

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

Model Order Reduction for Networked Control Systems

Peter Benner, Sara Grundel, Petar Mlinarić

Collective dynamics, control, and imaging ETH-Zürich Institute for Theoretical Studies (ITS) 15 June 2017

Partners:

DFG-Graduiertenkolleg MATHEMATISCHE KOMPLEXITÄTSREDUKTION

1. Model Order Reduction

Model Order Reduction Problem \mathcal{H}_2 -Optimal Model Order Reduction

2. Multi-Agent Systems

Consensus and Synchronization Examples

3. Model Order Reduction by Clustering

H₂-Optimal Clustering ProblemNumerical ExamplesPossible ExtensionsA Priori Error Bounds

4. Agent Reduction

5. Conclusion

Solution Model Order Reduction

Full Order Model

$$\begin{aligned} E\dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= Cx(t), \end{aligned}$$

with:

• states
$$x(t) \in \mathbb{R}^n$$

$$\blacksquare$$
 inputs $u(t) \in \mathbb{R}^m$

• outputs
$$y(t) \in \mathbb{R}^p$$
 .

Solution Model Order Reduction

Full Order Model

$$\begin{aligned} E\dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= Cx(t), \end{aligned}$$

with:

states
$$x(t) \in \mathbb{R}^n$$

inputs
$$u(t) \in \mathbb{R}^m$$

• outputs
$$y(t) \in \mathbb{R}^{p}$$
 .

Reduced Order Model

$$\begin{aligned} \widehat{E}\dot{\widehat{x}}(t) &= \widehat{A}\widehat{x}(t) + \widehat{B}u(t), \\ \widehat{y}(t) &= \widehat{C}\widehat{x}(t), \end{aligned}$$

with:

states $\widehat{x}(t) \in \mathbb{R}^r$, $r \ll n$,

inputs
$$u(t)\in \mathbb{R}^m$$
,

outputs
$$\widehat{y}(t) \in \mathbb{R}^{p}$$
.

Solution Model Order Reduction

Full Order Model

$$\begin{aligned} E\dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= Cx(t), \end{aligned}$$

with:

• states
$$x(t) \in \mathbb{R}^n$$

inputs
$$u(t) \in \mathbb{R}^m$$

• outputs $y(t) \in \mathbb{R}^p$.

Reduced Order Model

$$\begin{aligned} \widehat{E}\dot{\widehat{x}}(t) &= \widehat{A}\widehat{x}(t) + \widehat{B}u(t), \\ \widehat{y}(t) &= \widehat{C}\widehat{x}(t), \end{aligned}$$

with:

states $\widehat{x}(t) \in \mathbb{R}^r$, $r \ll n$,

inputs
$$u(t) \in \mathbb{R}^m$$
,

outputs
$$\widehat{y}(t) \in \mathbb{R}^p$$
.

Model Order Reduction Problem

Find matrices \widehat{E} , \widehat{A} , \widehat{B} , and \widehat{C} such that $y \approx \widehat{y}$ for all u. More precisely, we want an error bound of the form $||y - \widehat{y}|| \leq \text{tol} \cdot ||u||$.

Solution (Section) 🐼 🚳

 \mathcal{H}_2 -Optimal MOR

Denoting
$$S(s) = C(sE - A)^{-1}B$$
, $\widehat{S}(s) = \widehat{C}(s\widehat{E} - \widehat{A})^{-1}\widehat{B}$, solve

$$\begin{array}{ll} \underset{\widehat{A},\widehat{B},\widehat{C}}{\text{minimize}} & \|S-\widehat{S}\|_{\mathcal{H}_2} \,. \end{array}$$

\mathcal{H}_2 -Optimal MOR

Denoting
$$S(s) = C(sE - A)^{-1}B$$
, $\widehat{S}(s) = \widehat{C}(s\widehat{E} - \widehat{A})^{-1}\widehat{B}$, solve

$$\begin{array}{ll} \underset{\widehat{A},\widehat{B},\widehat{C}}{\text{minimize}} & \|S-\widehat{S}\|_{\mathcal{H}_2} \,. \end{array}$$

\mathcal{H}_2 -norm

$$\|S\|_{\mathcal{H}_2} = \sqrt{\frac{1}{2\pi} \int_{-\infty}^{\infty} \|S(i\omega)\|_F^2 \, \mathrm{d}\omega}$$

\mathcal{H}_2 -Optimal MOR

Denoting
$$S(s) = C(sE - A)^{-1}B$$
, $\widehat{S}(s) = \widehat{C}(s\widehat{E} - \widehat{A})^{-1}\widehat{B}$, solve

$$\begin{array}{ll} \underset{\widehat{A},\widehat{B},\widehat{C}}{\text{minimize}} & \|S-\widehat{S}\|_{\mathcal{H}_2} \,. \end{array}$$

\mathcal{H}_2 -norm

$$\|S\|_{\mathcal{H}_2} = \sqrt{rac{1}{2\pi}\int_{-\infty}^{\infty}\|S(i\omega)\|_F^2} \,\mathrm{d}\omega$$

Output Error Bound

$$\|y - \widehat{y}\|_{\mathcal{L}_{\infty}} \leq \|S - \widehat{S}\|_{\mathcal{H}_{2}} \|u\|_{\mathcal{L}_{2}}$$

С

Theorem (\mathcal{H}_2 Necessary Optimality Conditions [GUGERCIN ET AL. '08]) Let $\widehat{S}(s) = \sum_{i=1}^{r} \frac{c_i b_i^T}{s - \lambda_i}$ be the \mathcal{H}_2 -optimal reduced model for S. Then

$$S(-\lambda_i)b_i = \widehat{S}(-\lambda_i)b_i,$$

$$c_i^T S(-\lambda_i) = c_i^T \widehat{S}(-\lambda_i),$$

$$\sum_{i=1}^T \widehat{S}'(-\lambda_i)b_i = c_i^T \widehat{S}'(-\lambda_i)b_i,$$

(1)

for i = 1, 2, ..., r.

Theorem (\mathcal{H}_2 Necessary Optimality Conditions [GUGERGIN ET AL. '08]) Let $\widehat{S}(s) = \sum_{i=1}^{r} \frac{c_i b_i^T}{s - \lambda_i}$ be the \mathcal{H}_2 -optimal reduced model for S. Then

$$S(-\lambda_i)b_i = \widehat{S}(-\lambda_i)b_i,$$

$$c_i^T S(-\lambda_i) = c_i^T \widehat{S}(-\lambda_i),$$

$$f_i^T S'(-\lambda_i)b_i = c_i^T \widehat{S}'(-\lambda_i)b_i,$$

(1)

for i = 1, 2, ..., r.

Tangential Hermite Interpolation If $\hat{E} = W^T EV$, $\hat{A} = W^T AV$, $\hat{B} = W^T B$, $\hat{C} = CV$ where $(-\lambda_i E - A)^{-1} Bb_i \in \text{range}(V)$, $(-\lambda_i E - A)^{-T} C^T c_i \in \text{range}(W)$, for i = 1, 2, ..., r, then $\hat{S}(s) = \hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B}$ satisfies (1).

Iterative Rational Krylov Algorithm (IRKA)

[GUGERCIN ET AL. '08]

 Fixed-point iteration algorithm, based on interpolation-based H₂ necessary optimality conditions.

Iterative Rational Krylov Algorithm (IRKA)

[GUGERCIN ET AL. '08]

- Fixed-point iteration algorithm, based on interpolation-based H₂ necessary optimality conditions.
- In every iteration, 2*r* linear systems with *sE* − *A* as the system matrix need to be solved.

Iterative Rational Krylov Algorithm (IRKA)

[GUGERCIN ET AL. '08]

- Fixed-point iteration algorithm, based on interpolation-based H₂ necessary optimality conditions.
- In every iteration, 2*r* linear systems with *sE* − *A* as the system matrix need to be solved.
- Convergence proved for state-space symmetric systems ($A = A^T$, $B = C^T$). [FLAGG/BEATTIE/GUGERCIN '12]

Applications

Peter Benner, benner@mpi-magdeburg.mpg.de Model Order Reduction for Networked Control Systems 7/5

Applications

biological swarms

💿 Multi-Agent Systems

Applications

- biological swarms
- robot swarms

💿 Multi-Agent Systems

Applications

- biological swarms
- robot swarms
- energy transportation networks

💿 Multi-Agent Systems

Applications

- biological swarms
- robot swarms
- energy transportation networks
- opinion dynamics

Peter Benner, benner@mpi-magdeburg.mpg.de M

🐟 🚥 Multi-Agent Systems

General Description

Agents

$$\dot{x}_i(t) = f(x_i(t), z_i(t), u_{k(i)}(t))$$

Interconnections

$$z_i(t) = \sum_{j=1}^N a_{ij}g(x_i(t), x_j(t))$$

Output

$$y(t) = h(x_1(t), x_2(t), \ldots, x_N(t))$$

🐟 ጩ Multi-Agent Systems

Consensus and Synchronization

Consensus

We say agents achieve consensus if, for any initial condition and zero input, the states $x_i(t)$ (or some value of interest) converge to the same vector c as t tends to infinity, i.e.

 $\lim_{t\to\infty}F(x_i(t))=c.$

🐟 💿 Multi-Agent Systems

Consensus and Synchronization

Synchronization

We say agents achieve synchronization if, for any initial condition and zero input, the states $x_i(t)$ (or some value of interest) converge to the same trajectory as t tends to infinity, i.e.

$$\lim_{t\to\infty} \left[F(x_i(t)) - F(x_j(t))\right] = 0.$$

🐟 💿 Multi-Agent Systems

Consensus and Synchronization

Figure: Number of papers per year (until 2016) containing "multi-agent systems" and "consensus" or "synchronization" in the title (source: Scopus).

🐼 💿 Multi-Agent Systems

Examples (Linear Multi-Agents Systems)

Agents

$$\dot{x}_i(t) = z_i(t) + u_{k(i)}(t)$$

Interconnections

$$z_i(t) = \sum_{j=1}^N a_{ij}(x_j(t) - x_i(t))$$

Applications in:

- mass-damper systems
- opinion dynamics

🐼 💿 Multi-Agent Systems

Examples (Linear Multi-Agents Systems)

Agents

$$\ddot{x}_i(t) + d\dot{x}_i(t) + kx_i(t) = z_i(t) + u_{k(i)}(t)$$

Interconnections

$$z_i(t) = \sum_{j=1}^N a_{ij}(x_j(t) - x_i(t))$$

Applications in:

power systems (frequency synchronization).

🐟 💿 Multi-Agent Systems

Examples (Attraction and Repulsion)

Agents

$$\dot{x}_i(t) = z_i(t) + u_{k(i)}(t)$$

Interconnections

[Shu/Zheng/Shao '09

$$z_i(t) = \sum_{j=1}^N a_{ij} rac{\|x_j(t) - x_i(t)\| - d}{\|x_j(t) - x_i(t)\|} (x_j(t) - x_i(t))$$

🐟 ጩ Multi-Agent Systems

Examples (Chemical Reaction Networks)

Agents

$$\dot{x}_i(t) = z_i(t) + u_{k(i)}(t)$$

Interconnections

[CHATTERJEE ET AL. '10]

$$egin{aligned} z_i(t) &= \sum_{j \in ext{reactions}} a_{ij} k_j \prod_{k \in ext{species}} x_k(t)^{lpha_{kj}} \ a_{ij} \in \{0, \pm 1\}, \quad k_j > 0, \quad lpha_{kj} \in \{0, 1\} \end{aligned}$$

🐼 💿 Multi-Agent Systems

Examples (Mobile Robot Swarms)

Agents

$$\dot{x}_i(t) = (v_i(t) + d_i(t)) \cos heta_i(t)$$

 $\dot{y}_i(t) = (v_i(t) + d_i(t)) \sin heta_i(t)$
 $\dot{ heta}_i(t) = \omega_i(t) + \sigma_i(t)$

Interconnections

Ajorlou/Asadi/Aghdam/Blouin '15]

$$r_{ix}(t) = \sum_{j=1}^{N} a_{ij}(x_j(t) - x_i(t)), \ r_{iy}(t) = \sum_{j=1}^{N} a_{ij}(y_j(t) - y_i(t)), \ \theta_i^*(t) = \operatorname{atan2}(r_{iy}(t), r_{ix}(t)),$$

$$egin{aligned} & v_i(t) = v_i^{\mathcal{M}} \ & \omega_i(t) = \dot{ heta}_i^*(t) - \kappa_i(heta_i(t) - heta_i^*(t)) \end{aligned}$$

So MOR by Clustering

Galerkin projection

For first-order agents:

$$V = W = P(\pi) = egin{bmatrix} 1 & 0 & 0 \ 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}.$$

For higher-order agents:

$$V = W = P(\pi) \otimes I.$$

🐼 🚥 MOR by Clustering

Galerkin projection

For first-order agents:

$$V = W = P(\pi) = egin{bmatrix} 1 & 0 & 0 \ 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}.$$

For higher-order agents:

$$V = W = P(\pi) \otimes I.$$

Motivation

The approximation $x(t) \approx V \hat{x}(t)$ means that agents in the same cluster are approximated as being equal.

🐟 🚥 MOR by Clustering

Literature Review

Ishizaki/Kashima/Imura '14, '15, '16]

- for linear multi-agent systems, on undirected or certain directed graphs, where the output is the complete state
- the method consists of clustering rows in a low-rank factor of the controllability Gramian
- extension to higher-order agents

[CHENG/KAWANO/SCHERPEN '16, '17]

- for linear multi-agent systems, with first-order of second-order agents, where the output is the complete state
- the method consists of clustering rows in a low-rank factor of the controllability Gramian

🐟 💿 MOR by Clustering

Literature Review

[Besselink/Sandberg/Johansson '16]

- for linear multi-agent systems, where agents are passive systems, and the graph is a tree (can be directed)
- limited to clustering neighboring agents
- developed an a priori \mathcal{H}_∞ -error bound
- the method consists of finding diagonal generalized Gramians of the edge system (solutions of linear matrix inequalities of the size of the number of agents minus one)

[XUE/CHAKRABORTTY '16]

LQR controller reduction by clustering

\mathcal{H}_2 -Optimal Clustering Problem

Motivated by IRKA, we consider:

$$\min_{\substack{\pi \in \Pi \\ |\pi| = r}} \|S - \widehat{S}\|_{\mathcal{H}_2}$$

H₂-Optimal Clustering Problem

 $\begin{array}{ll} \underset{V,W \in \mathbb{R}^{N \times r}}{\text{minimize}} & \|S - \widehat{S}\|_{\mathcal{H}_2} \\ \text{subject to} & V = P(\pi) \\ & W = P(\pi) \\ & \pi \in \Pi, \ |\pi| = r \end{array}$

\mathcal{H}_2 -Optimal Clustering Problem

$$\begin{array}{ll} \underset{V,W \in \mathbb{R}^{N \times r}}{\text{minimize}} & \|S - \widehat{S}\|_{\mathcal{H}_2} \\ \text{subject to} & \text{range}(V) = \text{range}(P(\pi)) \\ & \text{range}(W) = \text{range}(P(\pi)) \\ & \pi \in \Pi, \ |\pi| = r \end{array}$$

🐼 🚥 MOR by Clustering

H₂-Optimal Clustering Problem

SL

$$\begin{split} \underset{W \in \mathbb{R}^{N \times r}}{\text{ninimize}} & \|S - \widehat{S}\|_{\mathcal{H}_2} \\ \text{ibject to} & \text{range}(V) = \text{range}(P(\pi)) \\ & \text{range}(W) = \text{range}(P(\pi)) \\ & \pi \in \Pi, \ |\pi| = r \end{split}$$

Finding π

 In [BENNER/GRUNDEL/MLINARIĆ '15], we proposed using IRKA on S to find V and the QR decomposition-based clustering from [ZHA ET AL. '08] on the rows of V to find π.

So MOR by Clustering

Finding π

- In [BENNER/GRUNDEL/MLINARIĆ '15], we proposed using IRKA on S to find V and the QR decomposition-based clustering from [ZHA ET AL. '08] on the rows of V to find π.
- We observed that for a fixed r, IRKA gives a much better reduced order model than clustering, in terms of the relative H₂-error (a few orders of magnitude difference).
So MOR by Clustering

Finding π

- In [BENNER/GRUNDEL/MLINARIĆ '15], we proposed using IRKA on S to find V and the QR decomposition-based clustering from [ZHA ET AL. '08] on the rows of V to find π.
- We observed that for a fixed *r*, IRKA gives a much better reduced order model than clustering, in terms of the relative *H*₂-error (a few orders of magnitude difference).
- Furthermore, we observed very slow convergence of IRKA for large r (e.g. r = 100).

So MOR by Clustering

Finding π

- In [BENNER/GRUNDEL/MLINARIĆ '15], we proposed using IRKA on S to find V and the QR decomposition-based clustering from [ZHA ET AL. '08] on the rows of V to find π .
- We observed that for a fixed *r*, IRKA gives a much better reduced order model than clustering, in terms of the relative *H*₂-error (a few orders of magnitude difference).
- Furthermore, we observed very slow convergence of IRKA for large r (e.g. r = 100).
- For these reasons, we were looking for a way to cluster the rows of V into more than r clusters.

K-Means

Theorem ([BEATTIE/GUGERCIN/WYATT '12])

$$\frac{\|H_1 - H_2\|_{\mathcal{H}_{\infty}}}{\frac{1}{2}(\|H_1\|_{\mathcal{H}_{\infty}} + \|H_2\|_{\mathcal{H}_{\infty}})} \le M \max(\sin \Theta(V_1, V_2), \sin \Theta(W_1, W_2))$$

K-Means

Theorem ([BEATTIE/GUGERCIN/WYATT '12])

$$\frac{\left\|H_1-H_2\right\|_{\mathcal{H}_{\infty}}}{\frac{1}{2}\left(\left\|H_1\right\|_{\mathcal{H}_{\infty}}+\left\|H_2\right\|_{\mathcal{H}_{\infty}}\right)} \le M \max(\sin\Theta(V_1,V_2),\sin\Theta(W_1,W_2))$$

Motivation to Use K-Means

If V_1 and V_2 are orthonormal, then

$$\sin \Theta(V_1, V_2) = \left\| \left(I - V_1 V_1^T \right) V_2 \right\|_2 \le \left\| \left(I - V_1 V_1^T \right) V_2 \right\|_F$$

K-Means

Theorem ([BEATTIE/GUGERCIN/WYATT '12])

$$\frac{\left\|H_1-H_2\right\|_{\mathcal{H}_{\infty}}}{\frac{1}{2}\left(\left\|H_1\right\|_{\mathcal{H}_{\infty}}+\left\|H_2\right\|_{\mathcal{H}_{\infty}}\right)} \le M \max(\sin\Theta(V_1,V_2),\sin\Theta(W_1,W_2))$$

Motivation to Use K-Means

If V_1 and V_2 are orthonormal, then

$$\sin \Theta(V_1, V_2) = \left\| \left(I - V_1 V_1^T \right) V_2 \right\|_2 \le \left\| \left(I - V_1 V_1^T \right) V_2 \right\|_F$$

If also $V_1 = P(\pi)(P(\pi)^T P(\pi))^{-\frac{1}{2}}$, then

$$\left\| \left(I - V_1 V_1^T \right) V_2 \right\|_F^2 =$$
k-means objective functional.

Peter Benner, benner@mpi-magdeburg.mpg.de

Algorithm

Algorithm 1 Clustering-Based Model Order Reduction Method

Input: Full order model (A, B, C).

Output: Clustered reduced order model $(\widehat{A}, \widehat{B}, \widehat{C})$.

- 1: Project the system to the stable subspace, using sparse matrices $V_{\rm stab}$ and $W_{\rm stab}$.
- 2: Reduce the stable model using IRKA, where the resulting projection matrices are $V_{\rm IRKA}$ and $W_{\rm IRKA}$.
- 3: Compute V by concatenating $V_{\text{stab}}V_{\text{IRKA}}$ and the unstable subspace.
- 4: Apply k-means to the rows (or block-rows, if agents are not of first-order) of V to find a partition π .
- 5: Project the original model by clustering with partition π .

Numerical Examples (Linear Consensus, $x_i(t) \in \mathbb{R}$, y(t) = x(t))

Figure: Relative H_2 -errors when clustering a linear multi-agent system evolving on a randomly generated small-world network with 500 nodes.

Nonlinear Multi-Agent Systems

Observation

In our clustering algorithm, it is possible to replace IRKA by any projection-based MOR method.

Nonlinear Multi-Agent Systems

Observation

- In our clustering algorithm, it is possible to replace IRKA by any projection-based MOR method.
- In particular, this includes MOR methods for nonlinear systems, e.g. Proper Orthogonal Decomposition (POD).

Nonlinear Multi-Agent Systems

Observation

- In our clustering algorithm, it is possible to replace IRKA by any projection-based MOR method.
- In particular, this includes MOR methods for nonlinear systems, e.g. Proper Orthogonal Decomposition (POD).
- For certain classes of nonlinear multi-agent systems, e.g.

$$\dot{x}_i(t) = f(x_i(t)) + z_i(t) + u_{k(i)}(t),$$

 $z_i(t) = \sum_{j=1}^N a_{ij}g(x_i(t), x_j(t)),$

the reduced clustered model is obtained by projecting the adjacency matrix $\mathcal{A} = [a_{ij}]$ to a reduced adjacency matrix $\widehat{\mathcal{A}} = W^T \mathcal{A} V$.

Numerical Examples (Lorenz Systems as Agents)

Figure: Impulse response of the full order multi-agent system with 500 Lorenz systems as agents.

Numerical Examples (Lorenz Systems as Agents)

Figure: Time domain L^2 errors for the impulse $(u(t) = \delta(t))$ and rectangle $(u(t) = \chi_{[0,1]}(t))$ response for different number of clusters. In both cases, 10 dominant POD modes from impulse response snapshots were taken to define V.

Possible Extensions

Directed Graphs

- Our approach is still applicable.
- But, it is still an open question what are the simplest sufficient conditions for preserving consensus or synchronization.

Non-Identical Agents

- If there is a small number of types of agents in the network, we can easily modify the clustering to only allow clustering of the agents of the same type.
- Otherwise, we could allow clustering of different agents. The clustered agent would then have an averaged dynamics of the agents in the cluster.

A Priori Error Bounds

Agents

We focus on linear agents

$$\dot{x}_i = Ax_i + Bz_i + Eu_{k(i)},$$

with $x_i(t) \in \mathbb{R}^n$ $(i = 1, 2, \dots, N)$ and $u_j(t) \in \mathbb{R}^{\mu}$ $(j = 1, 2, \dots, m)$.

A Priori Error Bounds

Agents

We focus on linear agents

$$\dot{x}_i = Ax_i + Bz_i + Eu_{k(i)},$$

with $x_i(t) \in \mathbb{R}^n$ $(i = 1, 2, \dots, N)$ and $u_j(t) \in \mathbb{R}^{\mu}$ $(j = 1, 2, \dots, m)$.

Interconnections

For an undirected, weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{A})$ with adjacency matrix $\mathcal{A} = [a_{ij}]$ define

$$z_i = \sum_{j=1}^N a_{ij}(x_j - x_i).$$

Multi-Agent System Dynamics

$$\dot{x} = (I_N \otimes A - L \otimes B)x + (M \otimes E)u,$$

where

•
$$L \in \mathbb{R}^{N \times N}$$
 is the Laplacian matrix,
• $M \in \mathbb{R}^{N \times m}$ is the input matrix

Multi-Agent System Dynamics and Output

$$\dot{x} = (I_N \otimes A - L \otimes B)x + (M \otimes E)u,$$
$$y = \begin{cases} \left(W^{\frac{1}{2}}R^T \otimes I_n\right)x,\\ (L \otimes I_n)x, \end{cases}$$

where

•
$$L \in \mathbb{R}^{N imes N}$$
 is the Laplacian matrix,

- $M \in \mathbb{R}^{N \times m}$ is the input matrix,
- $R \in \mathbb{R}^{N \times p}$ is the incidence matrix,
- $W \in \mathbb{R}^{p \times p}$ is the edge weights matrix.

Special Case: Single Integrator Agents

For A = 0, B = 1, and E = 1, agents are

 $\dot{x}_i = z_i + u_{k(i)}$

with $x_i, z_i, u_j \in \mathbb{R}$. The multi-agent system dynamics becomes

 $\dot{x} = -Lx + Mu.$

So MOR by Clustering

Definition of Almost Equitable Partitions (Graphically)

Definition of Almost Equitable Partitions

Definition (Almost Equitable Partition)

Partition $\pi = \{C_1, C_2, \dots, C_r\}$ of a graph $\mathcal G$ is almost equitable if

$$(\forall p,q \in \{1,2,\ldots,r\}, \ p \neq q) (\exists c_{pq} \in \mathbb{R}) (\forall i \in C_p) \sum_{j \in C_q} a_{ij} = c_{pq}.$$

Definition of Almost Equitable Partitions

Definition (Almost Equitable Partition) Partition $\pi = \{C_1, C_2, ..., C_r\}$ of a graph \mathcal{G} is almost equitable if $(\forall p, q \in \{1, 2, ..., r\}, p \neq q)(\exists c_{pq} \in \mathbb{R})(\forall i \in C_p) \sum_{i \in C_q} a_{ij} = c_{pq}.$

Definition of Almost Equitable Partitions

Definition (Almost Equitable Partition)

Partition $\pi = \{C_1, C_2, \dots, C_r\}$ of a graph $\mathcal G$ is almost equitable if

$$(\forall p,q \in \{1,2,\ldots,r\}, \ p \neq q) (\exists c_{pq} \in \mathbb{R}) (\forall i \in C_p) \sum_{j \in C_q} a_{ij} = c_{pq}.$$

Example (Trivial Almost Equitable Partitions)

$$\pi = \{\{1\}, \{2\}, \dots, \{N\}\},\$$
$$\pi = \{\{1, 2, \dots, N\}\}.$$

Definition of Almost Equitable Partitions

Definition (Almost Equitable Partition)

Partition $\pi = \{C_1, C_2, \dots, C_r\}$ of a graph $\mathcal G$ is almost equitable if

$$(\forall p,q \in \{1,2,\ldots,r\}, \ p \neq q) (\exists c_{pq} \in \mathbb{R}) (\forall i \in C_p) \sum_{j \in C_q} a_{ij} = c_{pq}.$$

Example (Trivial Almost Equitable Partitions)

$$\pi = \{\{1\}, \{2\}, \dots, \{N\}\}\}$$
$$\pi = \{\{1, 2, \dots, N\}\}.$$

Simpler, equivalent condition?

Equivalent Condition for Almost-Equitableness

Theorem ([Cardoso/Delorme/Rama '07])

Partition π is almost equitable for G if and only if range($P(\pi)$) is L-invariant.

Equivalent Condition for Almost-Equitableness

Theorem ([Cardoso/Delorme/Rama '07])

Partition π is almost equitable for G if and only if range($P(\pi)$) is L-invariant.

Example

Equivalent Condition for Almost-Equitableness

Theorem ([Cardoso/Delorme/Rama '07])

Partition π is almost equitable for G if and only if range($P(\pi)$) is L-invariant.

Example

$$LP(\pi) = \begin{pmatrix} 5 & -5 & 0 & 0 & 0 \\ 5 & -5 & 0 & 0 & 0 \\ 5 & -5 & 0 & 0 & 0 \\ 5 & -5 & 0 & 0 & 0 \\ -10 & 23 & -6 & -7 & 0 \\ 0 & -12 & 15 & -1 & -2 \\ 0 & -14 & -1 & 15 & 0 \\ 0 & 0 & -1 & 0 & 1 \end{pmatrix} = P(\pi) \begin{pmatrix} 5 & -5 & 0 & 0 & 0 \\ -10 & 23 & -6 & -7 & 0 \\ 0 & -12 & 15 & -1 & -2 \\ 0 & -14 & -1 & 15 & 0 \\ 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

AEPs and Controllability

Theorem ([ZHANG/CAO/ÇAMLIBEL '14])

Let π be an almost equitable partition (AEP) such that

$$\{v_1\}, \{v_2\}, \ldots, \{v_m\} \in \pi.$$

Then

$$\mathcal{K} \subset \operatorname{range}(P(\pi) \otimes I_n)$$
,

where \mathcal{K} is the controllable subspace of the multi-agent system.

AEPs and Controllability

Theorem ([ZHANG/CAO/ÇAMLIBEL '14])

Let π be an almost equitable partition (AEP) such that

$$\{v_1\}, \{v_2\}, \ldots, \{v_m\} \in \pi.$$

Then

$$\mathcal{K} \subset \operatorname{range}(P(\pi) \otimes I_n)$$
,

where \mathcal{K} is the controllable subspace of the multi-agent system. In particular,

$$\dim \mathcal{K} \leq |\pi| \ n.$$

AEPs and Controllability

Theorem ([ZHANG/CAO/ÇAMLIBEL '14])

Let π be an almost equitable partition (AEP) such that

$$\{v_1\}, \{v_2\}, \ldots, \{v_m\} \in \pi.$$

Then

$$\mathcal{K} \subset \operatorname{range}(P(\pi) \otimes I_n)$$
,

where \mathcal{K} is the controllable subspace of the multi-agent system. In particular,

$$\dim \mathcal{K} \leq |\pi| \ n.$$

 $\{\{1\}, \{2\}, \ldots, \{N\}\}$ always satisfies the above assumptions. Existence of a coarser partition implies uncontrollability (good for model reduction).

Expression for the \mathcal{H}_2 -Error (Single Integrator Agents and AEPs)

Theorem ([Monshizadeh/Trentelman/Çamlibel '14])

Assume agents are single integrators and output is $y = W^{\frac{1}{2}}R^{T}x$. Let $\pi = \{C_1, C_2, \dots, C_r\}$ be an AEP of \mathcal{G} . Then

$$egin{aligned} \|S - \widehat{S}\|_{\mathcal{H}_2}^2 &= rac{1}{2}\sum_{i=1}^m \left(1 - rac{1}{|\mathcal{C}_{k_i}|}
ight), \ rac{|S - \widehat{S}||_{\mathcal{H}_2}^2}{\|S\|_{\mathcal{H}_2}^2} &= rac{\sum_{i=1}^m \left(1 - rac{1}{|\mathcal{C}_{k_i}|}
ight)}{m\left(1 - rac{1}{N}
ight)}, \end{aligned}$$

where $k_i \in \{1, 2, ..., r\}$ is such that cluster C_{k_i} contains leader v_i .

Expression for the \mathcal{H}_2 -Error (Single Integrator Agents and AEPs)

Theorem ([Monshizadeh/Trentelman/Çamlibel '14])

Assume agents are single integrators and output is $y = W^{\frac{1}{2}}R^{T}x$. Let $\pi = \{C_1, C_2, \dots, C_r\}$ be an AEP of \mathcal{G} . Then

$$egin{aligned} \|S-\widehat{S}\|^2_{\mathcal{H}_2} &= rac{1}{2}\sum_{i=1}^m \left(1-rac{1}{|\mathcal{C}_{k_i}|}
ight), \ rac{\|S-\widehat{S}\|^2_{\mathcal{H}_2}}{\|S\|^2_{\mathcal{H}_2}} &= rac{\sum_{i=1}^m \left(1-rac{1}{|\mathcal{C}_{k_i}|}
ight)}{m\left(1-rac{1}{N}
ight)}, \end{aligned}$$

where $k_i \in \{1, 2, ..., r\}$ is such that cluster C_{k_i} contains leader v_i .

Generalization to arbitrary agents? Arbitrary graph partitions?

Synchronization

Definition

Multi-agent system $\dot{x} = (I_N \otimes A - L \otimes B)x$ is synchronized if

$$x_i(t)-x_j(t)
ightarrow 0$$
 as $t
ightarrow\infty,$

for all $i, j \in \mathcal{V}$ and any initial condition $x(0) = x_0 \in \mathbb{R}^{Nn}$.

Synchronization

Definition

Multi-agent system $\dot{x} = (I_N \otimes A - L \otimes B)x$ is synchronized if

$$x_i(t)-x_j(t)
ightarrow 0$$
 as $t
ightarrow\infty,$

for all $i, j \in \mathcal{V}$ and any initial condition $x(0) = x_0 \in \mathbb{R}^{Nn}$.

Theorem ([Monshizadeh/Trentelman/Çamlibel '13])

Multi-agent system $\dot{x} = (I_N \otimes A - L \otimes B)x$ is synchronized if and only if

 $A - \lambda B$ is Hurwitz,

for every positive eigenvalue λ of L.

Synchronization

Definition

Multi-agent system $\dot{x} = (I_N \otimes A - L \otimes B)x$ is synchronized if

$$x_i(t)-x_j(t)
ightarrow 0$$
 as $t
ightarrow\infty,$

for all $i, j \in \mathcal{V}$ and any initial condition $x(0) = x_0 \in \mathbb{R}^{Nn}$.

Theorem ([Monshizadeh/Trentelman/Çamlibel '13])

Multi-agent system $\dot{x} = (I_N \otimes A - L \otimes B)x$ is synchronized if and only if

 $A - \lambda B$ is Hurwitz,

for every positive eigenvalue λ of L.

Synchronization is preserved in the reduced multi-agent system when clustering by an AEP or if the agents are single integrators.

Peter Benner, benner@mpi-magdeburg.mpg.de

Auxiliary Systems

Denote by S_λ the transfer function of

$$\dot{\xi} = (A - \lambda B)\xi + Ed,$$

 $z = \lambda \xi,$

i.e.

$$S_{\lambda}(s) = \lambda (sI_n - A + \lambda B)^{-1}E.$$

Theorem (\mathcal{H}_2 -Error Bounds for AEPs)

Assume that the multi-agent system is synchronized and $y = (L \otimes I_n)x$. Let π be an AEP of G. Then

$$egin{aligned} &\|S-\widehat{S}\|^2_{\mathcal{H}_2} \leq S^2_{\mathsf{max},\mathcal{H}_2} \sum_{i=1}^m \left(1-rac{1}{|\mathcal{C}_{k_i}|}
ight), \ &rac{\|S-\widehat{S}\|^2_{\mathcal{H}_2}}{\|S\|^2_{\mathcal{H}_2}} \leq rac{S^2_{\mathsf{max},\mathcal{H}_2}}{S^2_{\mathsf{min},\mathcal{H}_2}} rac{\sum_{i=1}^m \left(1-rac{1}{|\mathcal{C}_{k_i}|}
ight)}{m\left(1-rac{1}{N}
ight)}, \end{aligned}$$

where

$$egin{aligned} S_{\max,\mathcal{H}_2} &:= \max_{\lambda \in \sigma(L) \setminus \sigma(\widehat{L})} \|S_\lambda\|_{\mathcal{H}_2}\,, \ S_{\min,\mathcal{H}_2} &:= \min_{\lambda \in \sigma(L) \setminus \{0\}} \|S_\lambda\|_{\mathcal{H}_2}\,. \end{aligned}$$

\mathcal{H}_{∞} -norm

$$\|S\|_{\mathcal{H}_{\infty}} = \sup_{\omega \in \mathbb{R}} \|S(i\omega)\|_2$$

Theorem (\mathcal{H}_{∞} -Error Bounds for AEPs)

Assume that the multi-agent system is synchronized, $y = (L \otimes I_n)x$, and matrices A and B are symmetric. Let π be an AEP of G. Then

$$\begin{split} \|S - \widehat{S}\|_{\mathcal{H}_{\infty}}^{2} &\leq \begin{cases} S_{\max,\mathcal{H}_{\infty}}^{2} \max_{1 \leq i \leq m} \left(1 - \frac{1}{|C_{k_{i}}|}\right) & \text{if the leaders are} \\ \text{in different clusters,} \\ S_{\max,\mathcal{H}_{\infty}}^{2} & \text{otherwise,} \end{cases} \\ \\ \frac{\|S - \widehat{S}\|_{\mathcal{H}_{\infty}}^{2}}{\|S\|_{\mathcal{H}_{\infty}}^{2}} &\leq \begin{cases} \frac{S_{\max,\mathcal{H}_{\infty}}^{2}}{s_{\min,\mathcal{H}_{\infty}}^{2}} \max_{1 \leq i \leq m} \left(1 - \frac{1}{|C_{k_{i}}|}\right) & \text{if the leaders are} \\ \text{in different clusters,} \\ \frac{S_{\max,\mathcal{H}_{\infty}}^{2}}{s_{\min,\mathcal{H}_{\infty}}^{2}} & \text{otherwise.} \end{cases} \\ \end{split}$$

$$S_{\max,\mathcal{H}_{\infty}} := \max_{\lambda \in \sigma(L) \setminus \sigma(\widehat{L})} \|S_{\lambda}\|_{\mathcal{H}_{\infty}},$$

$$S_{\min,\mathcal{H}_{\infty}} := \min_{\lambda \in \sigma(L) \setminus \{0\}} \sigma_{\min}(S_{\lambda}(0)).$$

Generalizing to Arbitrary Graph Partitions

Idea: Change the Graph

For a given partition π of the graph \mathcal{G}_{r} find a graph \mathcal{G}_{AEP} such that

- π is an AEP for \mathcal{G}_{AEP} ,
- \mathcal{G}_{AEP} is "close" to \mathcal{G} .

Generalizing to Arbitrary Graph Partitions

Idea: Change the Graph

For a given partition π of the graph \mathcal{G} , find a graph $\mathcal{G}_{\mathsf{AEP}}$ such that

- π is an AEP for \mathcal{G}_{AEP} ,
- \mathcal{G}_{AEP} is "close" to \mathcal{G} .

Then use triangle inequality to obtain a bound

$$\|S-\widehat{S}\|_{\mathcal{H}_p} \leq \|S-S_{\mathsf{AEP}}\|_{\mathcal{H}_p} + \|S_{\mathsf{AEP}}-\widehat{S}_{\mathsf{AEP}}\|_{\mathcal{H}_p} + \|\widehat{S}_{\mathsf{AEP}}-\widehat{S}\|_{\mathcal{H}_p}.$$

Generalizing to Arbitrary Graph Partitions

Idea: Change the Graph

For a given partition π of the graph \mathcal{G} , find a graph $\mathcal{G}_{\mathsf{AEP}}$ such that

- π is an AEP for \mathcal{G}_{AEP} ,
- \mathcal{G}_{AEP} is "close" to \mathcal{G} .

Then use triangle inequality to obtain a bound

$$\|S - \widehat{S}\|_{\mathcal{H}_p} \leq \|S - S_{\mathsf{AEP}}\|_{\mathcal{H}_p} + \|S_{\mathsf{AEP}} - \widehat{S}_{\mathsf{AEP}}\|_{\mathcal{H}_p} + \|\widehat{S}_{\mathsf{AEP}} - \widehat{S}\|_{\mathcal{H}_p}.$$

Ideas How to Change the Graph

Generalizing to Arbitrary Graph Partitions

Idea: Change the Graph

For a given partition π of the graph \mathcal{G} , find a graph $\mathcal{G}_{\mathsf{AEP}}$ such that

- π is an AEP for \mathcal{G}_{AEP} ,
- \mathcal{G}_{AEP} is "close" to \mathcal{G} .

Then use triangle inequality to obtain a bound

$$\|S-\widehat{S}\|_{\mathcal{H}_p} \leq \|S-S_{\mathsf{AEP}}\|_{\mathcal{H}_p} + \|S_{\mathsf{AEP}}-\widehat{S}_{\mathsf{AEP}}\|_{\mathcal{H}_p} + \|\widehat{S}_{\mathsf{AEP}}-\widehat{S}\|_{\mathcal{H}_p}.$$

Ideas How to Change the Graph

1. add/remove edges \rightsquigarrow [Jongsma/Trentelman/Çamlibel '15]

Generalizing to Arbitrary Graph Partitions

Idea: Change the Graph

For a given partition π of the graph \mathcal{G} , find a graph $\mathcal{G}_{\mathsf{AEP}}$ such that

- π is an AEP for \mathcal{G}_{AEP} ,
- \mathcal{G}_{AEP} is "close" to \mathcal{G} .

Then use triangle inequality to obtain a bound

$$\|S-\widehat{S}\|_{\mathcal{H}_p} \leq \|S-S_{\mathsf{AEP}}\|_{\mathcal{H}_p} + \|S_{\mathsf{AEP}}-\widehat{S}_{\mathsf{AEP}}\|_{\mathcal{H}_p} + \|\widehat{S}_{\mathsf{AEP}}-\widehat{S}\|_{\mathcal{H}_p}.$$

Ideas How to Change the Graph

- 1. add/remove edges \rightsquigarrow [Jongsma/Trentelman/Çamlibel '15]
- 2. modify edge weights →

[Jongsma/Mlinarić/Grundel/Benner/Trentelman '16]

A Priori Error Bounds

We restrict to multi-agent systems with single-integrator agents

$$\dot{x} = -Lx + Mu,$$

$$y = Lx.$$

A Priori Error Bounds

We restrict to multi-agent systems with single-integrator agents

 $\dot{x} = -Lx + Mu,$ y = Lx.

In this case, synchronization preservation is guaranteed for every partition.

A Priori Error Bounds

We restrict to multi-agent systems with single-integrator agents

$$\dot{x} = -Lx + Mu,$$

$$y = Lx.$$

In this case, synchronization preservation is guaranteed for every partition. We have the following transfer functions:

$$\begin{split} S(s) &= L(sI+L)^{-1}M, \qquad \widehat{S}(s) = LP(\pi)(sI+\widehat{L})^{-1}\widehat{M}, \\ S_{\mathsf{AEP}}(s) &= L_{\mathsf{AEP}}(sI+L_{\mathsf{AEP}})^{-1}M, \quad \widehat{S}_{\mathsf{AEP}}(s) = L_{\mathsf{AEP}}P(\pi)(sI+\widehat{L}_{\mathsf{AEP}})^{-1}\widehat{M}. \end{split}$$

A Priori Error Bounds

We restrict to multi-agent systems with single-integrator agents

$$\dot{x} = -Lx + Mu,$$

$$y = Lx.$$

In this case, synchronization preservation is guaranteed for every partition. We have the following transfer functions:

$$\begin{split} S(s) &= L(sI+L)^{-1}M, \qquad \qquad \widehat{S}(s) = LP(\pi)(sI+\widehat{L})^{-1}\widehat{M}, \\ S_{\mathsf{AEP}}(s) &= L_{\mathsf{AEP}}(sI+L_{\mathsf{AEP}})^{-1}M, \quad \widehat{S}_{\mathsf{AEP}}(s) = L_{\mathsf{AEP}}P(\pi)(sI+\widehat{L}_{\mathsf{AEP}})^{-1}\widehat{M}. \end{split}$$

ldea

Find L_{AEP} close to L.

Optimization Problem

Denote $\mathcal{P} := P(\pi) \left(P(\pi)^T P(\pi) \right)^{-1} P(\pi)^T$, the orthogonal projector onto range $(P(\pi))$.

Optimization Problem

Denote $\mathcal{P} := P(\pi) \left(P(\pi)^T P(\pi) \right)^{-1} P(\pi)^T$, the orthogonal projector onto range $(P(\pi))$. Consider the optimization problem

 $\begin{array}{ll} \underset{L_{AEP}}{\text{minimize}} & \|L - L_{AEP}\|_{F}^{2}, \\ \text{subject to} & (I_{N} - \mathcal{P})L_{AEP}P(\pi) = 0, \\ & L_{AEP} = L_{AEP}^{T}, \\ & L_{AEP}\mathbbm{1}_{N} = 0, \\ & (L_{AEP})_{ii} < 0, \text{ for } i \neq j. \end{array}$

Optimization Problem

Denote $\mathcal{P} := P(\pi) \left(P(\pi)^T P(\pi) \right)^{-1} P(\pi)^T$, the orthogonal projector onto range $(P(\pi))$.

Consider the optimization problem

$$\begin{array}{ll} \underset{L_{AEP}}{\text{minimize}} & \|L - L_{AEP}\|_{F}^{2}, \\ \text{subject to} & (I_{N} - \mathcal{P})L_{AEP}P(\pi) = 0, \\ & L_{AEP} = L_{AEP}^{T}, \\ & L_{AEP}\mathbbm{1}_{N} = 0, \\ & (L_{AEP})_{ii} \leq 0, \text{ for } i \neq j. \end{array}$$

This is a quadratic programming problem, which can be solved efficiently.

Optimization Problem

Denote $\mathcal{P} := P(\pi) \left(P(\pi)^T P(\pi) \right)^{-1} P(\pi)^T$, the orthogonal projector onto range $(P(\pi))$.

Consider the optimization problem

$$\begin{array}{ll} \underset{L_{AEP}}{\text{minimize}} & \|L - L_{AEP}\|_{F}^{2}, \\ \text{subject to} & (I_{N} - \mathcal{P})L_{AEP}P(\pi) = 0, \\ & L_{AEP} = L_{AEP}^{T}, \\ & L_{AEP}\mathbbm{1}_{N} = 0, \\ & (L_{AEP})_{ii} \leq 0, \text{ for } i \neq j. \end{array}$$

This is a quadratic programming problem, which can be solved efficiently. Can this problem be solved analytically?

Optimization Problem

Denote $\mathcal{P} := P(\pi) \left(P(\pi)^T P(\pi) \right)^{-1} P(\pi)^T$, the orthogonal projector onto range $(P(\pi))$.

Consider the optimization problem

$$\begin{array}{ll} \underset{L_{AEP}}{\text{minimize}} & \|L - L_{AEP}\|_{F}^{2}, \\ \text{subject to} & (I_{N} - \mathcal{P})L_{AEP}P(\pi) = 0, \\ & L_{AEP} = L_{AEP}^{T}, \\ & L_{AEP}\mathbbm{1}_{N} = 0, \\ & (L_{AEP})_{ii} \leq 0, \text{ for } i \neq j. \end{array}$$

This is a quadratic programming problem, which can be solved efficiently. Can this problem be solved analytically? What if we ignore the inequality constraints?

Solving the (Relaxed) Optimization Problem

The unique solution to

$$\begin{array}{ll} \underset{L_{AEP}}{\text{minimize}} & \left\|L - L_{AEP}\right\|_{F}^{2}, \\ \text{subject to} & (I_{N} - \mathcal{P})L_{AEP}P(\pi) = 0, \\ & L_{AEP} = L_{AEP}^{T}, \\ & L_{AEP}\mathbbm{1}_{N} = 0, \end{array}$$

is

Solving the (Relaxed) Optimization Problem

The unique solution to

is

$$\begin{array}{ll} \underset{L_{AEP}}{\text{minimize}} & \|L - L_{AEP}\|_{F}^{2}, \\ \text{subject to} & (I_{N} - \mathcal{P})L_{AEP}P(\pi) = 0, \\ & L_{AEP} = L_{AEP}^{T}, \\ & L_{AEP}\mathbbm{1}_{N} = 0, \end{array}$$

$$L_{AEP} = \mathcal{P}L\mathcal{P} + (I_N - \mathcal{P})L(I_N - \mathcal{P}).$$

Solving the (Relaxed) Optimization Problem

The unique solution to

$$\begin{array}{ll} \underset{L_{AEP}}{\text{minimize}} & \left\|L - L_{AEP}\right\|_{F}^{2}, \\ \text{subject to} & (I_{N} - \mathcal{P})L_{AEP}P(\pi) = 0, \\ & L_{AEP} = L_{AEP}^{T}, \\ & L_{AEP}\mathbbm{1}_{N} = 0, \end{array}$$

is

$$L_{\mathsf{AEP}} = \mathcal{P}L\mathcal{P} + (I_N - \mathcal{P})L(I_N - \mathcal{P}).$$

 L_{AEP} can have positive off-diagonal elements, i.e. \mathcal{G}_{AEP} can have negative weights.

Solving the (Relaxed) Optimization Problem

The unique solution to

$$\begin{array}{ll} \underset{L_{AEP}}{\text{minimize}} & \left\|L - L_{AEP}\right\|_{F}^{2}, \\ \text{subject to} & (I_{N} - \mathcal{P})L_{AEP} P(\pi) = 0, \\ & L_{AEP} = L_{AEP}^{T}, \\ & L_{AEP} \mathbbm{1}_{N} = 0, \end{array}$$

is

$$L_{\mathsf{AEP}} = \mathcal{P}L\mathcal{P} + (I_N - \mathcal{P})L(I_N - \mathcal{P}).$$

 $L_{\rm AEP}$ can have positive off-diagonal elements, i.e. $\mathcal{G}_{\rm AEP}$ can have negative weights.

But, L_{AEP} is symmetric positive semi-definite and ker $L_{AEP} = \text{span}\{\mathbb{1}_N\}$.

Error Bounds (Single Integrator Agents and Arbitrary Partition) $\|S - S_{AEP}\|_{\mathcal{H}_{p}} \leq 2 \|(L - L_{AEP})(sI + L)^{-1}M\|_{\mathcal{H}_{p}}$ $\|\widehat{S}_{AEP} - \widehat{S}\|_{\mathcal{H}_{p}} \leq \|(L - L_{AEP})P(\pi)(sI + \widehat{L})^{-1}\widehat{M}\|_{\mathcal{H}_{p}}$

Error Bounds (Single Integrator Agents and Arbitrary Partition) $\|S - S_{AEP}\|_{\mathcal{H}_{p}} \leq 2 \|(L - L_{AEP})(sI + L)^{-1}M\|_{\mathcal{H}_{p}}$ $\|\widehat{S}_{AEP} - \widehat{S}\|_{\mathcal{H}_{p}} \leq \|(L - L_{AEP})P(\pi)(sI + \widehat{L})^{-1}\widehat{M}\|_{\mathcal{H}_{p}}$

"Almost Almost Equitable Partitions"

If π is such that $L_{\mathsf{AEP}} \approx L$, then $\|S - \widehat{S}\|_{\mathcal{H}_p}$ is 'small'.

Linear Multi-Agent System

$$\dot{x}(t) = (I \otimes A - L \otimes BC)x(t) + (G \otimes B)u(t)$$
$$y(t) = (H \otimes C)x(t)$$

So Agent Reduction

Linear Multi-Agent System

$$\dot{x}(t) = (I \otimes A - L \otimes BC)x(t) + (G \otimes B)u(t)$$
$$y(t) = (H \otimes C)x(t)$$

Reduced System

$$\begin{aligned} \dot{\widehat{x}}(t) &= (I \otimes \widehat{A} - L \otimes \widehat{B}\widehat{C})\widehat{x}(t) + (G \otimes \widehat{B})u(t)\\ \widehat{y}(t) &= (H \otimes \widehat{C})\widehat{x}(t) \end{aligned}$$

🐟 🚥 Agent Reduction

Linear Multi-Agent System

$$\dot{x}(t) = (I \otimes A - L \otimes BC)x(t) + (G \otimes B)u(t)$$
$$y(t) = (H \otimes C)x(t)$$

Reduced System

$$\begin{aligned} \dot{\widehat{x}}(t) &= (I \otimes \widehat{A} - L \otimes \widehat{B}\widehat{C})\widehat{x}(t) + (G \otimes \widehat{B})u(t)\\ \widehat{y}(t) &= (H \otimes \widehat{C})\widehat{x}(t) \end{aligned}$$

\mathcal{H}_2 -Optimality Conditions

Differentiate

$$\|S-\widehat{S}\|_{\mathcal{H}_2}^2$$

with respect to \widehat{A} , \widehat{B} , and \widehat{C} .

Solution 🐼 🐼 🐼

Necessary Optimality Conditions for \mathcal{H}_{2} -Optimal Agent Reduction The necessary optimality conditions are

$$\begin{split} \sum_{i=1}^{N} \sum_{j=1}^{N} \widetilde{Q}_{ji}^{T} A \widetilde{P}_{ji} &- \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \ell_{jk} \widetilde{Q}_{ji}^{T} B C \widetilde{P}_{ki} + \sum_{i=1}^{N} \sum_{j=1}^{N} \widetilde{Q}_{ij} \widehat{A} \widehat{P}_{ji} &- \sum_{i=1}^{N} \sum_{j=1}^{N} \ell_{jk} \widehat{Q}_{ij} \widehat{B} \widehat{C} \widehat{P}_{ki} = 0, \\ - \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \ell_{ik} \widetilde{Q}_{ji}^{T} \widetilde{P}_{jk} \widehat{C}^{T} &- \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \ell_{ik} \widehat{Q}_{ji}^{T} \widehat{P}_{jk} \widehat{C}^{T} + \sum_{i=1}^{N} \sum_{j=1}^{N} [GG^{T}]_{ji} \widetilde{Q}_{ji}^{T} B + \sum_{i=1}^{N} \sum_{j=1}^{N} [GG^{T}]_{ji} \widehat{Q}_{ji}^{T} \widehat{B} = 0, \\ - \widehat{B}^{T} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \ell_{ik} \widetilde{Q}_{ji}^{T} \widetilde{P}_{jk} - \widehat{B}^{T} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \ell_{ik} \widehat{Q}_{ji}^{T} \widehat{P}_{jk} - C \sum_{j=1}^{N} \sum_{k=1}^{N} [H^{T}H]_{jk} \widetilde{P}_{jk} + \widehat{C} \sum_{j=1}^{N} \sum_{k=1}^{N} [H^{T}H]_{jk} \widehat{P}_{jk} = 0, \end{split}$$

where $\widetilde{P} = [\widetilde{P}_{ij}]$ and $\widehat{P} = [\widehat{P}_{ij}]$ are the upper-right and lower-right block in the controllability Gramian of the error system, and similarly $\widetilde{Q} = [\widetilde{Q}_{ij}]$ and $\widehat{Q} = [\widehat{Q}_{ij}]$ are blocks in the observability Gramian.

Summary

- *H*₂-quasi-optimal clustering-based MOR method combining IRKA and k-means.
- Extension to nonlinear network systems, using a nonlinear MOR method and k-means.
- \mathcal{H}_2 -optimality conditions for agent reduction.

Summary

- *H*₂-quasi-optimal clustering-based MOR method combining IRKA and k-means.
- Extension to nonlinear network systems, using a nonlinear MOR method and k-means.
- \mathcal{H}_2 -optimality conditions for agent reduction.

Outlook

Error bounds for the clustering method.

Efficient implementation of \mathcal{H}_2 -optimal agent reduction MOR method.

P. Benner, S. Grundel, and P. Mlinarić, Efficient Model Order Reduction for Multi-Agent Systems Using QR Decomposition-Based Clustering, Proceedings of the 54th IEEE Conference on Decision and Control (CDC), pp. 4794-4799, December 2015

H.-J. Jongsma, P. Mlinarić, S. Grundel, P. Benner, H. L. Trentelman, Model Reduction by Clustering and Associated \mathcal{H}_2 and \mathcal{H}_{∞} -Error Bound, arXiv preprint, October 2016

T. Ishizaki, K. Kashima, A. Girard, J.-i. Imura, L. Chen, and K. Aihara, Clustered model reduction of positive directed networks, *Automatica*, vol. 59, pp. 238–247, 2015

T. Ishizaki, Risong Ku, and J.-i. Imura, Clustered model reduction of networked dissipative systems, Proceedings of the American Control Conference (ACC), pp. 3662–3667, 2016

X. Cheng, Y. Kawano, and J. M. A. Scherpen, Graph structure-preserving model reduction of linear network systems, Proceedings of the European Control Conference (ECC), pp. 1970–1975, 2016

X. Cheng, Y. Kawano, and J. M. A. Scherpen, Reduction of Second-Order Network Systems with Structure Preservation, IEEE Transactions on Automatic Control, 2017

B. Besselink, H. Sandberg, and K. H. Johansson, Clustering-Based Model Reduction of Networked Passive Systems, IEEE Transactions on Automatic Control, vol. 61, pp. 2958–2973, 2016

N. Xue and A. Chakrabortty, H_2 -clustering of closed-loop consensus networks under generalized LQR designs, Proceedings of the 55th IEEE Conference on Decision and Control (CDC), pp. 5116–5121, 2016