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A brief history of sync

Christiaan Huygens (1629 — 1695)

@ physicist & mathematician
@ engineer & horologist

observed “an odd kind of sympathy"
[Letter to Royal Society of London, 1665]

74

Recent reviews, experiments, & analysis
[M. Bennet et al. '02, M. Kapitaniak et al. '12]
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A field was born

@ sync in mathematical biology [A. Winfree '80, S.H. Strogatz '03, ...]

@ sync in physics and chemistry [Y. Kuramoto '83, M. Mézard et al. '87...]
@ sync in neural networks [F.C. Hoppensteadt and E.M. Izhikevich '00, ...]
@ sync in complex networks [C.W. Wu '07, S. Bocaletti 08, ...]

@ ...and numerous technological applications (reviewed later)
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Synchronization in complex networks
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Coupled phase oscillators

3 various models of oscillators & interactions S %

canonical coupled phase oscillator model: i

A. Winfree '67, Y. K to '75 \

[ infree uramoto '75] \\
AN 3

o n .
0,' = wi_zjzl ajj sm(0,~—9j)J

» n oscillators with phase §; € S?
» non-identical natural frequencies w; € R!

» elastic coupling with strength a;; = aj;

» undirected & connected graph G = (V, &, A)
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Phenomenology & challenges in synchronization

Transition to synchronization is a trade-off: coupling vs. heterogeneity

weak coupling & heterogeneous

strong coupling & homogeneous

“Surprisingly enough, this seemingly obvious fact seems difficult to prove. J

(Y. Kuramoto's conclusion after proposing the model)

Two open central questions: e quantify “coupling” vs. “heterogeneity”

(still after 50 years of work) @ basin of attraction for synchronization
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... starting from here a theory talk would
summarize many efforts leading to partial

(or negative) results and conjectures . ..

Outline




From coupled oscillators to AC power systems

(simplified) swing equation model of

1 =1 interconnected synchronous generators:
M;0; + D;6; = pl’f — Zj Yij sin(9,— = QJ)J
where M;, D;, pr are inertia, damping,
= power injection set-point of generator |
s _‘—;.)/,--"
//

3 10 - 10 20 30

weak coupling & heterogeneous strong coupling & homogeneous
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From coupled oscillators to AC power systems

k coupling & het
weaK cotpiing < MELErogeneot>  blackout India July 30/31 2012
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Renewable/distributed /inverter-based generation on the rise

synchronous generator

310 Ggamatts

new workhorse

scaling

location & distributed implementation

ke
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Generation Transmission

distribution

Medium-voltage

Low-valtage
distribution

focus today on inverter-based generationJ
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Modeling: signal space in three-phase AC power systems

three-phase AC balanced (nearly true) | synchronous (desired)

xa(t) xa(t+T) sin(8(t)) sin(o + wot)
[Xb(t)] = [x(t+T) = A(t) [sin(é(t) — 2?”)] =A [sin((io + wot — %’f ]
xe(t)]  Lxe(t+T) sin(d(t) + Z°) sin(do + wot + )

periodic with 0 average

LT xi(t)dt =0

so that const. freq & amp

Xa(t)+xp(t) +xc(t)=0| = const. in rot. frame

assumption : signals are balanced = 2d-coordinates x(t) = [x.(t) x3(t)]

(equivalent representation: complex-valued polar/phasor coordinates) ,
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Modeling: the inverter

i/\. W\/ L-m/«
/b
T =
Udek = §vd(¢,k mp G20y :% Vg, Network
Jg@ S5

e terminal signals: voltage v, € R? and output current lok € R2

o controllable signal: switching modulation signal my

= common abstraction:

Uky Do k

direct control of current jy:

ir iy G
g AAA v =
C d G . . Ry, L
kavk = —GkVk — lok + Ik Cis (]kT Up Network

~ controllable voltage source
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Modeling: the network equations

@ branch dynamics: each branch is series of resistance rj; & inductance /;;

o time-scale separation: all network signals are assumed to be in

synchronous steady-state x(t) = woJx(t)J where J = [{ M) ~v/—1

o admittance matrix )) = Y7 with admittances yij = (rij + woﬂ,-jJ)_l

= balance equations: j, = )Yv | with terminal currents/voltages (i, v)

Y vkh v =Yk

e Y= vk

~ generalized Laplacian matrix
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Objectives for decentralized control design
We aim to stabilize a target trajectory (v(t), i,(t)) satisfying the following:

O frequency stability at synchronous frequency wy:

d
avk(t) = woJ Vk(f)

~ synchronization to desired harmonic waveform

@ voltage regulation to desired voltage magnitudes v;:
v ()1 = vi

~ stabilization of desired amplitudes

© power injection set-points for active & reactive power {p}, g} }:
T T
Vi lo k = PZ y Vi J’o,k = qz

~ stabilization of desired angle set-points {(] }
12/28

Overview of oscillator-based control strategies for inverters

wod va

ww
i L
~
wo vy

consensus-inspired approach

B ged

L - SIS

_

virtual van-der-Pol oscillator control

synchronous generator emulation
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Outline

Droop control of power inverters

key idea: replicate the generator
swing equation for the inverter:

M;é,'—l—D,'é,' = pf—z Yij sin(0,-—0j)
J

Q

Standard implementation:

o) f——

Uk, lok

and voltages (v(t),io(t)) i app— % rn D
Ry, L
@ process measurements: Gr=Cl, == vk Network
active power px = v,/ i, x T

reactive power gy = v, Ji, &

@ measure terminal currents

© proportional control of d [ Ok

o | = ipteat) = (o

14..28
7

terminal voltage waveform: dt

Closer look at droop control for a lossless network

key idea: replicate the generator

Q

swing equation for the inverter:

M,'é,'—i-D,'é,' = pf—zj Yij sin(9,-—6j)

» p — w droop mimicking a generator:

dt

d X .
— Ok = wotk (P — Px) = wot+kp—k 'ij"f vl [[vkll sin(0x — 6;)

-

generator / Kuramoto oscillator

» analogous g — ||v|| droop (many variations):

d *
o vl = k(g = qr) + k (v = lviel) - ] vi]
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Standard analysis of lossless droop/generators/oscillators

energy function: inductive energy + quadratic amplitude error

V(v) = Zj<kyjk (il = lvielllvil cos(8 — 6)) + 3 (v* = llwill)®

oV
06

d ov
» g — ||v|| droop: a”VkH:in—k'HVkH'm

d
» p— w droop: E(Qk—wot):kpZ—k-

= closed loop is weighted gradient flow if all p; are identical and g =0

standard analysis : if equilibria exists, if (p}, g) are sufficiently small, if
lossless, if V2V (v*) is positive definite, ... = local asymptotic stability

analysis has many limitations & droop has similar practical limitations! J
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Recall: objectives for decentralized control design
We aim to stabilize a target trajectory (v(t), i,(t)) satisfying the following:

@ frequency stability at synchronous frequency wy:

d
avk(t) = woJ Vk(i')

~ synchronization to desired harmonic waveform

@ voltage regulation to desired voltage magnitudes v;:
v ()} = v

~ stabilization of desired amplitudes

© power injection set-points for active & reactive power {p}, g} }:
T. T4
Vi lok = PZ Vi J/o,k = qZ

~ stabilization of desired angle set-points {0, }
17/28

Overview of design strategy

Step 1: construct target dynamics 7*(v(t)) for the terminal voltages so

that %v(t) = *(v(t)) is stable and satisfies the three control objectives.

v

Step 2: achieve desired target dynamics %v(t) = *(v(t))

via fully decentralized current controllers i; (v, ik o).

V' local measurements (Vks ik,0)

U A een s v local set-points (v}, pj, q;)

Ry L
e Ck:%m Network Z unknown: global set-points
for angles {//,} and nonlocal
measurements of (vj, i, ;)
Step 3: implement control via switching modulation signal -
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Step 1: desirable closed-loop target dynamics

objectives: frequency, phase, and voltage stability

d
Y = woJv + n-e(v) + a-ep(v)
N—— —— ——
rotation at w = wop phase error magnitude error

(i) synchronous rotation:  &v = woJ v =uwp . ks v

(ii) phase stabilization: GtV = eox(v) = X wi(v; — R0 ) |

(iii) magnitude stabilization: £v = e, x(vk) = (v* = [|vill) vi J

gains: ay,nx > 0 foreach k and wj > 0 for relative phases amongst {;, k} J

19728




lllustration of desirable closed-loop dynamics

d
v = wodvic + noelv) + Oé‘ev(v)J
wod va phase error:

eg1(v) = vo — R(05;)wv1
e9.2(v) = vi — R(12)v2

magnitude error:
e|v,1(v) = (v = [vi|)v1
efv2(v) = (v — [[val[)va
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Step 2: decentralized implementation of target dynamics

open-loop system: controllable voltage sources + network coupling

d ) . . .
Ck&vk = —GyVk — ok + ik, ke{l,...,n} inverter dynamics
o = Vv network interconnection
: d
target dynamics: L’ = W Jv 4+ n-elv) + a-ep(v)
~—— ~—— ——
rotation at w = wyp phase error magnitude error

v

V' known: local measurements
(Vks ik.0) & set-points (v, pf, qr)

Uk, To.k
)

Uk AAA %~ .
Ry L ! o
unknown: global set-points for
r<=Ch T ) Network

@ :
relative angles {7 } and nonlocal
measurements of (v;, i, ;)

v
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Decentralized implementation of phase error dynamics

en(v) =D wik(vi= R )vi) = 3 wie(vi—vid) + Z wik (1 =R(" k))vk

[\ J/ ~
-~ -~ -~

need to know v; and 0% negative Laplacian:—Lv  local feedback: Ky (0" )vi

v

insight I: non-local measurements from communication through physics:
assume that all lines are homogeneous r;j/{;; = k = const., then

R(k)ie = RkK)Y v = Lv
—— —— ~—

local feedback Laplacian matrix Laplacian feedback

insight Il: angle set-points & line-parameters from power flow equations:

* *2 Z Rjk(1—cos( H 1 ))—wo ksin(H/?k)
Ri+w§ L2 ) R(k) [ pt
= Kk(/‘/ ) =—5 15 k
* y*2 Lix(1—cos(0,))+Rjxsin(0,) v ac pE
Z Rk-i-wSLfk ~—— ~

global parameters  local parameters

ECWEY"
7

Surprising (?) connections revealed in polar coordinates

d
closed loop: 5’ = wJv +n-(—L+K)v) + a-diag(v* — ||v|) v
S—— ——— X ~~ Z

rotation at w = wyp phase error

magnitude error

polar coordinates in lossless case rjj = 0 & near nominal voltage ||v|| ~ 1:

q .
H vkl =7 (sz v ||2) [ vl + s ( AN magnitude
~ 1 (qk — qi) [[vill + a(v™ = (vl vl q — |[v|| droop
d p Pk
— 0, = k hase
de kT o (v*Z Tl P
~ wo + 1 (Pk — Pk) p — w droop

Kuramoto oscillator
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Closed-loop stability analysis

closed loop:

d
ar =wpdv+n- (-L+K) v) + a- diag(v*—||v]) v
——

in rotating frame

stationary target sets in rotating coordinate frame:
S={veR" | vy=R(O)wv}
A={veR" [|lvll =v"}

set of correct relative angles

set of correct magnitudes

main result: 7 = SN A is almost globally asymptotically stable if the grid

parameters, angle set-points, and control gains satisfy a mild condition.
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Discussion of stability condition
energy-like function centered at {();j} and with free-floating amplitudes:
2 x T
V(v) = Zj<k Wik ([Ivill® = [Ivillllvjll cos(Ok — 0; — 0};)) = v Pv

= closed loop is gradient flow v = -V V(v) fora=0and {¢;} =0

v

condition < energy function non-increasing despite o > 0 & {H;J-} #0:
0 ((/c —0)TP + P — E)) +2aP <0

remark : the assumption can always be met in a connected grid if
» slow/fast loops: amplitude gain o« < synchronizing gain 7

> not too heavy loading: sufficiently small relative angle set-points {H;j}

= stability condition is very reasonable (always met) for practical scenarios

v,
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Almost global synchronization _ N
exponential stability of S:

to trajectory with prescribed frequency, voltage
under our assumption, ||v|| is

amplitudes, & active/reactive power injections s
a Lyapunov function for S.

stability of A relative to S:

provided v(0) € S\ {0}, the
set A is asymptotically stable.

Z has measure zero:

the region of attraction of {0},
termed Z, has measure zero.

v

continuity argument:

almost all trajectories (not in
) approaching & must (by

continuity) converge to S N A.
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Simulation example

i+

voltage time series

W

A

0

Voltages

5

Time




Conclusions

Summary:
@ oscillator networks & power applications
@ droop control & Kuramoto oscillators

@ design of decentralized oscillator control

Outlook:
@ robustness & performance analysis
e fair comparison of different approaches

@ experimental validation

Insights for coupled oscillators:

e Kuramoto models rarely (almost never)
admit almost global synchronization

e it pays off to work in R? rather than S!




