Hybrid methods with Deviational Particles for spatial inhomogeneous plasma

Bokai Yan

Joint work with Russel Caflisch Department of Mathematics, UCLA

KI-net: Young Researchers Workshop University of Maryland, College Park Nov 9 - 13, 2015 The non-equilibrium plasma can be modeled by Vlasov-Poisson-Landau (VPL) system

$$\begin{cases} \partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f - \mathbf{E} \cdot \nabla_{\mathbf{v}} f = Q_L(f, f), \\ -\nabla_{\mathbf{x}} \cdot \mathbf{E} = \rho(t, \mathbf{x}) = \int f(t, \mathbf{x}, \mathbf{v}) \, \mathrm{d}\mathbf{v}, \end{cases}$$

where the Landau (or Landau-Fokker-Planck) operator

$$Q_L(g,f) = \frac{A}{4} \frac{\partial}{\partial v_i} \int_{\mathbb{R}^3} u \sigma_{tr}(u) (u^2 \delta_{ij} - u_i u_j) \left(\frac{\partial}{\partial v_j} - \frac{\partial}{\partial w_j} \right) g(\mathbf{w}) f(\mathbf{v}) \, \mathrm{d}\mathbf{w}$$

models the binary collisions due to the long range Coulomb interaction.

- Q_L is bilinear.
- *Q_L(g,f)* is asymmetric. It describes the change in *f* due to collisions with *g*.
- Conserve density, momentum and energy;
- Dissipate entropy. $f \to M$ as $t \to \infty$. $Q_L(M, M) = 0$.

Probabilistic methods

The PIC-MCC (or PIC-DSMC) method is widely used in plasma simulation

- Particle-In-Cell method (PIC) for collisionless plasma. Dawson 83, Birdsall-Langdon 85 ...
- Direct Simulation Monte Carlo (DSMC) for binary collisions. Takizuka-Abe 77, Nanbu 97, Bobylev-Nanbu 2000.

Probabilistic methods

The PIC-MCC (or PIC-DSMC) method is widely used in plasma simulation

- Particle-In-Cell method (PIC) for collisionless plasma. Dawson 83, Birdsall-Langdon 85 ...
- Direct Simulation Monte Carlo (DSMC) for binary collisions. Takizuka-Abe 77, Nanbu 97, Bobylev-Nanbu 2000.

Problem: near fluid regime, where $f \approx M$,

- Most computation is spent on the collisions between particles sampled from *M*.
- $Q_L(M, M) = 0$. Collisions of *M* have no net effect.

Highly inefficient!

Apply decomposition

$$f(t, \mathbf{x}, \mathbf{v}) = M(t, \mathbf{x}, \mathbf{v}) + f_d(t, \mathbf{x}, \mathbf{v}),$$

- Equilibrium $M(t, \mathbf{x}, \mathbf{v})$: evolved according to a fluid equation cheap
- Deviation $f_d(t, \mathbf{x}, \mathbf{v})$: represented by particles expensive

Apply decomposition

$$f(t, \mathbf{x}, \mathbf{v}) = M(t, \mathbf{x}, \mathbf{v}) + f_d(t, \mathbf{x}, \mathbf{v}),$$

- Equilibrium M(t, x, v): evolved according to a fluid equation cheap
- Deviation $f_d(t, \mathbf{x}, \mathbf{v})$: represented by particles expensive

To minimize the deviation part, we allow $f_d(t, \mathbf{x}, \mathbf{v}) < 0$.

Apply decomposition

$$f(t, \mathbf{x}, \mathbf{v}) = M(t, \mathbf{x}, \mathbf{v}) + f_d(t, \mathbf{x}, \mathbf{v}),$$

- Equilibrium $M(t, \mathbf{x}, \mathbf{v})$: evolved according to a fluid equation cheap
- Deviation $f_d(t, \mathbf{x}, \mathbf{v})$: represented by particles expensive

To minimize the deviation part, we allow $f_d(t, \mathbf{x}, \mathbf{v}) < 0$.

 $(f_d)_+$ and $(f_d)_-$ are represented by positive and negative deviational particles.

To solve the VPL system:

- Need to evolve M and f_d in advection.
- *Q_L* is bilinear ⇒ Need to consider P-P, P-N, N-N, P-M and N-M collisions. M-M collisions are omitted.

Related works,

- Caflisch-Wang-Dimarco-Cohen-Dimits (2008), Ricketson-Rosin-Caflisch-Dimits (2013)
- Hadjiconstantinou et.al. (2005)
- Crestetto-Crouseilles-Lemou (2012)
- δf methods (1988)

Related works,

- Caflisch-Wang-Dimarco-Cohen-Dimits (2008), Ricketson-Rosin-Caflisch-Dimits (2013)
- Hadjiconstantinou et.al. (2005)
- Crestetto-Crouseilles-Lemou (2012)
- δf methods (1988)

Our goal: to design a hybrid method with deviational particles for the spatial inhomogeneous VPL system

- much more efficient than PIC-MCC near fluid regime
- applicable to all regimes

In our methods:

• Deviational particles have 0 density, momentum and energy in each spatial cell, i.e. for $\phi = 1$, v, $|v|^2/2$,

$$\langle \phi f_d(t, \mathbf{x}_k, \mathbf{v}) \rangle = N_{\mathsf{eff}} \sum_{\mathbf{v}_p \in \mathcal{C}_k} \phi(\mathbf{v}_p) - N_{\mathsf{eff}} \sum_{\mathbf{v}_n \in \mathcal{C}_k} \phi(\mathbf{v}_n) = 0,$$

in each cell C_k .

N_{eff}, the effective number of deviational particles, is a prescribed constant.

These restrictions can be relaxed in applications.

First, apply an operator splitting.

• Collision substep: in each cell,

$$\partial_t f = Q_L(f).$$

M is invariant in this substep.

• Advection substep:

$$\begin{cases} \partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f - \mathbf{E} \cdot \nabla_{\mathbf{v}} f = 0, \\ -\nabla_{\mathbf{x}} \cdot \mathbf{E} = \rho(t, \mathbf{x}). \end{cases}$$

Deviational particles in Collisions

 Q_L is bilinear \Rightarrow Need to perform P-P, P-N, N-N, P-M and N-M collision.

A straightforward method: perform each type of collision individually.

 Q_L is bilinear \Rightarrow Need to perform P-P, P-N, N-N, P-M and N-M collision.

A straightforward method: perform each type of collision individually.

Consider the P-N collisions. Plug $f = M + f_p - f_n$ into $\partial_t f = Q(f, f)$.

$$\begin{cases} \partial_t(+f_p) = Q(-f_n, +f_p) + \dots \\ \partial_t(-f_n) = Q(+f_p, -f_n) + \dots \end{cases}$$

 Q_L is bilinear \Rightarrow Need to perform P-P, P-N, N-N, P-M and N-M collision.

A straightforward method: perform each type of collision individually.

Consider the P-N collisions. Plug $f = M + f_p - f_n$ into $\partial_t f = Q(f, f)$.

$$\begin{cases} \partial_t f_p = -Q(f_n, f_p) + \dots \\ \partial_t f_n = Q(f_p, f_n) + \dots \end{cases}$$

Collision rules¹

$$\begin{array}{ll} \mathsf{P}\text{-}\mathsf{P}\text{:} & \mathbf{v}_{+},\mathbf{w}_{+}\rightarrow\mathbf{v}_{+}',\mathbf{w}_{+}',\\ \\ \mathsf{P}\text{-}\mathsf{N}\text{:} & \mathbf{v}_{+},\mathbf{w}_{-}\rightarrow2\mathbf{v}_{+},\mathbf{v}_{-}',\mathbf{w}_{-}'. \end{array}$$

 Q_L is bilinear \Rightarrow Need to perform P-P, P-N, N-N, P-M and N-M collision.

A straightforward method: perform each type of collision individually.

Consider the P-N collisions. Plug $f = M + f_p - f_n$ into $\partial_t f = Q(f, f)$.

$$\begin{cases} \partial_t f_p = -Q(f_n, f_p) + \dots \\ \partial_t f_n = Q(f_p, f_n) + \dots \end{cases}$$

Collision rules¹

$$\begin{array}{ll} \mathsf{P}\text{-}\mathsf{P}\text{:} & \mathbf{v}_{+},\mathbf{w}_{+}\rightarrow\mathbf{v}_{+}',\mathbf{w}_{+}',\\ \\ \mathsf{P}\text{-}\mathsf{N}\text{:} & \mathbf{v}_{+},\mathbf{w}_{-}\rightarrow2\mathbf{v}_{+},\mathbf{v}_{-}',\mathbf{w}_{-}' \end{array}$$

Particle number increases!

#(particle created) \propto #(collision).

In rarefied gas (charge free),

- short range collision \Rightarrow # collisions in one time step = $O(\Delta t)$
- The particle number grows in the physical scale

$$N_d\Big|_{t+\Delta t} = (1 + c\Delta t) N_d\Big|_t.$$

In Coulomb gas (charged),

- long range collision \Rightarrow # collisions in one time step = N
- The particle number grows in the numerical scale in Coulomb collisions!

$$N_d\Big|_{t+\Delta t} = \left(1 + \frac{N_m + 2N_n}{N_m + N_p - N_n}\right) N_d\Big|_t.$$

A new method: group the collisions.

For a general bilinear collision operator

$$Q(f,f) = Q(f,f_d) + Q(f,M) = Q(f,f_d) + Q(f_d,M) + \underbrace{Q(M,M)}_{=0}.$$

 $\partial_t f = Q(f, f)$ becomes

$$\partial_t f_d = Q(f, f_d) + Q(f_d, M).$$

A new method: group the collisions.

For a general bilinear collision operator

$$Q(f,f) = Q(f,f_d) + Q(f,M) = Q(f,f_d) + Q(f_d,M) + \underbrace{Q(M,M)}_{=0}.$$

 $\partial_t f = Q(f, f)$ becomes

$$\partial_t f_d = Q(f, f_d) + Q(f_d, M).$$

 $Q(f,f_d) = Q(f,f_p) - Q(f,f_n).$ $Q(f,f_p)$ groups three terms: $Q(M,f_p), Q(f_p,f_p), -Q(f_n,f_p).$ A Monte Carlo method

$$f_d(t + \Delta t) = \underbrace{f_d + \Delta t Q(f, f_d)}_{\checkmark} + \underbrace{\Delta t Q(f_d, M)}_{\checkmark}.$$
regular collisions
between *f* and *f_d*,
N_d not change

The particle number grows in the physical scale for *any* binary collisions

$$N_d\Big|_{t+\Delta t} = (1 + c\Delta t) N_d\Big|_t.$$

$$f_d(t + \Delta t) = f_d + \Delta t Q(f, f_d) + \Delta t Q(f_d, M).$$

Sample a particle from f and collide with a deviational particle.

$$f_d(t + \Delta t) = f_d + \Delta t Q(f, f_d) + \Delta t Q(f_d, M).$$

Sample a particle from f and collide with a deviational particle.

How?

$$f_d(t + \Delta t) = f_d + \Delta t Q(f, f_d) + \Delta t Q(f_d, M).$$

 $\underbrace{\text{Sample a particle from } f}_{\text{How}?} \text{ and collide with a deviational particle.}$

- $f = M + f_d$.
- Need to recover the distribution f_d from deviational particles \Rightarrow computationally expensive and inaccurate.

We introduce coarse particles

- give an approximation to f.
 - Initially sampled from f(v, t = 0) directly.
 - Then perform regular PIC-MCC method.
- To sample a particle from *f*, just randomly pick one sample from coarse particles.

We introduce coarse particles

- give an approximation to f.
 - Initially sampled from f(v, t = 0) directly.
 - Then perform regular PIC-MCC method.
- To sample a particle from *f*, just randomly pick one sample from coarse particles.

One only needs, in each cell

 $N_c \ge N_d$. A small number!

Hence

- Coarse particles give a coarse, direct approximation of *f*.
- Deviational particles give a finer, deviational approximation of (f M).

The collision step is solved by²

 $\partial_t f_d = Q(f, f_d) + Q(f_d, M),$

²Yan-Caflisch, J. Comput. Phys. 2015

The collision step is solved by²

$$\partial_t f_d = Q(f_c, f_d) + Q(f_d, M),$$

$$\partial_t f_c = Q(f_c, f_c).$$

²Yan-Caflisch, J. Comput. Phys. 2015

Step 2, Sample from the source term.

$$\begin{cases} f_d(t + \Delta t) = f_d + \Delta t Q(f_c, f_d) + \Delta t Q(f_d, M), \\ f_c(t + \Delta t) = f_c + \Delta t Q(f_c, f_c). \end{cases}$$

Source term

$$Q(f_d, M) = N_{\mathsf{eff}} \sum_{\mathbf{v}_p} Q\left(\delta(\mathbf{v} - \mathbf{v}_p), M(\mathbf{v})\right) - N_{\mathsf{eff}} \sum_{\mathbf{v}_n} Q\left(\delta(\mathbf{v} - \mathbf{v}_n), M(\mathbf{v})\right)$$

models the change on Maxwellian due to collisions with deviational particles.

Need to know how to sample from $Q(\delta(\mathbf{v} - \mathbf{v}_p), M(\mathbf{v}))$.

- $Q(\delta(\mathbf{v} \mathbf{v}_p), M(\mathbf{v}))$ exhibits singularities at $\mathbf{v} = \mathbf{v}_p$.
- We derived an efficient approximation for the Landau operator $Q_L(\delta, M)$.

Landau

Collisions – summarize

For Landau operator,

$$\begin{cases} \partial_t f_d = Q(f_c, f_d) + Q(f_d, M), \\ \partial_t f_c = Q(f_c, f_c). \end{cases}$$

- Both N_p and N_n grow due to the source $Q(f_d, M)$.
- But their distributions approach each other due to the collisions with *f_c*, i.e. *Q*(*f_c*, *f_d*).
- As a result, $f_d = (f_d)_+ (f_d)_-$ decays.

Deviational particles in Advection

Advection of Maxwellian

Apply the macro-micro decomposition³ to evolve M and f_d .

Advection of M:

With $\phi = 1$, **v**, $|\mathbf{v}|^2/2$, take moments of

$$\partial_t f + \mathbf{v} \cdot \nabla_\mathbf{x} f - \mathbf{E} \cdot \nabla_\mathbf{v} f = 0,$$

one has

$$\frac{\partial}{\partial t} \langle M\phi \rangle + \nabla_{\mathbf{x}} \cdot \langle \mathbf{v}M\phi \rangle + \nabla_{\mathbf{x}} \cdot \langle \mathbf{v}f_d\phi \rangle = (0, -\rho \mathbf{E}, -\rho \mathbf{u} \cdot \mathbf{E})^T.$$

³Bennoune-Lemou-Mieussens 2008

Advection of Maxwellian

Apply the macro-micro decomposition³ to evolve M and f_d .

Advection of M:

With $\phi = 1$, **v**, $|\mathbf{v}|^2/2$, take moments of

$$\partial_t f + \mathbf{v} \cdot \nabla_\mathbf{x} f - \mathbf{E} \cdot \nabla_\mathbf{v} f = 0,$$

one has

$$\frac{\partial}{\partial t} \langle M\phi \rangle + \nabla_{\mathbf{x}} \cdot \langle \mathbf{v}M\phi \rangle + \nabla_{\mathbf{x}} \cdot \langle \mathbf{v}f_d\phi \rangle = (0, -\rho \mathbf{E}, -\rho \mathbf{u} \cdot \mathbf{E})^T.$$

The moments of M can be updated by a compressible Euler system + electric field terms + corrections from deviational particles.

³Bennoune-Lemou-Mieussens 2008

Advection of deviational particles

Denote $\mathcal{T} = \mathbf{v} \cdot \nabla_{\mathbf{x}} - \mathbf{E} \cdot \nabla_{\mathbf{v}}$. Rewrite $\partial_t f + \mathcal{T} f = 0$ as

$$\partial_t f_d + \mathcal{T} f_d = -\partial_t M - \mathcal{T} M. \tag{1}$$

Advection of deviational particles

Denote $\mathcal{T} = \mathbf{v} \cdot \nabla_{\mathbf{x}} - \mathbf{E} \cdot \nabla_{\mathbf{v}}$. Rewrite $\partial_t f + \mathcal{T} f = 0$ as

$$\partial_t f_d + \mathcal{T} f_d = -\partial_t M - \mathcal{T} M. \tag{1}$$

To remove $\partial_t M$ term, define a projection operator Π_M by

$$\Pi_M \psi = \frac{M}{\rho_M} \left[\langle \psi \rangle + \frac{(\mathbf{v} - \mathbf{u}_M) \cdot \langle (\mathbf{v} - \mathbf{u}_M) \psi \rangle}{T_M} + \frac{1}{2d} \left(\frac{|\mathbf{v} - \mathbf{u}_M|^2}{T_M} - d \right) \left(\left(\frac{|\mathbf{v} - \mathbf{u}_M|^2}{T_M} - d \right) \psi \right) \right],$$

 $\Pi_M \psi$ is in the form of $M(\mathbf{v})P_2(\mathbf{v})$, and has same moments of ψ .

Advection of deviational particles

Denote $\mathcal{T} = \mathbf{v} \cdot \nabla_{\mathbf{x}} - \mathbf{E} \cdot \nabla_{\mathbf{v}}$. Rewrite $\partial_t f + \mathcal{T} f = 0$ as

$$\partial_t f_d + \mathcal{T} f_d = -\partial_t M - \mathcal{T} M. \tag{1}$$

To remove $\partial_t M$ term, define a projection operator Π_M by

$$\Pi_M \psi = \frac{M}{\rho_M} \left[\langle \psi \rangle + \frac{(\mathbf{v} - \mathbf{u}_M) \cdot \langle (\mathbf{v} - \mathbf{u}_M) \psi \rangle}{T_M} + \frac{1}{2d} \left(\frac{|\mathbf{v} - \mathbf{u}_M|^2}{T_M} - d \right) \left(\left(\frac{|\mathbf{v} - \mathbf{u}_M|^2}{T_M} - d \right) \psi \right) \right],$$

 $\Pi_M \psi$ is in the form of $M(\mathbf{v})P_2(\mathbf{v})$, and has same moments of ψ . Note

$$\langle \phi f_d \rangle = 0 \quad \Rightarrow \quad \Pi_M f_d = \Pi_M (\partial_t f_d) = (I - \Pi_M) (\partial_t M) = 0.$$

Apply $(I - \Pi_M)$ on both sides of (1),

$$\partial_t f_d + \mathcal{T} f_d = -(I - \Pi_M) \left(\mathcal{T} M \right) + \Pi_M (\mathcal{T} f_d).$$
Advection of deviational particles

Denote $\mathcal{T} = \mathbf{v} \cdot \nabla_{\mathbf{x}} - \mathbf{E} \cdot \nabla_{\mathbf{v}}$. Rewrite $\partial_t f + \mathcal{T} f = 0$ as

$$\partial_t f_d + \mathcal{T} f_d = -\partial_t M - \mathcal{T} M. \tag{1}$$

To remove $\partial_t M$ term, define a projection operator Π_M by

$$\Pi_M \psi = \frac{M}{\rho_M} \left[\langle \psi \rangle + \frac{(\mathbf{v} - \mathbf{u}_M) \cdot \langle (\mathbf{v} - \mathbf{u}_M) \psi \rangle}{T_M} + \frac{1}{2d} \left(\frac{|\mathbf{v} - \mathbf{u}_M|^2}{T_M} - d \right) \left(\left(\frac{|\mathbf{v} - \mathbf{u}_M|^2}{T_M} - d \right) \psi \right) \right],$$

 $\Pi_M \psi$ is in the form of $M(\mathbf{v})P_2(\mathbf{v})$, and has same moments of ψ . Note

$$\langle \phi f_d \rangle = 0 \quad \Rightarrow \quad \Pi_M f_d = \Pi_M (\partial_t f_d) = (I - \Pi_M) (\partial_t M) = 0.$$

Apply $(I - \Pi_M)$ on both sides of (1),

$$\partial_t f_d + \mathcal{T} f_d = -(I - \Pi_M) \left(\mathcal{T} M \right) + \Pi_M (\mathcal{T} f_d).$$

- Left: advection of deviational particles, as in PIC.
- Right: source term. The Maxwellian form cannot be preserved in advection. $O\left(\Delta t \left(N_{\text{eff}}^{-1} + N_d\right)\right)$ deviational particles are created.

summarize – HDP methods

Hybrid methods with Deviational Particles⁴ for VPL. Coarse particles are needed.

Collision step:

$$\begin{cases} \partial_t f_c = Q(f_c, f_c), \\ \partial_t M = 0, \\ \partial_t f_d = Q(f_c, f_d) + Q(f_d, M). \end{cases}$$

Advection step:

$$\begin{cases} \partial_{f_c} + \mathcal{T}_{f_c} = 0, \\ \frac{\partial}{\partial t} \langle M\phi \rangle + \nabla_{\mathbf{x}} \cdot \langle \mathbf{v}M\phi \rangle + \nabla_{\mathbf{x}} \cdot \langle \mathbf{v}f_d\phi \rangle = (0, -\rho \mathbf{E}, -\rho \mathbf{u} \cdot \mathbf{E})^T, \\ \partial_{t}f_d + \mathcal{T}f_d = -(I - \Pi_M) (\mathcal{T}M) + \Pi_M (\mathcal{T}f_d), \\ -\nabla_{\mathbf{x}} \cdot \mathbf{E} = \rho_M(\mathbf{x}). \end{cases}$$

This method is also applied on VP-BGK system. Coarse particles are not needed in VP-BGK.

⁴Yan. arXiv:1510.03893

Resample Deviational and Coarse Particles

Resample Particles

How?

- Recover f_d from deviational particles
- Discard old deviational and/or coarse particles, sample new ones from f_d and/or $M + f_d$

Why do we need to resample particles? One needs in each cell,

 $N_c \ge N_d$.

However N_d grows with time, while N_c is constant. Whenever this condition fails, two options:

- Reduce N_d . \leftarrow Resample deviational particles.
- Increase N_c . \leftarrow Resample coarse particles.

Resample deviational particles

Bokai Yan (UCLA) HDP methods for plasma 25/38

Resample deviational particles

Evolution of Particle Numbers in homogeneous case,

Particle resampling is accurate but expensive. But it is only needed whenever $N_c \ge N_d$ is violated.

Resample coarse particles

When do we need to resample coarse particles?

- Resampling of deviational particles may fail to reduce N_d .
 - N_d increases in the advection
 - \Rightarrow small overlap between $(f_d)_+$ and $(f_d)_-$
 - \Rightarrow Increase N_c to satisfy $N_c \ge N_d$.
- After a relatively long time, *f_c* is not a "good" coarse approximation of *f*.
 ⇒ Need to be refreshed.

Resample coarse particles

Evolution of Particle Numbers in HDP method for inhomogeneous VPL system:

Numerical Tests

Homogeneous tests

Solve the homogeneous equation $\partial_t f = Q_L(f, f)$ by

$$\begin{cases} \partial_t f_c = Q_L(f_c, f_c), \\ \partial_t f_d = Q_L(f_c, f_d) + Q_L(f_d, M). \end{cases}$$

We take $\mathbf{v} \in \mathbb{R}^3$.

Bump on Tail problem

Figure : $\iint f(v_x, v_y, v_z) dv_y dv_z$ in Bump-on-Tail problem.

Bump on Tail problem

Figure : M, $(f_d)_+$ and $(f_d)_-$ in Bump-on-Tail problem.

Efficiency test

Figure : The efficiency test on Rosenbluth's problem.

Inhomogeneous tests

Apply HDP methods on spatial inhomogeneous VPL systems.

Test on the Landau damping problems, with $f(t = 0, x, \mathbf{v}) = M(t = 0, x, \mathbf{v})$,

$$\begin{cases} \rho(t = 0, x) = 1 + \alpha \sin(x), \\ \mathbf{u}(t = 0, x) = 0, \\ T(t = 0, x) = 1, \end{cases}$$

with $x \in [0, 4\pi]$, $\mathbf{v} \in \mathbb{R}^3$.

Linear Landau damping, $\alpha = 0.01$ Nonlinear Landau damping, $\alpha = 0.4$

Linear Landau dampling in VPL system

Intro Collision Advection Resample Numerics

homo inhomo

Linear Landau dampling in VPL system

Figure : The distribution in the $x - v_1$ phase space at time t = 1.25 in the linear Landau damping problem of the VPL system.

Nonlinear Landau dampling in VPL system

homo inhomo

Nonlinear Landau dampling in VPL system

Figure : The distribution in the $x - v_1$ phase space at time t = 1.25 in the nonlinear Landau damping problem of the VPL system.

Convergence tests on VPL system

Figure : Left: half order convergence in effective number in nonlinear Landau damping. Right: first order convergence in Δt in linear Landau damping for the HDP method.

Efficiency test on VPL system

 $\rho(t=0,x) = 1 + \alpha \sin(x)$

Figure : The efficiency test of the HDP method on the VPL system for different α in the initial density.

Conclusion and Future work

We have designed a hybrid method with deviational particles for the VP-BGK and VPL system,

- much more efficient than PIC-MCC near the fluid regime,
- applicable to kinetic regime.
 - Even in the *worst* case, at least we have a solution from PIC-MCC method, that is the coarse particles.

Next,

- Multi-component plasma.
- Other effective ways to reduce particle number.
- Mixed regimes.

Backup slides

Negative particle methods for rarefied gas

Insert the splitting $f(\mathbf{v}) = m(\mathbf{v}) - f_n(\mathbf{v}) + f_p(\mathbf{v})$,

$$\frac{\mathrm{d}f}{\mathrm{d}t} = Q(m,m) \qquad \qquad M-M$$

$$+ (Q^+(f_p, f_p) - Q^-(f_p)f_p) \qquad P - P$$

$$+ \left(-Q^{+}(f_{n}, f_{p}) - Q^{+}(f_{p}, f_{n}) + Q^{-}(f_{n})f_{p} + Q^{-}(f_{p})f_{n} \right) \qquad P - N$$

$$+(Q (J_n, J_n) - Q (J_n) J_n) \qquad N - N$$

+($O^+(f - m) + O^+(m - f) - O^-(f) - m - O^-(m) f$) $P - M$

$$+(Q^{+}(f_{p},m)+Q^{+}(m,f_{p})-Q^{-}(f_{p})m-Q^{-}(m)f_{p}) \qquad P-M$$

+(-Q^{+}(f_{p},m)-Q^{+}(m,f_{p})+Q^{-}(f_{p})m+Q^{-}(m)f_{p}) \qquad N-M

$$+(-Q^{+}(f_{n},m)-Q^{+}(m,f_{n})+Q^{-}(f_{n})m+Q^{-}(m)f_{n}) \qquad N-M$$

Negative particle methods for rarefied gas

Insert the splitting $f(\mathbf{v}) = m(\mathbf{v}) - f_n(\mathbf{v}) + f_p(\mathbf{v})$,

$$\frac{\mathrm{d}f}{\mathrm{d}t} = Q(m,m) \qquad \qquad M - M$$

$$+ (Q^{+}(f_{p}, f_{p}) - Q^{-}(f_{p})f_{p}) \qquad P - P$$

$$+ (Q^{+}(f_{p}, f_{p}) - Q^{+}(f_{p}, f_{p}) + Q^{-}(f_{p})f_{p}) \qquad P - P$$

$$+ \left(-Q^{+}(f_{n}, f_{p}) - Q^{+}(f_{p}, f_{n}) + Q^{-}(f_{n})f_{p} + Q^{-}(f_{p})f_{n}\right) \qquad P - N \\ + \left(Q^{+}(f_{n}, f_{p}) - Q^{-}(f_{n})f_{n}\right) \qquad N - N$$

$$+ (Q^{+}(f_{p}, m) + Q^{+}(m, f_{p}) - Q^{-}(f_{p})m - Q^{-}(m)f_{p}) \qquad P - M$$

$$+(-Q^{+}(f_{n},m)-Q^{+}(m,f_{n})+Q^{-}(f_{n})m+Q^{-}(m)f_{n}) \qquad N-M$$

Negative particle methods for rarefied gas

Insert the splitting $f(\mathbf{v}) = m(\mathbf{v}) - f_n(\mathbf{v}) + f_p(\mathbf{v})$,

$$\frac{\mathrm{d}f}{\mathrm{d}t} = Q(m,m) \qquad \qquad M-M$$

$$+(Q^{+}(f_{p},f_{p})-Q^{-}(f_{p})f_{p}) \qquad P-P$$

$$+ \left(-Q^{+}(f_{n},f_{p}) - Q^{+}(f_{p},f_{n}) + Q^{-}(f_{n})f_{p} + Q^{-}(f_{p})f_{n}\right) \qquad P - N$$

$$+(Q^{+}(f_{n},f_{n}) - Q^{-}(f_{n})f_{n}) \qquad N - N$$

$$+ \left(Q^{+}(f_{p},m) + Q^{+}(m,f_{p}) - Q^{-}(f_{p})m - Q^{-}(m)f_{p} \right) \qquad P - M$$

$$+(-Q^{+}(f_{n},m)-Q^{+}(m,f_{n})+Q^{-}(f_{n})m+Q^{-}(m)f_{n}) \qquad N-M$$

Reorganize,

$$\begin{split} \frac{\mathrm{d}m}{\mathrm{d}t} &= \mathcal{Q}(m,m) = 0, \\ \frac{\mathrm{d}f_p}{\mathrm{d}t} &= \left(\mathcal{Q}^+(m,f_p) + \mathcal{Q}^+(f_p,m) + \mathcal{Q}^+(f_p,f_p) + \mathcal{Q}^+(f_n,f_n)\right) \\ &- \left(\mathcal{Q}^-(m) + \mathcal{Q}^-(f_p) - \mathcal{Q}^-(f_n)\right)f_p + \mathcal{Q}^-(f_n)m, \\ \frac{\mathrm{d}f_n}{\mathrm{d}t} &= \left(\mathcal{Q}^+(m,f_n) + \mathcal{Q}^+(f_n,m) + \mathcal{Q}^+(f_p,f_n) + \mathcal{Q}^+(f_n,f_p)\right) \\ &- \left(\mathcal{Q}^-(m) + \mathcal{Q}^-(f_p) - \mathcal{Q}^-(f_n)\right)f_n + \mathcal{Q}^-(f_p)m. \end{split}$$

Collision rules with negative particles

$$\begin{array}{lll} \mathsf{P}\text{-}\mathsf{P}\text{:} & \mathbf{v}_{+}, \mathbf{w}_{+} \to \mathbf{v}_{+}', \mathbf{w}_{+}', \\ \mathsf{P}\text{-}\mathsf{N}\text{:} & \mathbf{v}_{+}, \mathbf{w}_{-} \to 2\mathbf{v}_{+}, \mathbf{v}_{-}', \mathbf{w}_{-}', \\ \mathsf{N}\text{-}\mathsf{N}\text{:} & \mathbf{v}_{-}, \mathbf{w}_{-} \to 2\mathbf{v}_{-}, 2\mathbf{w}_{-}, \mathbf{v}_{+}', \mathbf{w}_{+}', \\ \mathsf{P}\text{-}\mathsf{M}\text{:} & m, \mathbf{v}_{+} \to m, \mathbf{w}_{-}, \mathbf{v}_{+}', \mathbf{w}_{+}', \\ \mathsf{N}\text{-}\mathsf{M}\text{:} & m, \mathbf{v}_{-} \to m, \mathbf{w}_{+}, \mathbf{v}_{-}', \mathbf{w}_{-}'. \end{array}$$

Collision rules with negative particles

P-P:
$$\mathbf{v}_{+}, \mathbf{w}_{+} \rightarrow \mathbf{v}'_{+}, \mathbf{w}'_{+},$$

P-N: $\mathbf{v}_{+}, \mathbf{w}_{-} \rightarrow 2\mathbf{v}_{+}, \mathbf{v}'_{-}, \mathbf{w}'_{-},$
N-N: $\mathbf{v}_{-}, \mathbf{w}_{-} \rightarrow 2\mathbf{v}_{-}, 2\mathbf{w}_{-}, \mathbf{v}'_{+}, \mathbf{w}'_{+},$
P-M: $m, \mathbf{v}_{+} \rightarrow m, \mathbf{w}_{-}, \mathbf{v}'_{+}, \mathbf{w}'_{+},$
N-M: $m, \mathbf{v}_{-} \rightarrow m, \mathbf{w}_{+}, \mathbf{v}'_{-}, \mathbf{w}'_{-}.$

Problem: particle number increases!

Bobylev-Nanbu approximation

Not solving the LFP equation directly, but the Bobylev-Nanbu approximation (2000'),

$$f(\mathbf{v}, t + \Delta t) = \frac{1}{\rho} \int_{\mathbb{R}^3 \times \mathbb{S}^2} D\left(\frac{\mathbf{u} \cdot \mathbf{n}}{u}, A\frac{\Delta t}{u^3}\right) f(\mathbf{v}') f(\mathbf{w}') \, \mathrm{d}\mathbf{w} \, \mathrm{d}\mathbf{n},$$

with $A = c_{FP}$, and

$$D(\mu,\tau) = \sum_{l=0}^{\infty} \frac{2l+1}{4\pi} P_l(\mu) \exp(-l(l+1)\tau).$$

This is a first order approximation (in Δt) of LFP equation.

Takizuka and Abe (TA) 1977'

$$D_{TA}(\mu,\tau) = \frac{1}{2\pi} \frac{1}{\sqrt{2\pi\tau}} e^{-\zeta^2/2\tau} \frac{\mathrm{d}\zeta}{\mathrm{d}\mu},$$

with $\mu = \cos(2 \arctan \zeta)$.

Nanbu 1997'

$$D_{Nanbu}(\mu,\tau) = \frac{A}{4\pi\sinh A}e^{\mu A},$$

where A is defined by $\operatorname{coth} A - \frac{1}{A} = e^{-2\tau}$.

Apply to Coulomb collision

Apply the negative particle method to Bobylev-Nanbu's reformulation,

$$f(\mathbf{v}, t + \Delta t) = \frac{1}{\rho} \iint_{\mathbb{R}^3 \times \mathbb{S}^2} D\left(\frac{\mathbf{u} \cdot \mathbf{n}}{u}, A\frac{\Delta t}{u^3}\right) f(\mathbf{w}', t) f(\mathbf{v}', t) \, \mathrm{d}\mathbf{w} \, \mathrm{d}\mathbf{n} \doteq \frac{1}{\rho} P(f, f).$$

Split as

$$\begin{split} m(\mathbf{v}, t + \Delta t) &= \frac{\rho_m}{\rho} m(\mathbf{v}, t), \\ f_p(\mathbf{v}, t + \Delta t) &= \frac{\rho_p^2}{\rho} P(\hat{f}_p, \hat{f}_p) + \frac{\rho_n^2}{\rho} P(\hat{f}_n, \hat{f}_n) + \frac{\rho_m \rho_p}{\rho} P(\hat{m}, \hat{f}_p) + \frac{\rho_p \rho_m}{\rho} P(\hat{f}_p, \hat{m}), \\ f_n(\mathbf{v}, t + \Delta t) &= \frac{\rho_p \rho_n}{\rho} P(\hat{f}_p, \hat{f}_n) + \frac{\rho_n \rho_p}{\rho} P(\hat{f}_n, \hat{f}_p) + \frac{\rho_m \rho_n}{\rho} P(\hat{m}, \hat{f}_n) + \frac{\rho_n \rho_m}{\rho} P(\hat{f}_n, \hat{m}), \end{split}$$

with

$$\rho = \int f(\mathbf{v}, t) \, \mathrm{d}\mathbf{v}, \quad \rho_m = \int m(\mathbf{v}, t) \, \mathrm{d}\mathbf{v}, \quad \rho_p = \int f_p(\mathbf{v}, t) \, \mathrm{d}\mathbf{v}, \quad \rho_n = \int f_n(\mathbf{v}, t) \, \mathrm{d}\mathbf{v},$$
$$\hat{f} = \frac{f}{\rho}, \quad \hat{m} = \frac{m}{\rho_m}, \quad \hat{f}_p = \frac{f_p}{\rho_p}, \quad \hat{f}_n = \frac{f_n}{\rho_n}.$$

What's the error by approximating $Q(f, f_p)$ and $Q(f, f_n)$ with $Q(f_c, f_p)$ and $Q(f_c, f_n)$?

 $\partial_t f_p = Q(f_c, f_p) + (Q(f_p - f_n, m))_+$ = $\underbrace{Q(f, f_p) + (Q(f_p - f_n, m))_+}_{\text{original equation}} + \underbrace{Q(f_c - f, f_p)}_{\text{drift term}},$

- Solving the original equation with N_p P-particles introduces a statistical error $O(\rho_p(N_p)^{-1/2})$.
- The drift term is $O(\rho_p(N_f)^{-1/2})$, since $f_c(t) = f(t) + O(\rho(N_f)^{-1/2})$.
- As long as $N_f \ge N_p$, one has

$$O(\rho_p(N_f)^{-1/2}) \le O(\rho_p(N_p)^{-1/2}).$$

Rosenbluth's problem

Figure : Time evolution of entropy H(t)/H(0) in Rosenbluth's test problem. Blue solid line: regular TA method with 10^6 particles. Red dashed line: negative particle method with $N_p = 40000$ initially. Apply the previous ideas

- combine collisions
- approximate f by F particles

to Bobylev-Nanbu's formulation of Coulomb collision,

$$\begin{cases} f_c(\mathbf{v}, t + \Delta t) = \frac{1}{\rho} \iint Df_c(\mathbf{w}')f_c(\mathbf{v}') \, \mathrm{d}\mathbf{w} \, \mathrm{d}\mathbf{n}, & \text{regular collisions} \\ M(\mathbf{v}, t + \Delta t) = M(\mathbf{v}, t), & M \text{ not changed} \\ f_d(\mathbf{v}, t + \Delta t) = \frac{1}{\rho} \iint Df_c(\mathbf{w}')f_d(\mathbf{v}') \, \mathrm{d}\mathbf{w} \, \mathrm{d}\mathbf{n} + \Delta M(\mathbf{v}), & \text{C-D collisions} \end{cases}$$

 $\Delta M = \Delta t Q(f_d, M).$

Bobylev-Nanbu's formulation

$$f(\mathbf{v}, t + \Delta t) = \frac{1}{\rho} \iint_{\mathbb{R}^3 \times \mathbb{S}^2} D\left(\frac{\mathbf{u} \cdot \mathbf{n}}{u}, A\frac{\Delta t}{u^3}\right) f(\mathbf{w}', t) f(\mathbf{v}', t) \,\mathrm{d}\mathbf{w} \,\mathrm{d}\mathbf{n} \doteq \frac{1}{\rho} P(f, f),$$

can be split by plug in $f = M + f_p - f_n$,

$$\begin{split} f(\mathbf{v}, t + \Delta t) &= \frac{1}{\rho} P(M, M) + \frac{1}{\rho} P(f, f_p) - \frac{1}{\rho} P(f, f_n) + \frac{1}{\rho} P(f_p - f_n, M) \\ &= M(\mathbf{v}) + \frac{1}{\rho} P(f, f_p) - \frac{1}{\rho} P(f, f_n) + \left(\frac{1}{\rho} P(f_p - f_n, M) - \frac{\rho_p - \rho_n}{\rho} M(\mathbf{v})\right), \end{split}$$

Apply the previous method

$$\begin{aligned} f_c(\mathbf{v}, t + \Delta t) &= \frac{1}{\rho} \iint Df_c(\mathbf{w}') f_c(\mathbf{v}') \, \mathrm{d}\mathbf{w} \, \mathrm{d}\mathbf{n}, \\ M(\mathbf{v}, t + \Delta t) &= M(\mathbf{v}, t), \\ f_p(\mathbf{v}, t + \Delta t) &= \frac{1}{\rho} \iint Df_c(\mathbf{w}') f_p(\mathbf{v}') \, \mathrm{d}\mathbf{w} \, \mathrm{d}\mathbf{n} + (\Delta M(\mathbf{v}))_+, \\ f_n(\mathbf{v}, t + \Delta t) &= \frac{1}{\rho} \iint Df_c(\mathbf{w}') f_n(\mathbf{v}') \, \mathrm{d}\mathbf{w} \, \mathrm{d}\mathbf{n} + (\Delta M(\mathbf{v}))_-, \end{aligned}$$

with

$$\Delta M(\mathbf{v}) = \frac{1}{\rho} \iint D\left(f_p(\mathbf{w}') - f_n(\mathbf{w}')\right) M(\mathbf{v}') \,\mathrm{d}\mathbf{w} \,\mathrm{d}\mathbf{n} - \frac{\rho_p - \rho_n}{\rho} M(\mathbf{v}).$$

Hybrid methods with Deviational Particles for VP-BGK

Collision step:

$$\begin{cases} \partial_t M = 0, \\ \partial_t f_d = -\mu f_d. \end{cases}$$

Advection step:

$$\begin{cases} \frac{\partial}{\partial t} \langle M\phi \rangle + \nabla_{\mathbf{x}} \cdot \langle \mathbf{v}M\phi \rangle + \nabla_{\mathbf{x}} \cdot \langle \mathbf{v}f_{d}\phi \rangle = (0, -\rho \mathbf{E}, -\rho \mathbf{u} \cdot \mathbf{E})^{T}, \\ \partial_{t}f_{d} + \mathcal{T}f_{d} = -(I - \Pi_{M})\left(\mathcal{T}M\right) + \Pi_{M}(\mathcal{T}f_{d}). \end{cases}$$

Linear Landau dampling in VP-BGK system

Nonlinear Landau dampling in VP-BGK system

