Self-assembly and dynamics in nanoparticle superlattices

Nathan <u>Horst</u> Curtis Waltman Chris Knorowski Abhijeet Kapoor Honghu Zhang Wenjie Wang Surya Mallapragada

David Vaknin

CONTRACT DE-AC02-07CH11358

DMR-CMMT (1606336) New!!!

Also: D. Talapin and M. Boles (U Chicago & Stanford)

O. Gang (Columbia/Brookhaven)

Programmable (Self)assembly?

Assembling ordered materials, phases, structures from basic components, precisely

Nanoparticles Assembly

Components: Nanoparticles. Materials: Crystals (Supercrystals).

How to control super-crystals structure?

• Proper Interactions:

Control relaxation times

Temperature cycling, annealing..

SUCCESS?

Very narrow success range: Relaxation times grow very fast with characteristic energy.

50 nm 10 nm Faceted polyhedra 5 nm 00 nm

S. Glotzer and J. Solomon, Nature Materials (2007)

1 um

10 nm

100 nm

Proper Interactions: Assembling Nanoparticle Superlattices

Spherical Nanoparticles functionalized with:

DNA (water)

Nykipanchuck, Maye, Van der lelie and Gang, Nature (2008)

Hydrocarbons (oil)

Whetten et al (Acc. Chem. Res 32 1999)Shevchenko, Talapin et al. (Nature 2006)Zhang,Shevchenko, Talapin, Murray, O'Brien (JACS 2006)

New!!! Water soluble polymer:

Polyethylene glycol (water)

Zhang, Wang, Mallapragada, A.T, Vaknin, Nanoscale (2017)

Park, Lytton-Jean, Lee, Weigand, Schatz and Mirkin, Nature (2008)

DNA Nanoparticles superlattices

DNA Superlattices

General strategy for programmed self-assembly!

C. Knorowski and A. T., COSSMS (2011)

Predictive theory: Explicit chain Model consisting of beads (1 bead~ 6 nucleotides) Hydrogen bond is between complementary base pairs and directional CT beads= C-G T-A short-range attraction (HB) FL,CT beads= hard-core repulsion **PARAMETERS**: R=NP radius (6nm) r=number of ssDNA strands per NP 1+*i* $\eta = NP density$ T=Temperature J.A. Anderson, C. Come, P spacer C. Knorowski, S. Burleigh and A. T., PRL (2011) T. Li, R. Sknepnek, R. Macfarlane, C. Mirkin, M. Olvera de la Cruz, Nano. (2012) THE A MILLON LAUNOL COULY IOWA STATE UNIVERSITY **Creating Materials & Energy Solutions** OF SCIENCE AND TECHNOLOGY

U.S. DEPARTMENT OF ENERGY

HOOMD-Blue

C O glotzerlab.engin.umich.edu/hoomd-blue/ S O G glotzerlab.engin.umich.edu/hoomd-blue/ S O G S	HOOMD-blue - Home ×		I	Alex	-	٥	×
Image: Teaching Recipes YellowPages Kindle Water Computer Red Hat G Images Customer Portal Documentation Red Hat Network Belize Funding > Other bookm Home Download Tutorial Benchmarks Documentation Publications Publications WitchigAn	← → C ☆ ③ glotzerlab.engin.umich.edu/hoomd-blue/	☆ 😶	🏩 🔽 🚺	2	0 0		1
Home Download Tutorial Benchmarks Documentation Bublications	👬 Apps 📙 Teaching 🧧 Recipes 📙 YellowPages 📙 Kindle 📋 Water 📙 Computer 💐 Red Hat 🕒 Images 💐 Customer Portal 💐 Documentation 💐 Red Hat Network	Belize	Funding	*	Other	r bookn	mark
nome bowmoad rational benchmarks bocumentation publications	HOOMD-blue Home Download Tutorial Benchmarks Documentation Publications			UNIVERSITY MICHIG	r of AN		

New URL: Update your bookmarks, the HOOMD-blue home page is now http://glotzerlab.engin.umich.edu/hoomd-blue.

HOOMD-blue is a *general-purpose* particle simulation toolkit. It scales from a single CPU core to **thousands of GPUs**.

You define particle initial conditions and interactions in a high-level python script. Then tell HOOMD-blue how you want to execute the job and it takes care of the rest. Python job scripts give you unlimited flexibility to create custom initialization routines, control simulation parameters, and perform in situ analysis.

Download and get started using HOOMD-blue today. Please cite HOOMD-blue if you use it published work.

import hoomd, hoomd.md hoomd.context.initialize() unitcell=hoomd.lattice.sc(a=2.0, type_name='A') hoomd.init.create_lattice(unitcell=unitcell, n=10) nl = hoomd.md.nlist.cell() lj = hoomd.md.pair.lj(r_cut=3.0, nlist=nl) lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0) all = hoomd.group.all(); hoomd.md.integrate.mode_standard(dt=0.005) hoomd.md.integrate.langevin(group=all, kT=1.2, seed=4) hoomd.run(10e3)

\$ hoomd run.py --mode=cpu
\$ hoomd run.py --mode=gpu
\$ mpirun -n 256 hoomd run.py --mode=cpu
\$ mpirun -n 64 hoomd run.py --mode=gpu

Fast GPU performance

Scalable

Flexible

On a single NVIDIA GPU, HOOMD-blue performs an order of magnitude faster than a

HOOMD-blue scales up to thousands of GPUs on Titan and Blue Waters. two of the largest Want to run a Molecular Dynamics simulation using a custom force field? Or maybe vou are

Hydrophobicity and DNA New!!!

Solution of monodisperse identical DNA-Au Nanoparticles (no hybridization), increase salt concentration.

Gibbs monolayer implies hydrophobicity.

Capping ligand does have hydrophobic blocks.

Туре	Sequence (5' to 3')			
Thiol modified DNA – A	HSC6H10-TT TTT TTT TTT TCG TTG GCT GGA TAG CTG TGT TCT TAA CCT AAC CTT CAT			
Thiol modified DNA – A'	HS C _{6H1} TT TTT TTT TTT TCG TTG GCT GGA TAG CTG TGT TCT ATG AAG GTT AGG TTA			
Hydrophobicity is an additional element to consider in the				

programmable self-assembly of DNA ...

What about (mildly) Hydrophilic ligands: PEG?

H. Zhang, W. Wang, N. Hagen, I. Kuzmenko, M. Akinc, A. T., S. Mallapragada and D. Vaknin, Adv. Mat. and Interf. (2016)

M. Campolongo, S. Tan, D. Smilgies, M. Zhao and Y. Chen, ACS Nano (2011)

Electrostatic induced superlattices

Water soluble polymer: Polyethylene glycol (water)

Zhang, Wang, Mallapragada, A.T, Vaknin (2017) Zhang, Wang, Akinc, Mallapragada, A.T, Vaknin (2017)

Electrostatic induced superlattices

Phase diagram

Lattice constant can be tuned over a very large range:

The softer the shell the more crystals!

Two phase region: colloidal destabilization: 3D crystals

Superlattices of Hydrocarbon capped ligands

Shevchenko, Talapin, Murray, O'Brien (JACS 2006) Shevchenko, Talapin, Kotov, O'Brien, Murray (Nature 2006)

Packing fraction of binary lattices, 3D case:

Super-lattices and PF

Creating Materials & Energy Solutions

U.S. DEPARTMENT OF ENERGY

Model the nanoparticles as hard spheres

Minimal models

Simplest models whose equilibrium phases correlated with maximum of packing fraction ?

Potential must be short-ranged:

Inverse power law:

A.T., **PNAS** (2015)

Binary mixtures of inverse-power law

A.T., PNAS (2015)

Comparison to experiments

Data that is not within +/-0.2 in γ or ϵ_{AB} is marked with a black dot (those are points where the theoretical prediction is off)

Cannot account for low packing fraction phases (eg: Li₃Bi), AuCu does not appear, etc...

Broad features OK, predictions not specific enough....

The OXM Models (X=P)

L = maximum hydrocarbon extent

Luedtke, Landman J. Phys. Chem. B (2003)

Dimensionless thermodynamics

 $\lambda = \frac{L}{R_A}$ Dimensionless hydrocarbon extent $\tau = \frac{r_A}{R_A}$ Dimensionless radius (lattice constant)

Assume that the shaded chain is space filling:

 $\tau^{OPM} = (1+3\lambda)^{1/3} \qquad s_{AA} = 2R_A \tau^{OPM}$

This is the **OPM** formula.

The OPM formula for a binary system is:

$$s_{AB}^{OPM} = \tau_A^{OPM} R_A + \tau_B^{OPM} R_B$$

The OXM Models (X=C)

Schapotschnikow, Vlugt, J. Chem. Phys. (2009)

 $\lambda = rac{L}{R_A}$ Dimensionless hydrocarbon extent. $au = rac{r_A}{R_A}$ Dimensionless lattice constant.

Assume that the OVERLAP cone is space filling:

$$\tau^{OCM} = \eta_{HS}^{1/3} \left(1 + 3\lambda\right)^{1/3} \qquad s_{AA} = 2\tau^{OCM} R_A$$
$$PF = \eta_{HS}$$

This is the OCM formula.

The OCM formula for a binary system is:

$$s_{AB}^{OCM} = R_A \tau_A^{OCM} + R_B \tau_B^{OCM}$$

OPM vs OCM

Experimentally: simple lattices: depends on NC coordination number q

Boles, Talapin JACS (2015)

Schapotschnikow, Vlugt, J. Chem. Phys. (2009)

The OPM-FE model

The OPM-model provides selection rules (no free energy).

A free energy (OPM-FE) is constructed by:

- OPM-Spheres of radius $r_A = \tau^{OPM} R_A$
- NCs in contact interact with VdW potential: $V(i,j) = -\frac{A_h}{6D} \frac{r_i r_j}{r_i + r_j} = -\chi \frac{r_i r_j}{r_i + r_j} \equiv -\chi f(i,j)$
- Free energy is:

$$F = -\frac{\chi}{2} \sum_{i=1}^{N} \sum_{j \in \mathcal{N}(i)} f(i,j)$$

Minimum of OPM-FE = Minimum of VdW energy + chain entropy.

component systems.

A.T., Soft Matter (2017)

Results for OPM-FE

Model: OPM-FE

EXP. Boles, Talapin JACS (2015)

U.S. DEPARTMENT OF ENERGY

Vortices and Neutral lines New!!!

This is a vortex on the surface of the sphere

Topology (Gauss-Bonnet theorem): There can only be 2 ! (no-anti vortices) However, vortex = projection of the <u>3-dimensional</u> hydrocarbon orientation Vortices can "escape through the third dimension...."

Neutral lines are generated!

NCs as SKYRMIONS WITH topological charge -1:

A.T., Soft Matter (2017) Selinger, Konya, A.T., Selinger J. Phys. B (2011) Bowick, Nelson, A.T., Phys. Rev. B (2000)

The OTM model

Topological charge q_T : number of vortices.

q_T=0

What neutral lines look like when $q_T > 1$? A) vortices

OTM HYPOTHESIS: Neutral lines are costly, need to be MINIMIZED: $q_T = 1,2$ One or two vortices (no neutral lines).

- $q_T = 3$ Two vortices and one $\frac{1}{2}$ disclination or 3 vortices.
- $q_T = 4$ Four ½ disclinations or 4 vortices with neutral lines.
- $q_T \ge 6$ neutral lines too costly, topological charge is trivial.

(Currently testing this hypothesis with explicit simulations!) Ratio of nanoparticle radius (hexagonal lattice) is:

$$\gamma \equiv \frac{\tau_B^{OTM}(q_T=0)}{\tau_A^{OTM}(q_T=0)} = \frac{\tau_B^{OPM}}{\tau_A^{OPM}}$$

q_T=1

A.T., Soft Matter (2017)

MgZn₂

MgZn₂ is an example of a low HS PF that becomes High PF within OTM

OTM and experiment

Prediction of Binary Packing density

A.T., Soft Matter (2017) Boles, Talapin JACS (2015)

OTM and experiment

Prediction of lattice structure

Uncertainty in Normalized separation is high ...

A.T., Soft Matter (2017) Boles, Talapin JACS (2015)

Summary of OTM predictions:

Comparison with experiments for both the lattice constant and packing fraction from *Boles, Talapin JACS (2015)*

		η_u			\bar{d}_{ij}	
BNSL	\exp	OTM	OTM*	\exp	OTM	OTM*
$MgZn_2$	0.79	0.77	0.83	1.30	1.35	1.13
Li ₃ Bi	0.88	0.87	0.86	0.90	0.98	1.01
$bccAB_6$	0.83	0.84	0.86	1.90	2.20	2.00
$CaCu_5$	0.76	0.67	0.70	2.40	2.56	2.50
AlB_2	0.77	0.77	0.78	2.29	2.43	2.33
NaZn ₁₃	0.73	0.72	0.72	1.75	1.80	1.64
NaZn ₁₃	0.79	0.74	0.74	2.48	2.72	2.57
AuCu	0.05^{\dagger}	0.02	0.01	(-)†	>1	>1

There is almost perfect agreement with experiments for <u>all lattices studied in the experiments!</u>

Prediction of ligand loss!

Ligand loss: The case of AuCu

OPM: $q_T = 0$: $\gamma = \gamma_c = \sqrt{3} - 1 \sim 0.73$ A-A contacts (q=4) A-B contacts (q=8)

OTM: B-particles can only have $q_T = 0$ A-particles can have $q_T = 4$

Experiments report $\gamma_{c,2} \leq 0.57$

Within OTM, experimental results are consistent only if ligands are lost and raw (PbS) are in contact along the (1 0 0) faces.

Boles, Engel, Talapin, Chem. Rev. (on-line September 2016)

Experimental evidence in complete agreement with OTM prediction. Ligand loss seems a general feature in PbS, includes quasicrystals.

IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

Conclusions

Superlattices: where topology meets geometry meets physics meets chemistry meets materials science! Superlattice structure prediction for 3 different assembly strategies:

- 1) DNA-water driven by hybridizations.
- 2) Hydrocarbons-Organic solvent driven by VdW forces.
- 3) PEG water driven by electrostatic segregation, and ultimately, by VdW forces.

DNA: Hydrophobicity in linkers influence the resulting phase diagram

Polymers (PEG): crystallization of spherical polymer brushes in 2D and 3D: Controlled lattice constant by salt concentration. Softer ligands (longer polymers) make more mesophases.

Hydrocarbon ligands: skyrmions (hedgehogs) with "non-topological" defects

OTM model explains structure and stability of super-crystal phases

GRAND CHALLENGE to Supercrystal prediction: Understand/Control relaxation times (DYNAMICS): Microfluidics?

Dynamical Lattice Theory

Hoover, Ross, Johnson, Henderson, Barker, Brown J. of Phys. Chem. (1970)

A.T., J. of Phys. Chem. (2014)

This is the harmonic approximation: Write the coordinates of every particle as

$$\vec{R}_a = R_a^0 + \vec{u}_a$$

Position of the particle in Displacement from the lattice lattice

The potential energy is:

$$\begin{aligned} \boldsymbol{U} &= \frac{1}{2} \sum_{a,b} V(\vec{R}_a - \vec{R}_b) = \frac{1}{2} \sum_{a,b} V(\vec{R}_a^0 - \vec{R}_b^0) + \frac{1}{2} \sum_{a,b} \boldsymbol{u}_a^i D_{(a,i),(b,j)} \boldsymbol{u}_b^j \\ &= \boldsymbol{U}_0 + \frac{1}{2} \sum_{a,b} \boldsymbol{u}_a D_{a,b} \boldsymbol{u}_b \end{aligned}$$

The free energy is:

$$F^{harm} = U_0 + k_B T \log det D$$

DLT is an approximation because we are neglecting higher order terms...

DLT becomes exact in the limit of very low temperatures!

Computational tools

Lennard-Jones Systems

$$V(r) = 4\varepsilon_{LJ} \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$$

The known phase diagram is given by At T=0, the equilibrium phase is hcp for P < 878.49

Stillinger, J. of Phys. Chem. (2001)

DLT calculation

hcp is the low temperature solid phase!!!

DLT is actually quite accurate!

How results are modified once anharmonic terms are included?

Lennard Jones Systems

C. Calero, C. Knorowski and A.T., submitted (2015)

The anharmonic contribution is calculated in all these many points...

What is mess?

Assembly, when energies $>> k_B T$ does not happen (within available time!)

U.S. DEPARTMENT OF ENERGY

OF SCIENCE AND TECHNOLOGY

Lattices

We compute the free energy for the following 24 lattices:

N	ST	SG	S	Р	A
fcc	A or B	Fm-3m	A1	cF4	
hcp	A or B	P6 ₃ /mmc	A3	hP2	
bee	A or B	Im3m	A2	cI2	
NaCl	AB	Fm-3m	B1	cF8	
AuCu	AB	P4/mmm	$L1_0$	cP4	
CsCl	AB	Pm-3m	B2	cP2	
ZnS	AB	F-43m	B3	cF8	
ZnO	AB	$P6_3/mc$	B4	hP4	
AlB_2	AB_2	P6/mmm	C32	hP3	
CaF_2	AB_2	Fm-3m	C1	cF12	
$MgCu_2$	AB_2	Fd-3m	C15	cF24	Laves
$MgZn_2$	AB_2	$P6_3/mmc$	C14	hP12	Laves
$AuCu_3$	AB_3	Pm-3m	$L1_2$	cP4	
Li_3Bi	AB_3	Fm-3m		cF16	
ReO_3	AB_3	Pm-3m	$D0_9$	cP4	
Cr_3Si	AB_3	Pm-3n	A15	cP8	
Fe_4C	AB_4	P-43m		cP5	
Pt_3O_4	A_3B_4	Pm-3n		cP14	
$CaCu_5$	AB_5	P6/mmm	$D2_d$	hP6	
CaB_6	AB_6	Pm-3m	$D2_1$	cP7	
$bcc-AB_6$	AB_6	Im-3m		cI14	Cs_{60}
NaZn ₁₃	AB_{13}	Fm3c	$D2_3$	cF112	
$cub-AB_{13}$	AB_{13}	Pm-3m		cP14	
cub-fcc-AB13	AB_{13}	Fm-3m	$D2_f$	cF56	

Stability (D-matrix positive definite) occurs only for a range of γ

$\gamma_L =$	γ - 0.08	γ	γ + 0.08	$\gamma_L =$	γ - 0.08	γ	$\gamma + 0.08$
NaCl	0.00 - 0.51	0.00 - 0.51	0.00 - 0.51	NaCl	0.00 - 0.70	0.00 - 0.70	0.00 - 0.70
AuCu	0.86.1.00	0.51 - 0.75	0.86.1.00	AuCu		0.63 - 1.00	
AuOu	0.00-1.00	0.91 - 1.00	0.00-1.00	CsCl	0.63 - 1.00	0.63 - 1.00	0.63 - 1.00
CsCl	0.51 - 0.87	0.51 - 0.87	0.51 - 0.87	ZnO	0.00 - 0.22	0.00 - 0.22	0.00 - 0.22
ZnO	0.00 - 0.24	0.00 - 0.24	0.00 - 0.24	ZnS	0.00 - 0.22	0.00 - 0.22	0.00 - 0.22
ZnS	0.00 - 0.24	0.00 - 0.24	0.00 - 0.24	AlB_2		0.24 - 0.52	
AlB_2		0.24 - 0.61		CaF_2	0.91 - 1.00	0.91 - 1.00	0.91 - 1.00
CaF_2				MgCu ₂			
$MgCu_2$	0.59 - 0.88	0.59 - 0.88	0.59 - 0.88	MgZn ₂			
$MgZn_2$	0.60 - 0.88	0.60 - 0.88	0.60 - 0.88	AuCua	0.58-0.92	0.58-0.92	0.58 - 0.92
AuCu ₃	0.79 - 1.00	0.79 - 1.00	0.79 - 1.00	LiaBi	0.53-1.00	0.53-1.00	0.53-1.00
Li ₃ Bi				BeO ₂			0.00 1.00
ReO_3				CroSi	0.62.1.00	0.62.1.00	0.62.1.00
Cr ₃ Si				Eq.C	0.03-1.00	0.03-1.00	0.03-1.00
Fe_4C				Pt O			
Pt_3O_4				Pt_3O_4	0.00.0.10	0.00.0 70	0.00.0.10
CaCu ₅	0.58 - 0.68	0.52 - 0.66	0.58 - 0.68	CaCu ₅	0.38-0.49	0.39-0.50	0.38-0.49
CaB_6	0.20 - 0.39		0.20 - 0.39	CaB_6	0.17 - 0.27		0.17 - 0.27
bcc-AB ₆	0.34 - 0.45	0.34 - 0.45	0.34 - 0.45	$bcc-AB_6$		0.22 - 0.31	
cub-AB ₁₃				$cub-AB_{13}$			
cub-fcc-AB ₁₃			0.38 - 0.41	cub-fcc-AB ₁₃			
NaZn ₁₃	0.43 - 0.87	0.46 - 0.86	0.43 - 0.87	NaZn ₁₃	0.29 - 0.53		0.29 - 0.53

p = 12

p = 6

