Self-assembly and dynamics in nanoparticle superlattices

Nathan Horst

Curtis Waltman

Chris Knorowski

Alex Travesset

U.S. DEPARTMENT OF

CONTRACT DE-AC02-07CH11358

Abhijeet Kapoor

Honghu Zhang

[^0]
Programmable (Self)assembly?

Assembling ordered materials, phases, structures from basic components, precisely

Successful self-assembly

Failed self-assembly

Nanoparticles Assembly

Components: Nanoparticles.
Materials: Crystals (Supercrystals).
How to control super-crystals structure?

IOWA State University
of SCIENCEAND TECHNOLOGY

Proper Interactions: Assembling Nanoparticle Superlattices

Spherical Nanoparticles functionalized with:

DNA (water)

Nykipanchuck, Maye, Van der Ielie and Gang, Nature (2008)

Hydrocarbons (oil)
Whetten et al (Acc. Chem. Res 32 1999)
Shevchenko, Talapin et al. (Nature 2006) Shevchenko, Talapin, Murray, O'Brien (JACS 2006)

Park, Lytton-Jean, Lee, Weigand, Schatz and Mirkin, Nature (2008)

DNA Nanoparticles superlattices

DNA Superlattices

Solution of both A and B

[^1]C. Knorowski and A. T., COSSMS (2011)

IOWA State University
of science and technology

Predictive theory: Explicit chain

Model consisting of beads (1 bead~ 6 nucleotides)
Hydrogen bond is between complementary base pairs and directional
CT beads=
C-G T-A short-range attraction (HB) FL,CT beads= hard-core repulsion

T. Li, R. Sknepnek, R. Macfarlane, C. Mirkin, M. Olvera de la Cruz, Nano. (2012)

HOOMD-Blue

New URL: Update your bookmarks, the HOOMD-blue home page is now http://glotzerlab.engin.umich.edu/hoomd-blue.

HOOMD-blue is a general-purpose particle simulation toolkit. It scales from a single CPU ore to thousands of GPUs.
ou define particle initial conditions and interactions in a high-level python script. Then ell HOOMD-blue how you want to execute the ob and it takes care of the rest. Python job scripts give you unlimited flexibility to create custom initialization routines, control simulation parameters, and perform in situ analysis.

Download and get started using HOOMD-blue today. Please cite HOOMD-blue if you use it published work.

```
import hoomd, hoomd.md
hoomd.context.initialize()
    unitcell=hoomd.lattice.sc(a=2.0, type_name='A')
    hoomd.init.create_lattice(unitcell=unitcell, n=10)
    nl = hoomd.md.nlist.cell()
    lj = hoomd.md.pair.lj(r_cut=3.0, nlist=nl)
    lj.pair_coeff.set('A',' 'A', epsilon=1.0, sigma=1.0)
    all = hoomd.group.all()
    hoomd.md.integrate.mode_standard(dt=0.005)
    hoomd.md.integrate.langevin(group=all, kT=1.2, seed=4)
    hoomd.run(10e3)
```

```
$ hoomd run.py --mode=cpu
$ hoomd run.py --mode=gpu
$ mpirun -n 256 hoomd run.py --mode=cpu
$ mpirun -n 64 hoomd run.py --mode=gpu
```

Fast GPU performance
On a single NVIDIA GPU, HOOMD-blue derforms an order of maanitude faster than a

Scalable

HOOMD-blue scales up to thousands of GPUs on Titan and Blue Waters. two of the laraest

Flexible

Want to run a Molecular Dynamics simulation usina a custom force field? Or mavbe vou are

Phase Diagram of DNA (from $\underline{\underline{1}}_{1}$ theory)

C. Knorowski, S. Burleigh and A. T., PRL (2011)

CsCl-bcc

Classical Nucleation Theory, defects
 Defect Free

 Substitutional

 A-Vacancy

 A-Interstitial
 $\begin{array}{ccc}1.0 & 1.5 & 2.0 \\ t & & \times 10^{8}\end{array}$
 C. Knorowski and A. T., Soft Matter (2012)

 DEFECT ANNIHILATION

тне Ames Liduuralury
Creating Materials \& Energy Solutions

Follows the following elimination reaction:
substitutional + interstitial \backslash vacancy \rightarrow interstitial \vacancy

Hydrophobicity and DNA New!!!

Solution of monodisperse identical DNA-Au Nanoparticles (no hybridization), increase salt concentration.

H. Zhang, W. Wang, N. Hagen, I. Kuzmenko, M. Akinc, A. T., S. Mallapragada and D. Vaknin, Adv. Mat. and Interf. (2016)
M. Campolongo, S. Tan, D. Smilgies, M. Zhao and Y. Chen, ACS Nano (2011)

Electrostatic induced superlattices

Water soluble polymer:
Polyethylene glycol (water)
Zhang, Wang, Mallapragada, A.T, Vaknin (2017)
Zhang, Wang, Akinc, Mallapragada, A.T, Vaknin (2017)

Electrostatic induced superlattices

Induced forces

INSIDE: A spherical brush at theta-point

$\left(\frac{R_{h}}{R}\right)^{2}=1+2 \frac{N\left(\sigma b^{2}\right)^{1 / 2}}{R / b}\left(2 w_{0}\right)^{1 / 4}$
b Kuhn length
$\sigma \quad$ Grafting density
w_{0} Three body interaction

Polymer stretching at the interface

$$
\frac{F}{k_{B} T} \approx\left(\frac{R}{b}\right)^{3}\left(\sigma b^{2}\right)^{3 / 2}\left(2 w_{0}\right)^{1 / 4} H(y) \sim 100 H(y)
$$

$H(y) \sim(1-y)^{3}$ $y=\frac{a_{L}}{2 R_{h}}$
a_{L} Lattice constant
surface tension increases
with high salt solution

$$
\begin{gathered}
\frac{F}{k_{B} T}=4 \pi \gamma_{A B} R_{h}{ }^{2} \sim 0-200 \\
\gamma_{A B} \approx k_{B} T / b^{2} \log ([\text { salt }])
\end{gathered}
$$

Lattice constant: Balance between surface tension and stretching: may be tuned by salt.

Phase diagram

Lattice constant can be tuned over a very large range:

The softer the shell the more crystals!

Two phase region: colloidal destabilization: 3D crystals

3D Au-PEG supercrystals presents intriguing properties. H. Zhang, W. Wang, S. Mallapragada, A. T and D. Vaknin (2017)

Superlattices of Hydrocarbon capped ligands

Binary Superlattices by Solvent evaporation

Solution of both A and B and solvent is

Shevchenko, Talapin, Murray, O’Brien (JACS 2006)
Shevchenko, Talapin, Kotov, O’Brien, Murray (Nature 2006)

Superlattices Examples

Solvent evaporation produces a myriad of super-lattices!!! These lattices are known from their atomic analogues..

Can we predict the structure of these supercrystals?
How many parameters are needed to characterize the phase diagram?

Packing fraction of binary lattices, 3D case:

PF does exceeds the fcc/hcp case

Diameter $=2 r_{\text {A }}$

$$
\gamma=\frac{r_{B}}{r_{A}}
$$

Horst, A.T. , J. Chem. Phys. (2016)

A

Super-lattices and PF

Model the nanoparticles as hard spheres

Diameter $=2 r_{\text {A }}$

Diameter $=2 r_{B}$

Radius of nanoparticle = half lattice constant of the two-dimensional hexagonal lattice.

Radius of nanoparticle computed from TEM images

Experimental points

Strong Correlation between PF and experiment!

Minimal models

Simplest models whose equilibrium phases correlated with maximum of packing fraction ?
Potential must be short-ranged:
Inverse power law:

$$
V_{h f}(r)=\varepsilon_{h f} \varepsilon\left(\frac{\sigma_{h f}}{r}\right)^{p}
$$

If p goes to infinity is the hard sphere model:

At p finite is a softer potential:

A.T., PNAS (2015)

Binary mixtures of inverse-power law

Inverse power law:

$$
V_{h f}(r)=\varepsilon_{h f} \varepsilon\left(\frac{\sigma_{h f}}{r}\right)^{p}
$$

There are 8 parameters :

$$
\varepsilon \sigma_{A} \left\lvert\, \hat{T}=\frac{T}{\varepsilon} \quad \hat{V}=\frac{}{\sigma_{A}^{3}}\right.
$$

Defines units of Length and energy.
Scale invariance
Scale invariance

$$
\begin{equation*}
\xi_{p}=\frac{1}{\hat{T}^{3 / p}} \frac{N}{\hat{V}} \quad \gamma=\frac{\sigma_{B}}{\sigma_{A}} \tag{AB}
\end{equation*}
$$

The phase diagram is a function of 4 parameters! 1 more parameter ($\varepsilon_{A B}$) than the hard sphere model.

Comparison to experiments

Data that is not within $+/-0.2$ in γ or $\varepsilon_{A B}$ is marked with a black dot (those are points where the theoretical prediction is off)

Similar correlation is found with $p=6$

Cannot account for low packing fraction phases (eg: $\mathrm{Li}_{3} \mathrm{Bi}$), AuCu does not appear, etc...
Broad features OK, predictions not specific enough....

The OXM Models (X=P)

$L=$ maximum hydrocarbon extent

$$
\begin{aligned}
\lambda & =\frac{L}{R_{A}}
\end{aligned} \quad \text { Dimensionless hydrocarbon extent } \quad\left\{\begin{array}{ll}
\tau & \frac{r_{A}}{R_{A}}
\end{array} \quad\right. \text { Dimensionless radius (lattice constant) }
$$

Assume that the shaded chain is space filling:

$$
\tau^{O P M}=(1+3 \lambda)^{1 / 3} \quad s_{A A}=2 R_{A} \tau^{O P M}
$$

This is the OPM formula.
The OPM formula for a binary system is:

$$
{ }_{S A}^{O P M}=\tau_{A}^{O P M} R_{A}+\tau_{B}^{O P M} R_{B}
$$

Luedtke, Landman J. Phys. Chem. B (2003)

The OXM Models $(X=C)$

Schapotschnikow, Vlugt, J. Chem. Phys. (2009)

OPM vs OCM

Experimentally: simple lattices: depends on NC coordination number q

Schapotschnikow, Vlugt, J. Chem. Phys. (2009)

The OPM-FE model

The OPM-model provides selection rules (no free energy).

A free energy (OPM-FE) is constructed by:

- OPM-Spheres of radius $r_{A}=\tau^{O P M} R_{A}$
- NCs in contact interact with VdW potential: $V(i, j)=-\frac{A_{h}}{6 D} \frac{r_{i} r_{j}}{r_{i}+r_{j}}=-\chi \frac{r_{i} r_{j}}{r_{i}+r_{j}} \equiv-\chi f(i, j)$
- Free energy is:

$$
F=-\frac{\chi}{2} \sum_{i=1}^{N} \sum_{j \in \mathcal{N}(i)} f(i, j)
$$

Minimum of OPM-FE = Minimum of VdW energy + chain entropy.

bcc to fcc transition in single component systems.

Results for OPM-FE

Model: OPM-FE
Bar $=1$ (equilibrium) if <1 how far is from equilibrium.

Binary systems: OPM-FE sometiones predicts the right phase, usually with the wrong lattice constant A.T., Soft Matter (2016) OPM-FE = same phases as inver'se power law, and with same discrepancies!
OCM not in agreement!

Vortices and Neutral lines New!!!

NCs as SKYRMIONS WITH topological charge -1:

Selinger, Konya, A.T., Selinger J. Phys. B (2011)
Bowick, Nelson, A.T., Phys. Rev. B (2000)

This is a vortex on the surface of the sphere
Topology (Gauss-Bonnet theorem): There can only be 2 ! (no-anti vertices)
However, vortex = projection of the 3-dimensional hydrocarbon orientation Vortices can "escape through the third dimension...."

Neutral lines are generated!

Creating Materials \& Energy Solutions

The OTM model

What neutral lines look like when $\mathrm{q}_{\mathrm{T}}>1$?
Topological charge q_{T} : number of vortices.

A.T., Soft Matter (2017)

A

Prediction of lattice structure within OTM:

Example: MgZn_{2} Space Group: $\mathrm{P}_{3} \mathrm{mmc}$

Unit cell: 4A 8B

OPM: $\mathbf{q}_{\mathrm{T}}=0: \gamma=\gamma_{c}=\sqrt{ }$
A-A contacts ($q=4$) B-B contacts ($q=6$)
OTM: B-particles can only have $\mathbf{q}_{\mathrm{T}}=0 \gamma>\gamma_{c}=\sqrt{\frac{2}{3}}$

Wyckoff positions: 4 f
 2a, 6 h
 (A) Hex diamond
 (B) Pyrochlore

MgZn_{2}

Pyrochlore

$$
q_{T}=0
$$

Diamond

$$
\mathrm{q}_{\mathrm{T}}=0 \text { or } 4
$$

A.T., Soft Matter (2017)

Prediction of lattice structure within OTM:

Example: MgZn_{2} Space Group: $\mathrm{P6}_{3} \mathrm{mmc}$

Unit cell: 4A 8B

$$
\gamma \equiv \frac{\tau_{B}^{O P M}}{\tau_{A}^{O P M}}
$$

(A) Hex diamond 2a, 6h (B) Pyrochlore
Wyckoff positions: 4f I

A.T., Soft Matter (2016)

OPM: $\mathbf{q}_{\mathrm{T}}=0: \gamma=\gamma_{c}=\sqrt{\frac{2}{3}} \quad \begin{aligned} & \text { A-A contacts }(\mathrm{q}=4) \\ & \text { B-B contacts }(\mathrm{q}=6)\end{aligned}$
OTM: B-particles can only have $\mathbf{q}_{\mathbf{T}}=0 \gamma>\gamma_{c}=\sqrt{\frac{2}{3}}$
$\frac{r \overbrace{A}^{(Q 1 I T} \underline{M}}{r_{A}^{O P M}} \frac{r_{B}}{\underline{r_{B}}=\frac{r_{B}^{O P M}}{\gamma_{c}}<\frac{\gamma}{\boldsymbol{I}_{C}} r_{A}^{O P M}}$
Computed from L, R

> Measured
experimentally

Iowa State University of science and technology

$\mathbf{M g Z n}_{2}$

Within OTM PF widely exceeds the HS prediction for values $\gamma<\gamma_{c}$

MgZn_{2} is an example of a low HS PF that becomes High PF within OTM

IOWA STATE UNIVERSITY
of scienceand technology

OTM and experiment

Prediction of Binary Packing density

OTM and experiment

Prediction of lattice structure

Uncertainty in Normalized separation is high ...

тнв Ames Laboratory
Creating Materials \& Energy Solutions
IOWA STATE UNIVERSITY

Summary of OTM predictions:

Comparison with experiments for both the lattice constant and packing fraction from Boles, Talapin JACS (2015)

	η_{u}			$\bar{d}_{i j}$		
BNSL^{*}	exp	OTM OTM	exp OTM OTM			
MgZn_{2}	0.79	0.77	0.83	1.30	1.35	1.13
$\mathrm{Li}_{3} \mathrm{Bi}$	0.88	0.87	0.86	0.90	0.98	1.01
bccAB $_{6}$	0.83	0.84	0.86	1.90	2.20	2.00
CaCu_{5}	0.76	0.67	0.70	2.40	2.56	2.50
AlB_{2}	0.77	0.77	0.78	2.29	2.43	2.33
NaZn_{13}	0.73	0.72	0.72	1.75	1.80	1.64
NaZn_{13}	0.79	0.74	0.74	2.48	2.72	2.57
AuCu^{2}	0.05^{\dagger}	0.02	0.01	$(-)^{\dagger}$	>1	>1

There is almost perfect agreement with experiments for all lattices studied in the experiments!

Prediction of ligand loss!

Ligand loss: The case of AuCu

OPM: $\mathrm{q}_{\mathrm{T}}=0: \gamma=\gamma_{c}=\sqrt{3}-1 \sim 0.73 \begin{aligned} & \text { A-A contacts }(\mathrm{q}=4) \\ & \text { A-B contacts }(\mathrm{q}=8)\end{aligned}$
OTM: B-particles can only have $\mathrm{q}_{\mathrm{T}}=0$
A-particles can have $\mathrm{q}_{\mathrm{T}}=4$

The solution only reaches up to

$$
\gamma=\gamma_{c, 2}=1 / \sqrt{2} \sim 0.707
$$

Experiments report $\gamma_{c, 2} \leq 0.57$
Within OTM, experimental results are consistent only if ligands are lost and raw (PbS) are in contact alomg the (100) faces.

Boles, Engel, Talapin, Chem. Rev. (on-line September 2016)
Experimental evidence in complete agreement with OTM prediction. Ligand loss seems a general feature in PbS, includes quasicrystals.

Conclusions

superlattices: where topology meets geometry meets physícs meets chemístry meets materíals sciénce! Superlattice structure prediction for 3 different assembly strategies:

1) DNA-water driven by hybridizations.
2) Hydrocarbons-Organic solvent driven by VdW forces.
3) PEG water driven by electrostatic segregation, and ultimately, by VdW forces.

DNA: Hydrophobicity in linkers influence the resulting phase diagram

Polymers (PEG): crystallization of spherical polymer brushes in 2D and 3D: Controlled lattice constant by salt concentration. Softer ligands (longer polymers) make more mesophases.

Hydrocarbon ligands: skyrmions (hedgehogs) with "non-topological" defects
OTM model explains structure and stability of super-crystal phases

GRAND CHALLENGE to Supercrystal prediction: Understand/Control relaxation times (DYNAMICS): Microfluidics?

Dynamical Lattice Theory

> Hoover, Ross, Johnson, Henderson, Barker, Brown J. of Phys. Chem. (1970) A.T., J. of Phys. Chem. (2014)

This is the harmonic approximation: Write the coordinates of every particle as

$$
\vec{R}_{a}=R_{a}^{0}+\vec{u}_{a}
$$

$$
\begin{array}{cc}
\text { Position of the particle in } & \text { Displacement from the } \\
\text { the lattice } & \text { lattice }
\end{array}
$$

The potential energy is:

$$
\begin{aligned}
U=\frac{1}{2} \sum_{a, b} V\left(\vec{R}_{a}-\vec{R}_{b}\right) & =\frac{1}{2} \sum_{a, b} V\left(\vec{R}_{a}^{0}-\vec{R}_{b}^{0}\right)+\frac{1}{2} \sum_{a, b} u_{a}^{i} D_{(a, i),(b, j)} u_{b}^{j} \\
& =U_{0}+\frac{1}{2} \sum_{a, b} u_{a} D_{a, b} u_{b}
\end{aligned}
$$

The free energy is:

$$
F^{h a r m}=U_{0}+k_{B} T \log \operatorname{det} D
$$

DLT is an approximation because we are neglecting higher order terms...
DLT becomes exact in the limit of very low temperatures!

Computational tools

Calculation of free energies

HOODLT

A.T., J. of Phys. Chem. (2014)

HOOMD

J.A. Anderson, C. D. Lorenz and A.T., J. of Comp. Phys. (2008)
C. Knorowski, C. Calero, A.T., almost accepted (2015)

Lennard-Jones Systems

$$
V(r)=4 \varepsilon_{L J}\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right]
$$

The known phase diagram is given by At $\mathrm{T}=0$, the equilibrium phase is hcp for $\mathrm{P}<$ 878.49

Stillinger, J. of Phys. Chem. (2001)

DLT calculation
hcp is the low temperature solid phase!!!

DLT is actually quite accurate!

How results are modified once anharmonic terms are included?

Lennard Jones Systems

The anharmonic contribution is calculated in all these many points...

The
difference in chemical potential is very small!

Entropy

The free
energy
difference is
a very subtle
balance

тне Ames Ladoratory
Creating Materials \& Energy Solutions

Super-lattices and hard sphere models

Model the nanoparticles as hard spheres of the respective diameters

$$
\begin{aligned}
& \mathrm{NaCl} \\
& \mathrm{CuAu}
\end{aligned}
$$

$$
\gamma=d_{A} / d_{B}
$$

$$
\mathrm{AlB}_{2}
$$

$$
\mathrm{MgZn} \mathrm{n}_{2}
$$

$$
\mathrm{MgNi}_{2}
$$

$$
\mathrm{AuCu}_{3}
$$

$$
\mathrm{CFe}_{4}
$$

$$
\mathrm{CaCu}_{5}
$$

$$
\mathrm{CaB}_{6}
$$

$$
\mathrm{NaZn}_{13}
$$

$$
\text { CubAB }{ }_{13}
$$

+more

Eldridge, Madden, Frenkel (Nature 1993)

Iowa State University
of SCIENCEAND TECHNOLOGY

What is mess?

Assembly, when energies $\gg k_{B} T$ does not happen (within available time!)

Lattices

We compute the free energy for the following 24 lattices:

N	ST	SG	S	P	A
fcc	A or B	Fm-3m	A1	cF4	
hcp	A or B	$\mathrm{P} 6_{3} / \mathrm{mmc}$	A3	hP2	
bce	A or B	Im3m	A2	cI2	
NaCl	AB	Fm-3m	B1	cF8	
AuCu	AB	$\mathrm{P} 4 / \mathrm{mmm}$	L10	cP4	
CsCl	AB	$\mathrm{Pm}-3 \mathrm{~m}$	B2	cP2	
ZnS	AB	F-43m	B3	cF8	
ZnO	AB	$\mathrm{P} 63 / \mathrm{mc}$	B4	hP4	
AlB_{2}	AB_{2}	$\mathrm{P} 6 / \mathrm{mmm}$	C32	hP3	
CaF_{2}	AB_{2}	Fm-3m	C1	cF12	
MgCu_{2}	AB_{2}	Fd-3m	C15	cF24	Laves
MgZn_{2}	AB_{2}	$\mathrm{P} 63 / \mathrm{mmc}$	C14	hP12	Laves
AuCu_{3}	AB_{3}	Pm-3m	L 12	cP4	
$\mathrm{Li}_{3} \mathrm{Bi}$	AB_{3}	Fm-3m		cF16	
ReO_{3}	AB_{3}	Pm-3m	D09	cP4	
$\mathrm{Cr}_{3} \mathrm{Si}$	AB_{3}	Pm-3n	A15	cP8	
$\mathrm{Fe}_{4} \mathrm{C}$	AB_{4}	P-43m		cP5	
$\mathrm{Pt}_{3} \mathrm{O}_{4}$	$\mathrm{A}_{3} \mathrm{~B}_{4}$	Pm-3n		cP14	
CaCu_{5}	AB_{5}	$\mathrm{P} 6 / \mathrm{mmm}$	D2 ${ }_{d}$	hP6	
CaB_{6}	AB_{6}	Pm-3m	D21	cP7	
bcc- AB_{6}	AB_{6}	Im-3m		cI14	$\mathrm{Cs}_{6} \mathrm{C}_{60}$
NaZn 13	AB_{13}	Fm3c	D23	cF112	
cub- AB_{13}	AB_{13}	Pm-3m		cP14	
cub-fcc-AB13	AB_{13}	Fm-3m	$\mathrm{D} 2_{f}$	cF56	

Stability (D-matrix positive definite) occurs only for a range of γ

$\gamma_{L}=$	$\gamma-0.08$	γ	$\gamma+0.08$
NaCl	$0.00-0.51$	$0.00-0.51$	$0.00-0.51$
AuCu	$0.86-1.00$	$0.51-0.75$	$0.86-1.00$
CsCl	$0.51-0.87$	$0.91-1.00$	
ZnO	$0.00-0.24$	$0.00-0.87$	$0.51-0.87$
ZnS	$0.00-0.24$	$0.00-0.24$	$0.00-0.24$
AlB_{2}	-	$0.24-0.61$	-
CaF_{2}	-	-	-
MgCu_{2}	$0.59-0.88$	$0.59-0.88$	$0.59-0.88$
MgZn_{2}	$0.60-0.88$	$0.60-0.88$	$0.60-0.88$
AuCu_{3}	$0.79-1.00$	$0.79-1.00$	$0.79-1.00$
$\mathrm{Li}_{3} \mathrm{Bi}^{2}$	-	-	-
ReO_{3}	-	-	-
$\mathrm{Cr}_{3} \mathrm{Si}^{-}$	-	-	-
$\mathrm{Fe}_{4} \mathrm{C}$	-	-	-
$\mathrm{Pt}_{3} \mathrm{O}_{4}$	-	-	-
CaCu_{5}	$0.58-0.68$	$0.52-0.66$	$0.58-0.68$
CaB_{6}	$0.20-0.39$	-	$0.20-0.39$
$\mathrm{bcc-} \mathrm{AB}_{6}$	$0.34-0.45$	$0.34-0.45$	$0.34-0.45$
$c^{4}-\mathrm{AB}_{13}$	-	-	-
$c_{13}-\mathrm{fub}^{2}-\mathrm{AB}_{13}$	-	-	$0.38-0.41$
NaZn_{13}	$0.43-0.87$	$0.46-0.86$	$0.43-0.87$

$\gamma_{L}=$	$\gamma-0.08$	γ	$\gamma+0.08$
NaCl	0.00-0.70	0.00-0.70	0.00-0.70
AuCu	-	0.63-1.00	-
CsCl	0.63-1.00	0.63-1.00	0.63-1.00
ZnO	0.00-0.22	0.00-0.22	0.00-0.22
ZnS	0.00-0.22	0.00-0.22	0.00-0.22
AlB_{2}	-	0.24-0.52	-
CaF_{2}	0.91-1.00	0.91-1.00	0.91-1.00
MgCu_{2}	-	-	-
MgZn_{2}	-	-	-
AuCu_{3}	0.58-0.92	0.58-0.92	0.58-0.92
$\mathrm{Li}_{3} \mathrm{Bi}$	0.53-1.00	0.53-1.00	0.53-1.00
ReO_{3}	-	-	-
$\mathrm{Cr}_{3} \mathrm{Si}$	0.63-1.00	0.63-1.00	0.63-1.00
$\mathrm{Fe}_{4} \mathrm{C}$	-	-	-
$\mathrm{Pt}_{3} \mathrm{O}_{4}$	-	-	-
CaCu_{5}	0.38-0.49	0.39-0.50	0.38-0.49
CaB_{6}	0.17-0.27	-	0.17-0.27
$\mathrm{bcc}-\mathrm{AB}_{6}$	-	0.22-0.31	-
cub- AB_{13}	-	-	-
cub-fcc-AB ${ }_{13}$	-	-	-
NaZn_{13}	0.29-0.53	-	0.29-0.53

$$
p=12
$$

$$
p=6
$$

[^0]: Also: D. Talapin and M. Boles (U Chicago \& Stanford)
 O. Gang (Columbia/Brookhaven)

[^1]: General strategy for programmed self-assembly!

