_{+}, \mathbf{v}_{-}^{\prime}, \mathbf{w}_{-}^{\prime} .
\end{array}
$$

Collisions - Landau

Q_{L} is bilinear \Rightarrow Need to perform P-P, P-N, N-N, P-M and N-M collision.
A straightforward method: perform each type of collision individually.
Consider the $\mathrm{P}-\mathrm{N}$ collisions. Plug $f=M+f_{p}-f_{n}$ into $\partial_{t} f=Q(f, f)$.

$$
\left\{\begin{array}{l}
\partial_{t} f_{p}=-Q\left(f_{n}, f_{p}\right)+\ldots \\
\partial_{t} f_{n}=Q\left(f_{p}, f_{n}\right)+\ldots
\end{array}\right.
$$

Collision rules ${ }^{1}$

$$
\begin{array}{ll}
\text { P-P: } & \mathbf{v}_{+}, \mathbf{w}_{+} \rightarrow \mathbf{v}_{+}^{\prime}, \mathbf{w}_{+}^{\prime}, \\
\text { P-N: } & \mathbf{v}_{+}, \mathbf{w}_{-} \rightarrow 2 \mathbf{v}_{+}, \mathbf{v}_{-}^{\prime}, \mathbf{w}_{-}^{\prime} .
\end{array}
$$

Particle number increases!
\#(particle created) \propto \#(collision).
${ }^{1}$ Hadjiconstantinou 2005, for rarefied gas

Collisions - Landau

In rarefied gas (charge free),

- short range collision \Rightarrow \# collisions in one time step $=O(\Delta t)$
- The particle number grows in the physical scale

$$
\left.N_{d}\right|_{t+\Delta t}=\left.(1+c \Delta t) N_{d}\right|_{t}
$$

In Coulomb gas (charged),

- long range collision \Rightarrow \# collisions in one time step $=N$
- The particle number grows in the numerical scale in Coulomb collisions!

$$
\left.N_{d}\right|_{t+\Delta t}=\left.\left(1+\frac{N_{m}+2 N_{n}}{N_{m}+N_{p}-N_{n}}\right) N_{d}\right|_{t}
$$

Collisions - Landau

A new method: group the collisions.
For a general bilinear collision operator

$$
Q(f, f)=Q\left(f, f_{d}\right)+Q(f, M)=Q\left(f, f_{d}\right)+Q\left(f_{d}, M\right)+\underbrace{Q(M, M)}_{=0} .
$$

$\partial_{t} f=Q(f, f)$ becomes

$$
\partial_{t} f_{d}=Q\left(f, f_{d}\right)+Q\left(f_{d}, M\right)
$$

Collisions - Landau

A new method: group the collisions.
For a general bilinear collision operator

$$
Q(f, f)=Q\left(f, f_{d}\right)+Q(f, M)=Q\left(f, f_{d}\right)+Q\left(f_{d}, M\right)+\underbrace{Q(M, M)}_{=0} .
$$

$\partial_{t} f=Q(f, f)$ becomes

$$
\partial_{t} f_{d}=Q\left(f, f_{d}\right)+Q\left(f_{d}, M\right)
$$

$Q\left(f, f_{d}\right)=Q\left(f, f_{p}\right)-Q\left(f, f_{n}\right)$.
$Q\left(f, f_{p}\right)$ groups three terms: $Q\left(M, f_{p}\right), Q\left(f_{p}, f_{p}\right),-Q\left(f_{n}, f_{p}\right)$.

Collisions - Landau

A Monte Carlo method

$$
\begin{array}{ll}
f_{d}(t+\Delta t)=\underbrace{f_{d}+\Delta t Q\left(f, f_{d}\right)}_{\swarrow} & +\underbrace{\Delta t Q\left(f_{d}, M\right)}_{\searrow} \\
\text { regular collisions } & \text { source term, } \\
\text { between } f \text { and } f_{d}, & N_{d} \text { increases by } \\
N_{d} \text { not change } & O\left(\Delta t N_{d}\right)
\end{array}
$$

The particle number grows in the physical scale for any binary collisions

$$
\left.N_{d}\right|_{t+\Delta t}=\left.(1+c \Delta t) N_{d}\right|_{t} .
$$

Collisions - Landau

$$
f_{d}(t+\Delta t)=f_{d}+\Delta t Q\left(f, f_{d}\right)+\Delta t Q\left(f_{d}, M\right)
$$

Sample a particle from f and collide with a deviational particle.

Collisions - Landau

$$
f_{d}(t+\Delta t)=f_{d}+\Delta t Q\left(f, f_{d}\right)+\Delta t Q\left(f_{d}, M\right)
$$

Sample a particle from f and collide with a deviational particle. How?

Collisions - Landau

$$
f_{d}(t+\Delta t)=f_{d}+\Delta t Q\left(f, f_{d}\right)+\Delta t Q\left(f_{d}, M\right)
$$

Sample a particle from f and collide with a deviational particle. How?

- $f=M+f_{d}$.
- Need to recover the distribution f_{d} from deviational particles \Rightarrow computationally expensive and inaccurate.

Collisions - Landau

We introduce coarse particles

- give an approximation to f.
- Initially sampled from $f(v, t=0)$ directly.
- Then perform regular PIC-MCC method.
- To sample a particle from f, just randomly pick one sample from coarse particles.

Collisions - Landau

We introduce coarse particles

- give an approximation to f.
- Initially sampled from $f(v, t=0)$ directly.
- Then perform regular PIC-MCC method.
- To sample a particle from f, just randomly pick one sample from coarse particles.

One only needs, in each cell

$$
N_{c} \geq N_{d} . \quad \text { A small number! }
$$

Hence

- Coarse particles give a coarse, direct approximation of f.
- Deviational particles give a finer, deviational approximation of $(f-M)$.

Collisions - Landau

The collision step is solved by ${ }^{2}$

$$
\partial_{t} f_{d}=Q\left(f, f_{d}\right)+Q\left(f_{d}, M\right),
$$

${ }^{2}$ Yan-Caflisch, J. Comput. Phys. 2015

Collisions - Landau

The collision step is solved by ${ }^{2}$

$$
\begin{aligned}
& \partial_{t} f_{d}=Q\left(f_{c}, f_{d}\right)+Q\left(f_{d}, M\right), \\
& \partial_{t} f_{c}=Q\left(f_{c}, f_{c}\right) .
\end{aligned}
$$

${ }^{2}$ Yan-Caflisch, J. Comput. Phys. 2015

Collisions - Landau

Step 2, Sample from the source term.

$$
\left\{\begin{array}{l}
f_{d}(t+\Delta t)=f_{d}+\Delta t Q\left(f_{c}, f_{d}\right)+\Delta t Q\left(f_{d}, M\right) \\
f_{c}(t+\Delta t)=f_{c}+\Delta t Q\left(f_{c}, f_{c}\right)
\end{array}\right.
$$

Source term

$$
Q\left(f_{d}, M\right)=N_{\mathrm{eff}} \sum_{\mathbf{v}_{p}} Q\left(\delta\left(\mathbf{v}-\mathbf{v}_{p}\right), M(\mathbf{v})\right)-N_{\mathrm{eff}} \sum_{\mathbf{v}_{n}} Q\left(\delta\left(\mathbf{v}-\mathbf{v}_{n}\right), M(\mathbf{v})\right)
$$

models the change on Maxwellian due to collisions with deviational particles.
Need to know how to sample from $Q\left(\delta\left(\mathbf{v}-\mathbf{v}_{p}\right), M(\mathbf{v})\right)$.

- $Q\left(\delta\left(\mathbf{v}-\mathbf{v}_{p}\right), M(\mathbf{v})\right)$ exhibits singularities at $\mathbf{v}=\mathbf{v}_{p}$.
- We derived an efficient approximation for the Landau operator $Q_{L}(\delta, M)$.

Collisions - summarize

For Landau operator,

$$
\left\{\begin{array}{l}
\partial_{t} f_{d}=Q\left(f_{c}, f_{d}\right)+Q\left(f_{d}, M\right) \\
\partial_{t} f_{c}=Q\left(f_{c}, f_{c}\right)
\end{array}\right.
$$

- Both N_{p} and N_{n} grow due to the source $Q\left(f_{d}, M\right)$.
- But their distributions approach each other due to the collisions with f_{c}, i.e. $Q\left(f_{c}, f_{d}\right)$.
- As a result, $f_{d}=\left(f_{d}\right)_{+}-\left(f_{d}\right)_{-}$decays.

Deviational particles in Advection

Advection of Maxwellian

Apply the macro-micro decomposition ${ }^{3}$ to evolve M and f_{d}.
Advection of M :
With $\phi=1, \mathbf{v},|\mathbf{v}|^{2} / 2$, take moments of

$$
\partial_{t} f+\mathbf{v} \cdot \nabla_{\mathbf{x}} f-\mathbf{E} \cdot \nabla_{\mathbf{v}} f=0
$$

one has

$$
\frac{\partial}{\partial t}\langle M \phi\rangle+\nabla_{\mathbf{x}} \cdot\langle\mathbf{v} M \phi\rangle+\nabla_{\mathbf{x}} \cdot\left\langle\mathbf{v} f_{d} \phi\right\rangle=(0,-\rho \mathbf{E},-\rho \mathbf{u} \cdot \mathbf{E})^{T} .
$$

[^0]
Advection of Maxwellian

Apply the macro-micro decomposition ${ }^{3}$ to evolve M and f_{d}.
Advection of M :
With $\phi=1, \mathbf{v},|\mathbf{v}|^{2} / 2$, take moments of

$$
\partial_{t} f+\mathbf{v} \cdot \nabla_{\mathbf{x}} f-\mathbf{E} \cdot \nabla_{\mathbf{v}} f=0
$$

one has

$$
\frac{\partial}{\partial t}\langle M \phi\rangle+\nabla_{\mathbf{x}} \cdot\langle\mathbf{v} M \phi\rangle+\nabla_{\mathbf{x}} \cdot\left\langle\mathbf{v} f_{d} \phi\right\rangle=(0,-\rho \mathbf{E},-\rho \mathbf{u} \cdot \mathbf{E})^{T} .
$$

The moments of M can be updated by a compressible Euler system + electric field terms + corrections from deviational particles.

[^1]
Advection of deviational particles

Denote $\mathcal{T}=\mathbf{v} \cdot \nabla_{\mathbf{x}}-\mathbf{E} \cdot \nabla_{\mathbf{v}}$. Rewrite $\partial_{t} f+\mathcal{T} f=0$ as

$$
\begin{equation*}
\partial_{t} f_{d}+\mathcal{T} f_{d}=-\partial_{t} M-\mathcal{T} M \tag{1}
\end{equation*}
$$

Advection of deviational particles

Denote $\mathcal{T}=\mathbf{v} \cdot \nabla_{\mathbf{x}}-\mathbf{E} \cdot \nabla_{\mathbf{v}}$. Rewrite $\partial_{t} f+\mathcal{T} f=0$ as

$$
\begin{equation*}
\partial_{t} f_{d}+\mathcal{T} f_{d}=-\partial_{t} M-\mathcal{T} M \tag{1}
\end{equation*}
$$

To remove $\partial_{t} M$ term, define a projection operator Π_{M} by

$$
\Pi_{M} \psi=\frac{M}{\rho_{M}}\left[\langle\psi\rangle+\frac{\left(\mathbf{v}-\mathbf{u}_{M}\right) \cdot\left\langle\left(\mathbf{v}-\mathbf{u}_{M}\right) \psi\right\rangle}{T_{M}}+\frac{1}{2 d}\left(\frac{\left|\mathbf{v}-\mathbf{u}_{M}\right|^{2}}{T_{M}}-d\right)\left\langle\left(\frac{\left|\mathbf{v}-\mathbf{u}_{M}\right|^{2}}{T_{M}}-d\right) \psi\right\rangle\right],
$$

$\Pi_{M} \psi$ is in the form of $M(\mathbf{v}) P_{2}(\mathbf{v})$, and has same moments of ψ.

Advection of deviational particles

Denote $\mathcal{T}=\mathbf{v} \cdot \nabla_{\mathbf{x}}-\mathbf{E} \cdot \nabla_{\mathbf{v}}$. Rewrite $\partial_{t} f+\mathcal{T} f=0$ as

$$
\begin{equation*}
\partial_{t} f_{d}+\mathcal{T} f_{d}=-\partial_{t} M-\mathcal{T} M \tag{1}
\end{equation*}
$$

To remove $\partial_{t} M$ term, define a projection operator Π_{M} by
$\Pi_{M} \psi=\frac{M}{\rho_{M}}\left[\langle\psi\rangle+\frac{\left(\mathbf{v}-\mathbf{u}_{M}\right) \cdot\left\langle\left(\mathbf{v}-\mathbf{u}_{M}\right) \psi\right\rangle}{T_{M}}+\frac{1}{2 d}\left(\frac{\left|\mathbf{v}-\mathbf{u}_{M}\right|^{2}}{T_{M}}-d\right)\left\langle\left(\frac{\left|\mathbf{v}-\mathbf{u}_{M}\right|^{2}}{T_{M}}-d\right) \psi\right\rangle\right]$,
$\Pi_{M} \psi$ is in the form of $M(\mathbf{v}) P_{2}(\mathbf{v})$, and has same moments of ψ.
Note

$$
\left\langle\phi f_{d}\right\rangle=0 \quad \Rightarrow \quad \Pi_{M} f_{d}=\Pi_{M}\left(\partial_{t} f_{d}\right)=\left(I-\Pi_{M}\right)\left(\partial_{t} M\right)=0
$$

Apply $\left(I-\Pi_{M}\right)$ on both sides of (1),

$$
\partial_{t} f_{d}+\mathcal{T} f_{d}=-\left(I-\Pi_{M}\right)(\mathcal{T} M)+\Pi_{M}\left(\mathcal{T} f_{d}\right)
$$

Advection of deviational particles

Denote $\mathcal{T}=\mathbf{v} \cdot \nabla_{\mathbf{x}}-\mathbf{E} \cdot \nabla_{\mathbf{v}}$. Rewrite $\partial_{t} f+\mathcal{T} f=0$ as

$$
\begin{equation*}
\partial_{t} f_{d}+\mathcal{T} f_{d}=-\partial_{t} M-\mathcal{T} M \tag{1}
\end{equation*}
$$

To remove $\partial_{t} M$ term, define a projection operator Π_{M} by

$$
\Pi_{M} \psi=\frac{M}{\rho_{M}}\left[\langle\psi\rangle+\frac{\left(\mathbf{v}-\mathbf{u}_{M}\right) \cdot\left\langle\left(\mathbf{v}-\mathbf{u}_{M}\right) \psi\right\rangle}{T_{M}}+\frac{1}{2 d}\left(\frac{\left|\mathbf{v}-\mathbf{u}_{M}\right|^{2}}{T_{M}}-d\right)\left\langle\left(\frac{\left|\mathbf{v}-\mathbf{u}_{M}\right|^{2}}{T_{M}}-d\right) \psi\right\rangle\right],
$$

$\Pi_{M} \psi$ is in the form of $M(\mathbf{v}) P_{2}(\mathbf{v})$, and has same moments of ψ.
Note

$$
\left\langle\phi f_{d}\right\rangle=0 \quad \Rightarrow \quad \Pi_{M} f_{d}=\Pi_{M}\left(\partial_{t} f_{d}\right)=\left(I-\Pi_{M}\right)\left(\partial_{t} M\right)=0 .
$$

Apply $\left(I-\Pi_{M}\right)$ on both sides of (1),

$$
\partial_{t} f_{d}+\mathcal{T} f_{d}=-\left(I-\Pi_{M}\right)(\mathcal{T} M)+\Pi_{M}\left(\mathcal{T} f_{d}\right)
$$

- Left: advection of deviational particles, as in PIC.
- Right: source term. The Maxwellian form cannot be preserved in advection. $O\left(\Delta t\left(N_{\text {eff }}^{-1}+N_{d}\right)\right)$ deviational particles are created.

summarize - HDP methods

Hybrid methods with Deviational Particles ${ }^{4}$ for VPL. Coarse particles are needed.

Collision step:

$$
\left\{\begin{array}{l}
\partial_{t} f_{c}=Q\left(f_{c}, f_{c}\right) \\
\partial_{t} M=0 \\
\partial_{t} f_{d}=Q\left(f_{c}, f_{d}\right)+Q\left(f_{d}, M\right)
\end{array}\right.
$$

Advection step:

$$
\left\{\begin{array}{l}
\partial_{t} f_{c}+\mathcal{T} f_{c}=0 \\
\frac{\partial}{\partial t}\langle M \phi\rangle+\nabla_{\mathbf{x}} \cdot\langle\mathbf{v} M \phi\rangle+\nabla_{\mathbf{x}} \cdot\left\langle\mathbf{v} f_{d} \phi\right\rangle=(0,-\rho \mathbf{E},-\rho \mathbf{u} \cdot \mathbf{E})^{T}, \\
\partial_{t} f_{d}+\mathcal{T} f_{d}=-\left(I-\Pi_{M}\right)(\mathcal{T} M)+\Pi_{M}\left(\mathcal{T} f_{d}\right), \\
-\nabla_{\mathbf{x}} \cdot \mathbf{E}=\rho_{M}(\mathbf{x})
\end{array}\right.
$$

This method is also applied on VP-BGK system. Coarse particles are not needed in VP-BGK.

[^2]
Resample Deviational and Coarse Particles

Resample Particles

How?

- Recover f_{d} from deviational particles
- Discard old deviational and/or coarse particles, sample new ones from f_{d} and/or $M+f_{d}$

Why do we need to resample particles?
One needs in each cell,

$$
N_{c} \geq N_{d}
$$

However N_{d} grows with time, while N_{c} is constant. Whenever this condition fails, two options:

- Reduce N_{d}. \Leftarrow Resample deviational particles.
- Increase N_{c}. \Leftarrow Resample coarse particles.

Resample deviational particles

$\downarrow f_{d}$

Resample deviational particles

Evolution of Particle Numbers in homogeneous case,

Particle resampling is accurate but expensive. But it is only needed whenever $N_{c} \geq N_{d}$ is violated.

Resample coarse particles

When do we need to resample coarse particles?

- Resampling of deviational particles may fail to reduce N_{d}.
- N_{d} increases in the advection
\Rightarrow small overlap between $\left(f_{d}\right)_{+}$and $\left(f_{d}\right)_{-}$
\Rightarrow Increase N_{c} to satisfy $N_{c} \geq N_{d}$.
- After a relatively long time, f_{c} is not a "good" coarse approximation of f. \Rightarrow Need to be refreshed.

Resample coarse particles

Evolution of Particle Numbers in HDP method for inhomogeneous VPL system:

Numerical Tests

Homogeneous tests

Solve the homogeneous equation $\partial_{t} f=Q_{L}(f, f)$ by

$$
\left\{\begin{array}{l}
\partial_{t} f_{c}=Q_{L}\left(f_{c}, f_{c}\right), \\
\partial_{t} f_{d}=Q_{L}\left(f_{c}, f_{d}\right)+Q_{L}\left(f_{d}, M\right) .
\end{array}\right.
$$

We take $\mathbf{v} \in \mathbb{R}^{3}$.

Bump on Tail problem

Figure : $\iint f\left(v_{x}, v_{y}, v_{z}\right) \mathrm{d} v_{y} \mathrm{~d} v_{z}$ in Bump-on-Tail problem.

Bump on Tail problem

Figure : $M,\left(f_{d}\right)_{+}$and $\left(f_{d}\right)_{-}$in Bump-on-Tail problem.

Efficiency test

Figure : The efficiency test on Rosenbluth's problem.

Inhomogeneous tests

Apply HDP methods on spatial inhomogeneous VPL systems.
Test on the Landau damping problems, with $f(t=0, x, \mathbf{v})=M(t=0, x, \mathbf{v})$,

$$
\left\{\begin{array}{l}
\rho(t=0, x)=1+\alpha \sin (x) \\
\mathbf{u}(t=0, x)=0 \\
T(t=0, x)=1
\end{array}\right.
$$

with $x \in[0,4 \pi], \mathbf{v} \in \mathbb{R}^{3}$.
Linear Landau damping, $\alpha=0.01$
Nonlinear Landau damping, $\alpha=0.4$

Linear Landau dampling in VPL system

Linear Landau dampling in VPL system

Figure : The distribution in the $x-v_{1}$ phase space at time $t=1.25$ in the linear Landau damping problem of the VPL system.

Nonlinear Landau dampling in VPL system

Nonlinear Landau dampling in VPL system

Figure : The distribution in the $x-v_{1}$ phase space at time $t=1.25$ in the nonlinear Landau damping problem of the VPL system.

Convergence tests on VPL system

Figure : Left: half order convergence in effective number in nonlinear Landau damping. Right: first order convergence in Δt in linear Landau damping for the HDP method.

Efficiency test on VPL system

$$
\rho(t=0, x)=1+\alpha \sin (x)
$$

Figure : The efficiency test of the HDP method on the VPL system for different α in the initial density.

Conclusion and Future work

We have designed a hybrid method with deviational particles for the VP-BGK and VPL system,

- much more efficient than PIC-MCC near the fluid regime,
- applicable to kinetic regime.
- Even in the worst case, at least we have a solution from PIC-MCC method, that is the coarse particles.

Next,

- Multi-component plasma.
- Other effective ways to reduce particle number.
- Mixed regimes.

Backup slides

Negative particle methods for rarefied gas

Insert the splitting $f(\mathbf{v})=m(\mathbf{v})-f_{n}(\mathbf{v})+f_{p}(\mathbf{v})$,

$$
\begin{aligned}
\frac{\mathrm{d} f}{\mathrm{~d} t}= & Q(m, m) & & M-M \\
& +\left(Q^{+}\left(f_{p}, f_{p}\right)-Q^{-}\left(f_{p}\right) f_{p}\right) & & P-P \\
& +\left(-Q^{+}\left(f_{n}, f_{p}\right)-Q^{+}\left(f_{p}, f_{n}\right)+Q^{-}\left(f_{n}\right) f_{p}+Q^{-}\left(f_{p}\right) f_{n}\right) & & P-N \\
& +\left(Q^{+}\left(f_{n}, f_{n}\right)-Q^{-}\left(f_{n}\right) f_{n}\right) & & N-N \\
& +\left(Q^{+}\left(f_{p}, m\right)+Q^{+}\left(m, f_{p}\right)-Q^{-}\left(f_{p}\right) m-Q^{-}(m) f_{p}\right) & & P-M \\
& +\left(-Q^{+}\left(f_{n}, m\right)-Q^{+}\left(m, f_{n}\right)+Q^{-}\left(f_{n}\right) m+Q^{-}(m) f_{n}\right) & & N-M
\end{aligned}
$$

Negative particle methods for rarefied gas

Insert the splitting $f(\mathbf{v})=m(\mathbf{v})-f_{n}(\mathbf{v})+f_{p}(\mathbf{v})$,

$$
\begin{aligned}
\frac{\mathrm{d} f}{\mathrm{~d} t}= & Q(m, m) & & M-M \\
& +\left(Q^{+}\left(f_{p}, f_{p}\right)-Q^{-}\left(f_{p}\right) f_{p}\right) & & P-P \\
& +\left(-Q^{+}\left(f_{n}, f_{p}\right)-Q^{+}\left(f_{p}, f_{n}\right)+Q^{-}\left(f_{n}\right) f_{p}+Q^{-}\left(f_{p}\right) f_{n}\right) & & P-N \\
& +\left(Q^{+}\left(f_{n}, f_{n}\right)-Q^{-}\left(f_{n}\right) f_{n}\right) & & N-N \\
& +\left(Q^{+}\left(f_{p}, m\right)+Q^{+}\left(m, f_{p}\right)-Q^{-}\left(f_{p}\right) m-Q^{-}(m) f_{p}\right) & & P-M \\
& +\left(-Q^{+}\left(f_{n}, m\right)-Q^{+}\left(m, f_{n}\right)+Q^{-}\left(f_{n}\right) m+Q^{-}(m) f_{n}\right) & & N-M
\end{aligned}
$$

Negative particle methods for rarefied gas

Insert the splitting $f(\mathbf{v})=m(\mathbf{v})-f_{n}(\mathbf{v})+f_{p}(\mathbf{v})$,

$$
\begin{aligned}
\frac{\mathrm{d} f}{\mathrm{~d} t}= & Q(m, m) & & M-M \\
& +\left(Q^{+}\left(f_{p}, f_{p}\right)-Q^{-}\left(f_{p}\right) f_{p}\right) & & P-P \\
& +\left(-Q^{+}\left(f_{n}, f_{p}\right)-Q^{+}\left(f_{p}, f_{n}\right)+Q^{-}\left(f_{n}\right) f_{p}+Q^{-}\left(f_{p}\right) f_{n}\right) & & P-N \\
& +\left(Q^{+}\left(f_{n}, f_{n}\right)-Q^{-}\left(f_{n}\right) f_{n}\right) & & N-N \\
& +\left(Q^{+}\left(f_{p}, m\right)+Q^{+}\left(m, f_{p}\right)-Q^{-}\left(f_{p}\right) m-Q^{-}(m) f_{p}\right) & & P-M \\
& +\left(-Q^{+}\left(f_{n}, m\right)-Q^{+}\left(m, f_{n}\right)+Q^{-}\left(f_{n}\right) m+Q^{-}(m) f_{n}\right) & & N-M
\end{aligned}
$$

Reorganize,

$$
\begin{aligned}
& \frac{\mathrm{d} m}{\mathrm{~d} t}= Q(m, m) \\
& \begin{aligned}
\frac{\mathrm{d} f_{p}}{\mathrm{~d} t}= & \left(Q^{+}\left(m, f_{p}\right)+Q^{+}\left(f_{p}, m\right)+Q^{+}\left(f_{p}, f_{p}\right)+Q^{+}\left(f_{n}, f_{n}\right)\right) \\
& \quad-\left(Q^{-}(m)+Q^{-}\left(f_{p}\right)-Q^{-}\left(f_{n}\right)\right) f_{p}+Q^{-}\left(f_{n}\right) m \\
\frac{\mathrm{~d} f_{n}}{\mathrm{~d} t}= & \left(Q^{+}\left(m, f_{n}\right)+Q^{+}\left(f_{n}, m\right)+Q^{+}\left(f_{p}, f_{n}\right)+Q^{+}\left(f_{n}, f_{p}\right)\right) \\
& \quad-\left(Q^{-}(m)+Q^{-}\left(f_{p}\right)-Q^{-}\left(f_{n}\right)\right) f_{n}+Q^{-}\left(f_{p}\right) m .
\end{aligned}
\end{aligned}
$$

Collision rules with negative particles

P-P: $\quad \mathbf{v}_{+}, \mathbf{w}_{+} \rightarrow \mathbf{v}_{+}^{\prime}, \mathbf{w}_{+}^{\prime}$,
P-N: $\quad \mathbf{v}_{+}, \mathbf{w}_{-} \rightarrow 2 \mathbf{v}_{+}, \mathbf{v}_{-}^{\prime}, \mathbf{w}_{-}^{\prime}$,
$\mathrm{N}-\mathrm{N}: \quad \mathbf{v}_{-}, \mathbf{w}_{-} \rightarrow 2 \mathbf{v}_{-}, 2 \mathbf{w}_{-}, \mathbf{v}_{+}^{\prime}, \mathbf{w}_{+}^{\prime}$,
P-M: $\quad m, \mathbf{v}_{+} \rightarrow m, \mathbf{w}_{-}, \mathbf{v}_{+}^{\prime}, \mathbf{w}_{+}^{\prime}$,
$\mathrm{N}-\mathrm{M}: \quad m, \mathbf{v}_{-} \rightarrow m, \mathbf{w}_{+}, \mathbf{v}_{-}^{\prime}, \mathbf{w}_{-}^{\prime}$.

Collision rules with negative particles

$$
\begin{array}{ll}
\text { P-P: } & \mathbf{v}_{+}, \mathbf{w}_{+} \rightarrow \mathbf{v}_{+}^{\prime}, \mathbf{w}_{+}^{\prime}, \\
\text { P-N: } & \mathbf{v}_{+}, \mathbf{w}_{-} \rightarrow 2 \mathbf{v}_{+}, \mathbf{v}_{-}^{\prime}, \mathbf{w}_{-}^{\prime}, \\
\text { N-N: } & \mathbf{v}_{-}, \mathbf{w}_{-} \rightarrow 2 \mathbf{v}_{-}, 2 \mathbf{w}_{-}, \mathbf{v}_{+}^{\prime}, \mathbf{w}_{+}^{\prime}, \\
\text { P-M: } & m, \mathbf{v}_{+} \rightarrow m, \mathbf{w}_{-}, \mathbf{v}_{+}^{\prime}, \mathbf{w}_{+}^{\prime}, \\
\text { N-M: } & m, \mathbf{v}_{-} \rightarrow m, \mathbf{w}_{+}, \mathbf{v}_{-}^{\prime}, \mathbf{w}_{-}^{\prime} .
\end{array}
$$

Problem: particle number increases!

Bobylev-Nanbu approximation

Not solving the LFP equation directly, but the Bobylev-Nanbu approximation (2000'),

$$
f(\mathbf{v}, t+\Delta t)=\frac{1}{\rho} \int_{\mathbb{R}^{3} \times \mathbb{S}^{2}} D\left(\frac{\mathbf{u} \cdot \mathbf{n}}{u}, A \frac{\Delta t}{u^{3}}\right) f\left(\mathbf{v}^{\prime}\right) f\left(\mathbf{w}^{\prime}\right) \mathrm{d} \mathbf{w} \mathrm{~d} \mathbf{n},
$$

with $A=c_{F P}$, and

$$
D(\mu, \tau)=\sum_{l=0}^{\infty} \frac{2 l+1}{4 \pi} P_{l}(\mu) \exp (-l(l+1) \tau)
$$

This is a first order approximation (in Δt) of LFP equation.

- Takizuka and Abe (TA) 1977’

$$
D_{T A}(\mu, \tau)=\frac{1}{2 \pi} \frac{1}{\sqrt{2 \pi \tau}} e^{-\zeta^{2} / 2 \tau} \frac{\mathrm{~d} \zeta}{\mathrm{~d} \mu}
$$

with $\mu=\cos (2 \arctan \zeta)$.

- Nanbu 1997'

$$
D_{\text {Nanbu }}(\mu, \tau)=\frac{A}{4 \pi \sinh A} e^{\mu A}
$$

where A is defined by $\operatorname{coth} A-\frac{1}{A}=e^{-2 \tau}$.

Apply to Coulomb collision

Apply the negative particle method to Bobylev-Nanbu's reformulation,

$$
f(\mathbf{v}, t+\Delta t)=\frac{1}{\rho} \iint_{\mathbb{R}^{3} \times \mathbb{S}^{2}} D\left(\frac{\mathbf{u} \cdot \mathbf{n}}{u}, A \frac{\Delta t}{u^{3}}\right) f\left(\mathbf{w}^{\prime}, t\right) f\left(\mathbf{v}^{\prime}, t\right) \mathrm{d} \mathbf{w} \mathrm{~d} \mathbf{n}=\frac{1}{\rho} P(f, f) .
$$

Split as

$$
\begin{aligned}
& m(\mathbf{v}, t+\Delta t)=\frac{\rho_{m}}{\rho} m(\mathbf{v}, t) \\
& f_{p}(\mathbf{v}, t+\Delta t)=\frac{\rho_{p}^{2}}{\rho} P\left(\hat{f}_{p}, \hat{f}_{p}\right)+\frac{\rho_{n}^{2}}{\rho} P\left(\hat{f}_{n}, \hat{f}_{n}\right)+\frac{\rho_{m} \rho_{p}}{\rho} P\left(\hat{m}, \hat{f}_{p}\right)+\frac{\rho_{p} \rho_{m}}{\rho} P\left(\hat{f}_{p}, \hat{m}\right) \\
& f_{n}(\mathbf{v}, t+\Delta t)=\frac{\rho_{p} \rho_{n}}{\rho} P\left(\hat{f}_{p}, \hat{f}_{n}\right)+\frac{\rho_{n} \rho_{p}}{\rho} P\left(\hat{f}_{n}, \hat{f}_{p}\right)+\frac{\rho_{m} \rho_{n}}{\rho} P\left(\hat{m}, \hat{f}_{n}\right)+\frac{\rho_{n} \rho_{m}}{\rho} P\left(\hat{f}_{n}, \hat{m}\right),
\end{aligned}
$$

with

$$
\begin{gathered}
\rho=\int f(\mathbf{v}, t) \mathrm{d} \mathbf{v}, \quad \rho_{m}=\int m(\mathbf{v}, t) \mathrm{d} \mathbf{v}, \quad \rho_{p}=\int f_{p}(\mathbf{v}, t) \mathrm{d} \mathbf{v}, \quad \rho_{n}=\int f_{n}(\mathbf{v}, t) \mathrm{d} \mathbf{v}, \\
\hat{f}=\frac{f}{\rho}, \quad \hat{m}=\frac{m}{\rho_{m}}, \quad \hat{f}_{p}=\frac{f_{p}}{\rho_{p}}, \quad \hat{f}_{n}=\frac{f_{n}}{\rho_{n}} .
\end{gathered}
$$

Error analysis

What's the error by approximating $Q\left(f, f_{p}\right)$ and $Q\left(f, f_{n}\right)$ with $Q\left(f_{c}, f_{p}\right)$ and $Q\left(f_{c}, f_{n}\right)$?

$$
\begin{aligned}
\partial_{t} f_{p} & =Q\left(f_{c}, f_{p}\right)+\left(Q\left(f_{p}-f_{n}, m\right)\right)_{+} \\
& =\underbrace{Q\left(f, f_{p}\right)+\left(Q\left(f_{p}-f_{n}, m\right)\right)_{+}}_{\text {original equation }}+\underbrace{Q\left(f_{c}-f, f_{p}\right)}_{\text {drift term }},
\end{aligned}
$$

- Solving the original equation with N_{p} P-particles introduces a statistical error $O\left(\rho_{p}\left(N_{p}\right)^{-1 / 2}\right)$.
- The drift term is $O\left(\rho_{p}\left(N_{f}\right)^{-1 / 2}\right)$, since $f_{c}(t)=f(t)+O\left(\rho\left(N_{f}\right)^{-1 / 2}\right)$.
- As long as $N_{f} \geq N_{p}$, one has

$$
O\left(\rho_{p}\left(N_{f}\right)^{-1 / 2}\right) \leq O\left(\rho_{p}\left(N_{p}\right)^{-1 / 2}\right) .
$$

Rosenbluth's problem

Figure : Time evolution of entropy $H(t) / H(0)$ in Rosenbluth's test problem. Blue solid line: regular TA method with 10^{6} particles. Red dashed line: negative particle method with $N_{p}=40000$ initially.

Apply to Coulomb collision

Apply the previous ideas

- combine collisions
- approximate f by F particles
to Bobylev-Nanbu's formulation of Coulomb collision,

$$
\left\{\begin{array}{lr}
f_{c}(\mathbf{v}, t+\Delta t)=\frac{1}{\rho} \iint D f_{c}\left(\mathbf{w}^{\prime}\right) f_{c}\left(\mathbf{v}^{\prime}\right) \mathrm{d} \mathbf{w} \mathrm{~d} \mathbf{n}, & \text { regular collisions } \\
M(\mathbf{v}, t+\Delta t)=M(\mathbf{v}, t), & M \text { not changed } \\
f_{d}(\mathbf{v}, t+\Delta t)=\frac{1}{\rho} \iint D f_{c}\left(\mathbf{w}^{\prime}\right) f_{d}\left(\mathbf{v}^{\prime}\right) \mathrm{d} \mathbf{w} \mathrm{~d} \mathbf{n}+\Delta M(\mathbf{v}), & \text { C-D collisions } \\
\Delta M=\Delta t Q\left(f_{d}, M\right) . &
\end{array}\right.
$$

Apply to Coulomb collision

Bobylev-Nanbu's formulation

$$
f(\mathbf{v}, t+\Delta t)=\frac{1}{\rho} \iint_{\mathbb{R}^{3} \times S^{2}} D\left(\frac{\mathbf{u} \cdot \mathbf{n}}{u}, A \frac{\Delta t}{u^{3}}\right) f\left(\mathbf{w}^{\prime}, t\right) f\left(\mathbf{v}^{\prime}, t\right) \mathrm{d} \mathbf{w} \mathrm{~d} \mathbf{n} \doteq \frac{1}{\rho} P(f, f),
$$

can be split by plug in $f=M+f_{p}-f_{n}$,

$$
\begin{aligned}
f(\mathbf{v}, t+\Delta t) & =\frac{1}{\rho} P(M, M)+\frac{1}{\rho} P\left(f, f_{p}\right)-\frac{1}{\rho} P\left(f, f_{n}\right)+\frac{1}{\rho} P\left(f_{p}-f_{n}, M\right) \\
& =M(\mathbf{v})+\frac{1}{\rho} P\left(f, f_{p}\right)-\frac{1}{\rho} P\left(f, f_{n}\right)+\left(\frac{1}{\rho} P\left(f_{p}-f_{n}, M\right)-\frac{\rho_{p}-\rho_{n}}{\rho} M(\mathbf{v})\right),
\end{aligned}
$$

Apply to Coulomb collision

Apply the previous method

$$
\begin{aligned}
& f_{c}(\mathbf{v}, t+\Delta t)=\frac{1}{\rho} \iint D f_{c}\left(\mathbf{w}^{\prime}\right) f_{c}\left(\mathbf{v}^{\prime}\right) \mathrm{d} \mathbf{w} \mathrm{~d} \mathbf{n}, \\
& M(\mathbf{v}, t+\Delta t)=M(\mathbf{v}, t), \\
& f_{p}(\mathbf{v}, t+\Delta t)=\frac{1}{\rho} \iint D f_{c}\left(\mathbf{w}^{\prime}\right) f_{p}\left(\mathbf{v}^{\prime}\right) \mathrm{d} \mathbf{w} \mathrm{~d} \mathbf{n}+(\Delta M(\mathbf{v}))_{+}, \\
& f_{n}(\mathbf{v}, t+\Delta t)=\frac{1}{\rho} \iint D f_{c}\left(\mathbf{w}^{\prime}\right) f_{n}\left(\mathbf{v}^{\prime}\right) \mathrm{d} \mathbf{w} \mathrm{~d} \mathbf{n}+(\Delta M(\mathbf{v}))_{-},
\end{aligned}
$$

with

$$
\Delta M(\mathbf{v})=\frac{1}{\rho} \iint D\left(f_{p}\left(\mathbf{w}^{\prime}\right)-f_{n}\left(\mathbf{w}^{\prime}\right)\right) M\left(\mathbf{v}^{\prime}\right) \mathrm{d} \mathbf{w} \mathrm{~d} \mathbf{n}-\frac{\rho_{p}-\rho_{n}}{\rho} M(\mathbf{v})
$$

summarize - HDP methods

Hybrid methods with Deviational Particles for VP-BGK

Collision step:

$$
\left\{\begin{array}{l}
\partial_{t} M=0, \\
\partial_{t} f_{d}=-\mu f_{d}
\end{array}\right.
$$

Advection step:

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t}\langle M \phi\rangle+\nabla_{\mathbf{x}} \cdot\langle\mathbf{v} M \phi\rangle+\nabla_{\mathbf{x}} \cdot\left\langle\mathbf{v} f_{d} \phi\right\rangle=(0,-\rho \mathbf{E},-\rho \mathbf{u} \cdot \mathbf{E})^{T} \\
\partial_{t} f_{d}+\mathcal{T} f_{d}=-\left(I-\Pi_{M}\right)(\mathcal{T} M)+\Pi_{M}\left(\mathcal{T} f_{d}\right)
\end{array}\right.
$$

Linear Landau dampling in VP-BGK system

Nonlinear Landau dampling in VP-BGK system

[^0]: ${ }^{3}$ Bennoune-Lemou-Mieussens 2008

[^1]: ${ }^{3}$ Bennoune-Lemou-Mieussens 2008

[^2]: ${ }^{4}$ Yan. arXiv:1510.03893

