Moments estimates for the discrete coagulation-fragmentation equations with diffusion

Maxime Breden
 Technical University of Munich

Joint work with Laurent Desvillettes (Université Paris Diderot) and Klemens Fellner (University of Graz)

Young Researchers Workshop: Current trends in kinetic theory October 9-13, 2017

Table of Contents

(1) Introduction

- Description of the model
- About mass conservation and gelation
- State of the art and new results
(2) Moments estimates via duality lemmas
- Using duality lemmas ...
- ... to get moments estimates
(3) Consequences for mass conservation and smoothness
- Strong enough fragmentation prevents gelation
- Moments estimates imply smoothness results
- Conclusion

(1) Introduction

- Description of the model
- About mass conservation and gelation
- State of the art and new results
(2) Moments estimates via duality lemmas
(3) Consequences for mass conservation and smoothness
- We denote by $c_{i}=c_{i}(t, x) \geq 0$ the concentration of clusters of size $i \in \mathbb{N}^{*}$, at time $t \geq 0$ and position $x \in \Omega \subset \mathbb{R}^{N}$.
- We denote by $c_{i}=c_{i}(t, x) \geq 0$ the concentration of clusters of size $i \in \mathbb{N}^{*}$, at time $t \geq 0$ and position $x \in \Omega \subset \mathbb{R}^{N}$.
- The diffusive coagulation-fragmentation equations are the given by

$$
\partial_{t} c_{i}-d_{i} \Delta_{x} c_{i}=Q_{i}(c)+F_{i}(c), \quad \forall i \in \mathbb{N}^{*}
$$

where the coagulation term $Q_{i}(c)$ and the fragmentation term $F_{i}(c)$ take the form

$$
\begin{gathered}
Q_{i}(c)=Q_{i}^{+}(c)-Q_{i}^{-}(c)=\frac{1}{2} \sum_{j=1}^{i-1} a_{i-j, j} c_{i-j} c_{j}-\sum_{j=1}^{\infty} a_{i, j} c_{i} c_{j} \\
F_{i}(c)=F_{i}^{+}(c)-F_{i}^{-}(c)=\sum_{j=1}^{\infty} B_{i+j} \beta_{i+j, i} c_{i+j}-B_{i} c_{i}
\end{gathered}
$$

- This infinite system of reaction-diffusion equations is complemented with Neumann boundary conditions and non negative initial concentrations $c_{i}^{\text {init }} \geq 0$.

$$
Q_{i}(c)=Q_{i}^{+}(c)-Q_{i}^{-}(c)=\frac{1}{2} \sum_{j=1}^{i-1} a_{i-j, j} c_{i-j} c_{j}-\sum_{j=1}^{\infty} a_{i, j} c_{i} c_{j},
$$

$$
F_{i}(c)=F_{i}^{+}(c)-F_{i}^{-}(c)=\sum_{j=1}^{\infty} B_{i+j} \beta_{i+j, i} c_{i+j}-B_{i} c_{i} .
$$

$i \quad j \quad i+j$

$$
Q_{i}(c)=Q_{i}^{+}(c)-Q_{i}^{-}(c)=\frac{1}{2} \sum_{j=1}^{i-1} a_{i-j, j} c_{i-j} c_{j}-\sum_{j=1}^{\infty} a_{i, j} c_{i} c_{j},
$$

$$
F_{i}(c)=F_{i}^{+}(c)-F_{i}^{-}(c)=\sum_{j=1}^{\infty} B_{i+j} \beta_{i+j, i} c_{i+j}-B_{i} c_{i} .
$$

$i \quad j \quad i+j$

Natural set of assumptions:

$$
a_{i, j}, B_{i}, \beta_{i, j} \geq 0, \quad a_{i, j}=a_{j, i}, \quad B_{1}=0, \quad \text { and } \quad i=\sum_{j=1}^{i-1} j \beta_{i, j} .
$$

Weak formulation of the coagulation-fragmentation terms

$$
\begin{gathered}
Q_{i}(c)=Q_{i}^{+}(c)-Q_{i}^{-}(c)=\frac{1}{2} \sum_{j=1}^{i-1} a_{i-j, j} c_{i-j} c_{j}-\sum_{j=1}^{\infty} a_{i, j} c_{i} c_{j}, \\
F_{i}(c)=F_{i}^{+}(c)-F_{i}^{-}(c)=\sum_{j=1}^{\infty} B_{i+j} \beta_{i+j, i} c_{i+j}-B_{i} c_{i} .
\end{gathered}
$$

For any sequence $\left(\varphi_{i}\right)_{i \in \mathbb{N}^{*}}$ we have (at least formally)

$$
\begin{gathered}
\sum_{i=1}^{\infty} \varphi_{i} Q_{i}(c)=\frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i, j} c_{i} c_{j}\left(\varphi_{i+j}-\varphi_{i}-\varphi_{j}\right), \\
\sum_{i=1}^{\infty} \varphi_{i} F_{i}(c)=-\sum_{i=1}^{\infty} B_{i} c_{i}\left(\varphi_{i}-\sum_{j=1}^{i-1} \beta_{i, j} \varphi_{j}\right) .
\end{gathered}
$$

- Both from a mathematical and from a physical perspective, one of the most interesting questions about coagulation-fragmentation models is the one of mass conservation.
- Starting from the coagulation-fragmentation equations

$$
\partial_{t} c_{i}-d_{i} \Delta_{x} c_{i}=Q_{i}(c)+F_{i}(c), \quad \forall i \in \mathbb{N}^{*}
$$

we get

$$
\partial_{t}\left(\sum_{i=1}^{\infty} i c_{i}\right)-\Delta_{x}\left(\sum_{i=1}^{\infty} i d_{i} c_{i}\right)=\sum_{i=1}^{\infty} i Q_{i}(c)+\sum_{i=1}^{\infty} i F_{i}(c)
$$

- Using the previous identity with $\varphi_{i}=i$, we see that

$$
\sum_{i=1}^{\infty} i Q_{i}(c)=0=\sum_{i=1}^{\infty} i F_{i}(c)
$$

- After integrating and using the Neumann boundary conditions, we are left with

$$
\int_{\Omega} \sum_{i=1}^{\infty} i c_{i}(t, x) d x=\int_{\Omega} \sum_{i=1}^{\infty} i c_{i}(0, x) d x, \quad \forall t \geq 0
$$

which means that the total mass should stay constant.

- In some cases (depending on the coagulation and the fragmentation coefficients $a_{i, j}, B_{i}$ and $\beta_{i, j}$), these formal computations can be justified, to prove that the total mass is indeed conserved. To do so, we need an a priori estimate on a higher order moment, of the form

$$
\int_{0}^{T} \int_{\Omega} \sum_{i=1}^{\infty} i \eta_{i} c_{i}(t, x) d x d t \leq C_{T}, \quad \text { where } \eta_{i}>0, \quad \eta_{i} \rightarrow \infty
$$

- However, in some other situations the total mass is NOT conserved, and instead decreases strictly in finite time, a phenomenon called gelation.
- Gelation occurs when some of the mass escapes as $i \rightarrow \infty$, which can be interpreted as the formation of clusters of infinite size.
- Gelation is not a mathematical artifact, it can be observed and explained physically. It corresponds to a phase transition of the system, the lost mass being transferred to the newly created phase.
- One example is the formation of colloidal gels in chemistry, which leads to this loss of mass being referred to as gelation.

For given coagulation and fragmentation coefficients $a_{i, j}, B_{i}$ and $\beta_{i, j}$, can we predict whether gelation is going to occur or not?

An explicit example

- We introduce the moments $\rho_{k}, k \in \mathbb{N}: \rho_{k}=\sum_{i=1}^{\infty} i^{k} c_{i}$.

An explicit example

- We introduce the moments $\rho_{k}, k \in \mathbb{N}: \rho_{k}=\sum_{i=1}^{\infty} i^{k} c_{i}$.
- We consider the specific case where $d_{i}=0, B_{i}=0$ and $a_{i, j}=i j$. The weak formulation becomes

$$
\frac{d}{d t} \sum_{i=1}^{\infty} \varphi_{i} c_{i}=\frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} i c_{i} j c_{j}\left(\varphi_{i+j}-\varphi_{i}-\varphi_{j}\right)
$$

An explicit example

- We introduce the moments $\rho_{k}, k \in \mathbb{N}$: $\rho_{k}=\sum_{i=1}^{\infty} i^{k} c_{i}$.
- We consider the specific case where $d_{i}=0, B_{i}=0$ and $a_{i, j}=i j$. The weak formulation becomes

$$
\frac{d}{d t} \sum_{i=1}^{\infty} \varphi_{i} c_{i}=\frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} i c_{i} j c_{j}\left(\varphi_{i+j}-\varphi_{i}-\varphi_{j}\right)
$$

- With $\varphi_{i}=i^{2}$, we get

$$
\frac{d}{d t} \rho_{2}=\frac{d}{d t}\left(\sum_{i=1}^{\infty} i^{2} c_{i}\right)=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} i^{2} c_{i} j^{2} c_{j}=\left(\rho_{2}\right)^{2} .
$$

An explicit example

- We introduce the moments $\rho_{k}, k \in \mathbb{N}: \rho_{k}=\sum_{i=1}^{\infty} i^{k} c_{i}$.
- We consider the specific case where $d_{i}=0, B_{i}=0$ and $a_{i, j}=i j$. The weak formulation becomes

$$
\frac{d}{d t} \sum_{i=1}^{\infty} \varphi_{i} c_{i}=\frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} i c_{i} j c_{j}\left(\varphi_{i+j}-\varphi_{i}-\varphi_{j}\right)
$$

- With $\varphi_{i}=i^{2}$, we get

$$
\frac{d}{d t} \rho_{2}=\frac{d}{d t}\left(\sum_{i=1}^{\infty} i^{2} c_{i}\right)=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} i^{2} c_{i} j^{2} c_{j}=\left(\rho_{2}\right)^{2}
$$

- We have a blow-up at time $T^{*}=\frac{1}{\rho_{2}(0)}$, for the second order moment, therefore mass conservation is only guaranteed for $t<T^{*}$.

An explicit example

- We introduce the moments $\rho_{k}, k \in \mathbb{N}: \rho_{k}=\sum_{i=1}^{\infty} i^{k} c_{i}$.
- We consider the specific case where $d_{i}=0, B_{i}=0$ and $a_{i, j}=i j$. The weak formulation becomes

$$
\frac{d}{d t} \sum_{i=1}^{\infty} \varphi_{i} c_{i}=\frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} i c_{i} j c_{j}\left(\varphi_{i+j}-\varphi_{i}-\varphi_{j}\right)
$$

An explicit example

- We introduce the moments $\rho_{k}, k \in \mathbb{N}$: $\rho_{k}=\sum_{i=1}^{\infty} i^{k} c_{i}$.
- We consider the specific case where $d_{i}=0, B_{i}=0$ and $a_{i, j}=i j$. The weak formulation becomes

$$
\frac{d}{d t} \sum_{i=1}^{\infty} \varphi_{i} c_{i}=\frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} i c_{i} j c_{j}\left(\varphi_{i+j}-\varphi_{i}-\varphi_{j}\right)
$$

- With $\varphi_{i}=1$, we obtain

$$
\frac{d}{d t} \rho_{0}=\frac{d}{d t}\left(\sum_{i=1}^{\infty} c_{i}\right)=-\frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} i c_{i} j c_{j}=-\frac{1}{2}\left(\rho_{1}\right)^{2} .
$$

An explicit example

- We introduce the moments $\rho_{k}, k \in \mathbb{N}: \rho_{k}=\sum_{i=1}^{\infty} i^{k} c_{i}$.
- We consider the specific case where $d_{i}=0, B_{i}=0$ and $a_{i, j}=i j$. The weak formulation becomes

$$
\frac{d}{d t} \sum_{i=1}^{\infty} \varphi_{i} c_{i}=\frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} i c_{i} j c_{j}\left(\varphi_{i+j}-\varphi_{i}-\varphi_{j}\right)
$$

- With $\varphi_{i}=1$, we obtain

$$
\frac{d}{d t} \rho_{0}=\frac{d}{d t}\left(\sum_{i=1}^{\infty} c_{i}\right)=-\frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} i c_{i} j c_{j}=-\frac{1}{2}\left(\rho_{1}\right)^{2}
$$

- We then get $\frac{1}{2} \int_{0}^{T}\left(\rho_{1}(t)\right)^{2} d t \leq \rho_{0}(0), \forall T \geq 0$, which implies that gelation does indeed occur.

Known results: the spatially homogeneous case

- For sublinear or linear coagulation rates:

$$
a_{i, j} \leq C(i+j)
$$

the total mass is conserved [White 1980; Ball, Carr 1990]. This includes any coagulation coefficients of the form

$$
a_{i, j}=i^{\alpha} j^{\beta}+i^{\beta} j^{\alpha}, \quad \alpha, \beta \geq 0, \alpha+\beta \leq 1
$$

- For superlinear coagulation rates, of the form

$$
a_{i, j}=i^{\alpha} j^{\beta}+i^{\beta} j^{\alpha}, \quad \alpha, \beta \geq 0, \alpha+\beta>1
$$

gelation occurs if there is no fragmentation [Jeon 1998; Escobedo, Mischler, Perthame 2002], but the total mass is still conserved if the fragmentation rates are large enough [Carr 1992; Da Costa 1995; Escobedo, Laurençot, Mischler, Perthame 2003].

Known results: the spatially inhomogeneous case

- Existence of global weak solutions [Wrzosek 1997; Laurençot, Mischler 2002].
- For sublinear coagulation rates:

$$
a_{i, j}=i^{\alpha} j^{\beta}+i^{\beta} j^{\alpha}, \quad \alpha, \beta \geq 0, \alpha+\beta<1
$$

the total mass is conserved [Hammond, Rezakhanlou 2007; Cañizo, Desvillettes, Fellner 2010]. Notice that the linear case $a_{i, j}=i+j$ is still open.

- For superlinear coagulation rates, of the form

$$
a_{i, j}=i^{\alpha} j^{\beta}+i^{\beta} j^{\alpha}, \quad \alpha, \beta \geq 0, \alpha+\beta>1
$$

gelation occurs if there is no fragmentation.

New results in the inhomogeneous case

- Smoothness of the solutions, in essentially every case where mass conservation is known to hold [B., Desvillettes, Fellner 2016].
- For superlinear coagulation rates, of the form

$$
a_{i, j}=i^{\alpha} j^{\beta}+i^{\beta} j^{\alpha}, \quad \alpha, \beta \geq 0, \alpha+\beta>1
$$

the total mass is still conserved if the fragmentation rate satisfies

$$
B_{i} \geq i^{\gamma}
$$

with $\gamma>\alpha+\beta$ [B. 2017].

- These results rely on a crucial assumption on the diffusion coefficients:

$$
d_{i}>0, \forall i \in \mathbb{N}^{*} \quad \text { and } \quad d_{i} \underset{i \rightarrow \infty}{\longrightarrow} d_{\infty}>0
$$

(1) Introduction

(2) Moments estimates via duality lemmas

- Using duality lemmas ...
- ... to get moments estimates

3 Consequences for mass conservation and smoothness

How to get moments estimates for discrete coagulation-fragmentation equations with diffusion?

$$
\partial_{t} c_{i}-d_{i} \Delta_{x} c_{i}=Q_{i}(c)+F_{i}(c), \quad \forall i \in \mathbb{N}^{*}
$$

How to get moments estimates for discrete coagulation-fragmentation equations with diffusion?

$$
\partial_{t} c_{i}-d_{i} \Delta_{x} c_{i}=Q_{i}(c)+F_{i}(c), \quad \forall i \in \mathbb{N}^{*}
$$

- In a specific case, without diffusion and fragmentation, using the weak form of the reaction term we obtained

$$
\frac{d}{d t} \rho_{2}=\left(\rho_{1}\right)^{2}, \quad \text { where } \rho_{k}=\sum_{i=1}^{\infty} i^{k} c_{i}
$$

How to get moments estimates for discrete coagulation-fragmentation equations with diffusion?

$$
\partial_{t} c_{i}-d_{i} \Delta_{x} c_{i}=Q_{i}(c)+F_{i}(c), \quad \forall i \in \mathbb{N}^{*}
$$

- In a specific case, without diffusion and fragmentation, using the weak form of the reaction term we obtained

$$
\frac{d}{d t} \rho_{2}=\left(\rho_{1}\right)^{2}, \quad \text { where } \rho_{k}=\sum_{i=1}^{\infty} i^{k} c_{i}
$$

- When diffusion and fragmentation are taken into account (i.e. $d_{i} \neq 0$ and $B_{i} \neq 0$), a similar computation yields

$$
\partial_{t} \rho_{2}-\Delta_{x} \sum_{i=1}^{\infty} i^{2} d_{i} c_{i} \leq\left(\rho_{1}\right)^{2}
$$

$$
\partial_{t} \rho_{2}-\Delta_{x} \sum_{i=1}^{\infty} i^{2} d_{i} c_{i} \leq\left(\rho_{1}\right)^{2}
$$

$$
\partial_{t} \rho_{2}-\Delta_{x} \sum_{i=1}^{\infty} i^{2} d_{i} c_{i} \leq\left(\rho_{1}\right)^{2}
$$

- We rewrite this equation as

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(\frac{\sum_{i=1}^{\infty} i^{2} d_{i} c_{i}}{\sum_{i=1}^{\infty} i^{2} c_{i}} \sum_{i=1}^{\infty} i^{2} c_{i}\right) \leq\left(\rho_{1}\right)^{2} .
$$

$$
\partial_{t} \rho_{2}-\Delta_{x} \sum_{i=1}^{\infty} i^{2} d_{i} c_{i} \leq\left(\rho_{1}\right)^{2}
$$

- We rewrite this equation as

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(\frac{\sum_{i=1}^{\infty} i^{2} d_{i} c_{i}}{\sum_{i=1}^{\infty} i^{2} c_{i}} \sum_{i=1}^{\infty} i^{2} c_{i}\right) \leq\left(\rho_{1}\right)^{2} .
$$

- Therefore we get an equation on ρ_{2}, of the form

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \leq\left(\rho_{1}\right)^{2}
$$

where

$$
\inf _{i \in \mathbb{N}^{*}} d_{i} \leq M_{2} \leq \sup _{i \in \mathbb{N}^{*}} d_{i}
$$

Some a priori estimates for parabolic equations

What a priori estimates can we get for a function u satisfying

$$
\partial_{t} u-\Delta_{x}(M u)=0, \quad \text { with } 0<a \leq M \leq b<\infty ?
$$

Some a priori estimates for parabolic equations

What a priori estimates can we get for a function u satisfying

$$
\partial_{t} u-\Delta_{x}(M u)=0, \quad \text { with } 0<a \leq M \leq b<\infty ?
$$

- If we had

$$
\partial_{t} u-M \Delta_{x} u=0
$$

testing the equation against $\boldsymbol{\Delta}_{x} \boldsymbol{u}$ we would get an estimate in $\boldsymbol{H}^{\mathbf{2}}$.

Some a priori estimates for parabolic equations

What a priori estimates can we get for a function u satisfying

$$
\partial_{t} u-\Delta_{x}(M u)=0, \quad \text { with } 0<a \leq M \leq b<\infty ?
$$

- If we had

$$
\partial_{t} u-M \Delta_{x} u=0
$$

testing the equation against $\boldsymbol{\Delta}_{x} \boldsymbol{u}$ we would get an estimate in $\boldsymbol{H}^{\mathbf{2}}$.

- If we had

$$
\partial_{t} u-\operatorname{div}\left(M \nabla_{x} u\right)=0
$$

testing the equation against \boldsymbol{u} we would get an estimate in $\boldsymbol{H}^{\mathbf{1}}$.

Some a priori estimates for parabolic equations

What a priori estimates can we get for a function u satisfying

$$
\partial_{t} u-\Delta_{x}(M u)=0, \quad \text { with } 0<a \leq M \leq b<\infty ?
$$

- If we had

$$
\partial_{t} u-M \Delta_{x} u=0,
$$

testing the equation against $\boldsymbol{\Delta}_{x} \boldsymbol{u}$ we would get an estimate in $\boldsymbol{H}^{\mathbf{2}}$.

- If we had

$$
\partial_{t} u-\operatorname{div}\left(M \nabla_{x} u\right)=0
$$

testing the equation against \boldsymbol{u} we would get an estimate in $\boldsymbol{H}^{\mathbf{1}}$.

- For

$$
\partial_{t} u-\Delta_{x}(M u)=0,
$$

we thus expect to get an estimate in \boldsymbol{L}^{2}.

What a priori estimates can we get for a function u satisfying

$$
\partial_{t} u-\Delta_{x}(M u)=0, \quad \text { with } 0<a \leq M \leq b<\infty ?
$$

What a priori estimates can we get for a function u satisfying

$$
\partial_{t} u-\Delta_{x}(M u)=0, \quad \text { with } 0<a \leq M \leq b<\infty ?
$$

- Testing the equation against the solution v of

$$
\left\{\begin{array}{l}
\partial_{t} v+M \Delta_{x} v=-u \\
v(T, \cdot)=0
\end{array}\right.
$$

we get

$$
\int_{0}^{T} \int_{\Omega} u^{2}=\int_{\Omega} u(0, \cdot) v(0, \cdot) \leq C \int_{\Omega} u(0, \cdot)^{2}
$$

- This kind of result is often attributed to [Pierre, Schmitt 1997], who first used such estimates for finite reaction-diffusion systems.

Generalized duality lemmas

- We can also get estimates in $L^{p}, p<\infty$, for a function u satisfying

$$
\partial_{t} u-\Delta_{x}(M u)=0, \quad \text { with } 0<a \leq M \leq b<\infty,
$$

provided that a and b satisfy a closeness condition of the form

$$
\frac{b-a}{b+a} C_{\frac{a+b}{2}, p^{\prime}}<1 .
$$

This generalization was introduced by [Cañizo, Desvillettes, Fellner 2014], to study reaction-diffusion systems coming out of chemistry.

Generalized duality lemmas

- We can also get estimates in $L^{p}, p<\infty$, for a function u satisfying

$$
\partial_{t} u-\Delta_{x}(M u)=0, \quad \text { with } 0<a \leq M \leq b<\infty
$$

provided that a and b satisfy a closeness condition of the form

$$
\frac{b-a}{b+a} C_{\frac{a+b}{2}, p^{\prime}}<1
$$

This generalization was introduced by [Cañizo, Desvillettes, Fellner 2014], to study reaction-diffusion systems coming out of chemistry.

- We can also get L^{p} estimates, $p<\infty$, still assuming this closeness condition, if $u \geq 0$ satisfies

$$
\partial_{t} u-\Delta_{x}(M u) \leq \mu_{1} u+\mu_{2}, \quad \text { with } \mu_{1} \in L^{\infty}, \mu_{2} \in L^{p}
$$

or

$$
\partial_{t} u-\Delta_{x}(M u) \leq \mu_{1} u^{1-\varepsilon}+\mu_{2}, \quad \text { with } \mu_{1} \in L^{\frac{p}{\varepsilon}}, \mu_{2} \in L^{p}
$$

Estimates for the first moment

- Remember that we have

$$
\partial_{t}\left(\sum_{i=1}^{\infty} i c_{i}\right)-\Delta_{x}\left(\sum_{i=1}^{\infty} i d_{i} c_{i}\right)=0
$$

which we can rewrite as

$$
\partial_{t} \rho_{1}-\Delta_{x}\left(M_{1} \rho_{1}\right)=0, \quad \text { where } M_{1}=\frac{\sum_{i=1}^{\infty} i d_{i} c_{i}}{\sum_{i=1}^{\infty} i c_{i}} .
$$

- Therefore, we can use a generalized duality lemma to get an L^{p} estimate:

Proposition

If $\rho_{1}^{\text {init }} \in L^{p}(\Omega), p<\infty$, and $d_{i}>0, d_{i} \underset{i \rightarrow \infty}{\longrightarrow} d_{\infty}>0$, then (under some technical assumptions), $\rho_{1} \in L^{P}([0, T] \times \Omega)$.

Estimates for higher order moments

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \leq \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i, j} i c_{i} j c_{j}
$$

Estimates for higher order moments

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \leq \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i, j} i c_{i} j c_{j}
$$

- For higher order moment, the assumptions on the coagulation rates are really crucial.

Estimates for higher order moments

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \leq \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i, j} i c_{i} j c_{j}
$$

- For higher order moment, the assumptions on the coagulation rates are really crucial.
- Assuming $a_{i, j} \leq C(i+j)$, we get

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \leq 2 C \rho_{1} \rho_{2}
$$

To apply a duality lemma here we would need an L^{∞} bound for ρ_{1}. However, we only have L^{p} estimates with $p<\infty$.

Estimates for higher order moments

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \leq \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i, j} i c_{i} j c_{j}
$$

- For higher order moment, the assumptions on the coagulation rates are really crucial.
- Assuming $a_{i, j} \leq C(i+j)$, we get

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \leq 2 C \rho_{1} \rho_{2}
$$

To apply a duality lemma here we would need an L^{∞} bound for ρ_{1}. However, we only have L^{p} estimates with $p<\infty$.

- Assuming $a_{i, j} \leq C\left(i^{1-\varepsilon}+j^{1-\varepsilon}\right)$, with $\varepsilon>0$, we get

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \leq 2 C \rho_{1} \rho_{2-\varepsilon}
$$

Estimates for higher order moments

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \leq \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i, j} i c_{i} j c_{j}
$$

- For higher order moment, the assumptions on the coagulation rates are really crucial.
- Assuming $a_{i, j} \leq C(i+j)$, we get

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \leq 2 C \rho_{1} \rho_{2}
$$

To apply a duality lemma here we would need an L^{∞} bound for ρ_{1}. However, we only have L^{p} estimates with $p<\infty$.

- Assuming $a_{i, j} \leq C\left(i^{1-\varepsilon}+j^{1-\varepsilon}\right)$, with $\varepsilon>0$, we get

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \leq 2 C \rho_{1} \rho_{2-\varepsilon}
$$

- We can interpolate $\rho_{2-\varepsilon} \leq \rho_{1}^{\varepsilon} \rho_{2}^{1-\varepsilon}$, to get

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \leq 2 C \rho_{1}^{1+\varepsilon} \rho_{2}^{1-\varepsilon}
$$

Theorem

Assume $a_{i, j} \leq C\left(i^{1-\varepsilon}+j^{1-\varepsilon}\right)$, with $\varepsilon>0$. If

- $\rho_{2}^{\text {init }} \in L^{p}(\Omega), p<\infty$,
- $\rho_{1}^{\text {init }} \in L^{q}(\Omega), q=\frac{1+\varepsilon}{\varepsilon} p$,
$-d_{i}>0, d_{i} \underset{i \rightarrow \infty}{\longrightarrow} d_{\infty}>0$,
then (under some technical assumptions), $\rho_{2} \in L^{p}([0, T] \times \Omega)$.

Theorem

Assume $a_{i, j} \leq C\left(i^{1-\varepsilon}+j^{1-\varepsilon}\right)$, with $\varepsilon>0$. If

- $\rho_{2}^{\text {init }} \in L^{p}(\Omega), p<\infty$,
- $\rho_{1}^{\text {init }} \in L^{q}(\Omega), q=\frac{1+\varepsilon}{\varepsilon} p$,
$-d_{i}>0, d_{i} \underset{i \rightarrow \infty}{\longrightarrow} d_{\infty}>0$,
then (under some technical assumptions), $\rho_{2} \in L^{p}([0, T] \times \Omega)$.

Theorem

Assume $a_{i, j} \leq C\left(i^{1-\varepsilon}+j^{1-\varepsilon}\right)$, with $\varepsilon>0$. If

- $\rho_{k}^{\text {init }} \in L^{p}(\Omega)$, for all $p<\infty$, for all $k \in \mathbb{N}^{*}$,
$-d_{i}>0, d_{i} \underset{i \rightarrow \infty}{\longrightarrow} d_{\infty}>0$,
then (under some technical assumptions), $\rho_{k} \in L^{p}([0, T] \times \Omega)$, for all $p<\infty$, for all $k \in \mathbb{N}^{*}$.

(1) Introduction

(2) Moments estimates via duality lemmas

(3) Consequences for mass conservation and smoothness

- Strong enough fragmentation prevents gelation
- Moments estimates imply smoothness results
- Conclusion

Taking the fragmentation into account

- For coagulation rates of the form $a_{i, j} \leq C\left(i^{\alpha} j^{\beta}+i^{\beta} j^{\alpha}\right)$, we have

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \leq 2 C \rho_{1} \rho_{1+\alpha+\beta}
$$

Taking the fragmentation into account

- For coagulation rates of the form $a_{i, j} \leq C\left(i^{\alpha} j^{\beta}+i^{\beta} j^{\alpha}\right)$, we have

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \leq 2 C \rho_{1} \rho_{1+\alpha+\beta}
$$

- This is why, up to now, for superlinear moment we only considered the case where $\alpha+\beta<1$. However, we did not yet make full use of the fragmentation term.

Taking the fragmentation into account

- For coagulation rates of the form $a_{i, j} \leq C\left(i^{\alpha} j^{\beta}+i^{\beta} j^{\alpha}\right)$, we have

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \leq 2 C \rho_{1} \rho_{1+\alpha+\beta}
$$

- This is why, up to now, for superlinear moment we only considered the case where $\alpha+\beta<1$. However, we did not yet make full use of the fragmentation term.
- Indeed, we only used that

$$
\sum_{i=1}^{\infty} i^{2} F_{i}(c)=-\sum_{i=1}^{\infty} B_{i} c_{i}\left(i^{2}-\sum_{j=1}^{i-1} j^{2} \beta_{i, j}\right) \leq 0
$$

Taking the fragmentation into account

- For coagulation rates of the form $a_{i, j} \leq C\left(i^{\alpha} j^{\beta}+i^{\beta} j^{\alpha}\right)$, we have

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \leq 2 C \rho_{1} \rho_{1+\alpha+\beta}
$$

- This is why, up to now, for superlinear moment we only considered the case where $\alpha+\beta<1$. However, we did not yet make full use of the fragmentation term.
- Indeed, we only used that

$$
\sum_{i=1}^{\infty} i^{2} F_{i}(c)=-\sum_{i=1}^{\infty} B_{i} c_{i}\left(i^{2}-\sum_{j=1}^{i-1} j^{2} \beta_{i, j}\right) \leq 0
$$

whereas we in fact have

$$
\sum_{i=1}^{\infty} i^{2} F_{i}(c) \leq-\sum_{i=1}^{\infty} B_{i} i c_{i}
$$

- Assuming $a_{i, j} \leq C\left(i^{\alpha} j^{\beta}+i^{\beta} j^{\alpha}\right), B_{i} \geq C i^{\gamma}$ and putting all the estimates together, we get

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \lesssim \rho_{1} \rho_{1+\alpha+\beta}-\rho_{1+\gamma} .
$$

- Assuming $a_{i, j} \leq C\left(i^{\alpha} j^{\beta}+i^{\beta} j^{\alpha}\right), B_{i} \geq C i^{\gamma}$ and putting all the estimates together, we get

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \lesssim \rho_{1} \rho_{1+\alpha+\beta}-\rho_{1+\gamma} .
$$

- Therefore, even if $\alpha+\beta \geq 1$ we can hope to close the estimate if γ is large enough.
- Assuming $a_{i, j} \leq C\left(i^{\alpha} j^{\beta}+i^{\beta} j^{\alpha}\right), B_{i} \geq C i^{\gamma}$ and putting all the estimates together, we get

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \lesssim \rho_{1} \rho_{1+\alpha+\beta}-\rho_{1+\gamma} .
$$

- Therefore, even if $\alpha+\beta \geq 1$ we can hope to close the estimate if γ is large enough.
- Indeed, if $\gamma>\alpha+\beta$, we can interpolate

$$
\rho_{1+\alpha+\beta} \leq\left(\rho_{1}\right)^{\frac{\gamma-(\alpha+\beta)}{\gamma}}\left(\rho_{1+\gamma}\right)^{\frac{\alpha+\beta}{\gamma}}
$$

to obtain

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \lesssim\left(\rho_{1}\right)^{1+\frac{\gamma-(\alpha+\beta)}{\gamma}}\left(\rho_{1+\gamma}\right)^{\frac{\alpha+\beta}{\gamma}}-\rho_{1+\gamma} .
$$

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \lesssim\left(\rho_{1}\right)^{1+\frac{\gamma-(\alpha+\beta)}{\gamma}}\left(\rho_{1+\gamma}\right)^{\frac{\alpha+\beta}{\gamma}}-\rho_{1+\gamma}
$$

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \lesssim\left(\rho_{1}\right)^{1+\frac{\gamma-(\alpha+\beta)}{\gamma}}\left(\rho_{1+\gamma}\right)^{\frac{\alpha+\beta}{\gamma}}-\rho_{1+\gamma}
$$

- Integrating over Ω, we have

$$
\frac{d}{d t} \int_{\Omega} \rho_{2}+\int_{\Omega} \rho_{1+\gamma} \lesssim \int_{\Omega}\left(\rho_{1}\right)^{1+\frac{\gamma-(\alpha+\beta)}{\gamma}}\left(\rho_{1+\gamma}\right)^{\frac{\alpha+\beta}{\gamma}},
$$

and then an integration over $[0, T]$ yields
$\int_{\Omega} \rho_{2}(T)+\int_{0}^{T} \int_{\Omega} \rho_{1+\gamma} \lesssim \int_{\Omega} \rho_{2}(0)+\int_{0}^{T} \int_{\Omega}\left(\rho_{1}\right)^{1+\frac{\gamma-(\alpha+\beta)}{\gamma}}\left(\rho_{1+\gamma}\right)^{\frac{\alpha+\beta}{\gamma}}$.

$$
\partial_{t} \rho_{2}-\Delta_{x}\left(M_{2} \rho_{2}\right) \lesssim\left(\rho_{1}\right)^{1+\frac{\gamma-(\alpha+\beta)}{\gamma}}\left(\rho_{1+\gamma}\right)^{\frac{\alpha+\beta}{\gamma}}-\rho_{1+\gamma}
$$

- Integrating over Ω, we have

$$
\frac{d}{d t} \int_{\Omega} \rho_{2}+\int_{\Omega} \rho_{1+\gamma} \lesssim \int_{\Omega}\left(\rho_{1}\right)^{1+\frac{\gamma-(\alpha+\beta)}{\gamma}}\left(\rho_{1+\gamma}\right)^{\frac{\alpha+\beta}{\gamma}},
$$

and then an integration over $[0, T]$ yields

$$
\int_{\Omega} \rho_{2}(T)+\int_{0}^{T} \int_{\Omega} \rho_{1+\gamma} \lesssim \int_{\Omega} \rho_{2}(0)+\int_{0}^{T} \int_{\Omega}\left(\rho_{1}\right)^{1+\frac{\gamma-(\alpha+\beta)}{\gamma}}\left(\rho_{1+\gamma}\right)^{\frac{\alpha+\beta}{\gamma}}
$$

- Finally, using Hölder's inequality we get

$$
\begin{aligned}
& \int_{\Omega} \rho_{2}(T)+\int_{0}^{T} \int_{\Omega} \rho_{1+\gamma} \lesssim \\
& \quad \int_{\Omega} \rho_{2}(0)+\left(\int_{0}^{T} \int_{\Omega}\left(\rho_{1}\right)^{1+\frac{\gamma}{\gamma-(\alpha+\beta)}}\right)^{\frac{\gamma-(\alpha+\beta)}{\gamma}}\left(\int_{0}^{T} \int_{\Omega} \rho_{1+\gamma}\right)^{\frac{\alpha+\beta}{\gamma}} \dot{B}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{\Omega} \rho_{2}(T)+\int_{0}^{T} \int_{\Omega} \rho_{1+\gamma} \lesssim \\
& \quad \int_{\Omega} \rho_{2}(0)+\left(\int_{0}^{T} \int_{\Omega}\left(\rho_{1}\right)^{1+\frac{\gamma}{\gamma-(\alpha+\beta)}}\right)^{\frac{\gamma-(\alpha+\beta)}{\gamma}}\left(\int_{0}^{T} \int_{\Omega} \rho_{1+\gamma}\right)^{\frac{\alpha+\beta}{\gamma}}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{\Omega} \rho_{2}(T)+\int_{0}^{T} \int_{\Omega} \rho_{1+\gamma} \lesssim \\
& \quad \int_{\Omega} \rho_{2}(0)+\left(\int_{0}^{T} \int_{\Omega}\left(\rho_{1}\right)^{1+\frac{\gamma}{\gamma-(\alpha+\beta)}}\right)^{\frac{\gamma-(\alpha+\beta)}{\gamma}}\left(\int_{0}^{T} \int_{\Omega} \rho_{1+\gamma}\right)^{\frac{\alpha+\beta}{\gamma}}
\end{aligned}
$$

- Since we can get estimates in any $L^{p}, p<\infty$, for the first moment, we have that

$$
\left(\int_{0}^{T} \int_{\Omega}\left(\rho_{1}\right)^{1+\frac{\gamma}{\gamma-(\alpha+\beta)}}\right)^{\frac{\gamma-(\alpha+\beta)}{\gamma}}<\infty
$$

Since $\frac{\alpha+\beta}{\gamma}<1$, we then get an estimate in $L^{1}([0, T] \times \Omega)$ for $\rho_{1+\gamma}$.

$$
\begin{aligned}
& \int_{\Omega} \rho_{2}(T)+\int_{0}^{T} \int_{\Omega} \rho_{1+\gamma} \lesssim \\
& \quad \int_{\Omega} \rho_{2}(0)+\left(\int_{0}^{T} \int_{\Omega}\left(\rho_{1}\right)^{1+\frac{\gamma}{\gamma-(\alpha+\beta)}}\right)^{\frac{\gamma-(\alpha+\beta)}{\gamma}}\left(\int_{0}^{T} \int_{\Omega} \rho_{1+\gamma}\right)^{\frac{\alpha+\beta}{\gamma}}
\end{aligned}
$$

- Since we can get estimates in any $L^{p}, p<\infty$, for the first moment, we have that

$$
\left(\int_{0}^{T} \int_{\Omega}\left(\rho_{1}\right)^{1+\frac{\gamma}{\gamma-(\alpha+\beta)}}\right)^{\frac{\gamma-(\alpha+\beta)}{\gamma}}<\infty
$$

Since $\frac{\alpha+\beta}{\gamma}<1$, we then get an estimate in $L^{1}([0, T] \times \Omega)$ for $\rho_{1+\gamma}$.

- Notice that, if $\gamma>1$ we get an estimate for of moment $\rho_{1+\gamma}$ of order strictly larger than 2 , just by assuming that the initial moment of order $2 \rho_{2}(0)$ is in $L^{1}(\Omega)$. Therefore, if $\gamma>1$, we can bootstrap the estimate to get bounds (weighted in time) for higher order moments.

Theorem

Assume $a_{i, j} \leq C\left(i^{\alpha} j^{\beta}+i^{\beta} j^{\alpha}\right)$, with $0 \leq \alpha, \beta \leq 1$, and $B_{i} \geq C i^{\gamma}$. If

- $\gamma>\alpha+\beta$ and $\gamma>1$,
- $\rho_{1}^{\text {init }} \in L^{p}(\Omega)$, for all $p<\infty$, and $\rho_{2}^{\text {init }} \in L^{1}(\Omega)$,
$-d_{i}>0, d_{i} \underset{i \rightarrow \infty}{\longrightarrow} d_{\infty}>0$,
then (under some technical assumptions), we have

$$
\int_{0}^{T} t^{m-1} \int_{\Omega} \rho_{2+m(\gamma-1)}<\infty, \quad \forall m \in \mathbb{N}^{*}
$$

In particular, with $m=1$ we have that the superlinear moment $\rho_{1+\gamma}$ lies in $L^{1}([0, T] \times \Omega)$, and therefore gelation cannot occur (i.e. the total mass is conserved).

Controlling the reaction terms

- Each c_{i} solves a heat equation

$$
\partial_{t} c_{i}-d_{i} \Delta_{x} c_{i}=Q_{i}(c)+F_{i}(c), \quad \forall i \in \mathbb{N}^{*}
$$

with a complicated r.h.s..

Controlling the reaction terms

- Each c_{i} solves a heat equation

$$
\partial_{t} c_{i}-d_{i} \Delta_{x} c_{i}=Q_{i}(c)+F_{i}(c), \quad \forall i \in \mathbb{N}^{*}
$$

with a complicated r.h.s..

- However, as we saw on some examples, the reaction terms can be controlled by higher order moments.

Lemma

Assume $a_{i, j} \leq C i j$ and $B_{i} \leq C i^{\delta}$. Then, for all $k \in \mathbb{N}$

$$
\left\|i^{k} Q_{i}(c)\right\|_{W^{s, p}([0, T] \times \Omega)} \leq C_{s, k}\left\|\rho_{k+1}\right\|_{W^{s, 2 p}([0, T] \times \Omega)}^{2}
$$

and

$$
\left\|i^{k} F_{i}(c)\right\|_{W^{s, p}([0, T] \times \Omega)} \leq C_{s, k}\left\|\rho_{k+\delta}\right\|_{W^{s, p}([0, T] \times \Omega)}
$$

$$
\partial_{t} c_{i}-d_{i} \Delta_{x} c_{i}=Q_{i}(c)+F_{i}(c), \quad \forall i \in \mathbb{N}^{*}
$$

- Assume we are in a situation where we can get L^{p} estimates for moments ρ_{k}, for all $p<\infty$ and all $k \in \mathbb{N}^{*}$.

$$
\partial_{t} c_{i}-d_{i} \Delta_{x} c_{i}=Q_{i}(c)+F_{i}(c), \quad \forall i \in \mathbb{N}^{*}
$$

- Assume we are in a situation where we can get L^{p} estimates for moments ρ_{k}, for all $p<\infty$ and all $k \in \mathbb{N}^{*}$.
- We then have, for all $i, k \in \mathbb{N}^{*}$ and all $p<\infty$

$$
\left(\partial_{t}-d_{i} \Delta_{x}\right) i^{k} c_{i} \in L^{p}([0, T] \times \Omega) .
$$

$$
\partial_{t} c_{i}-d_{i} \Delta_{x} c_{i}=Q_{i}(c)+F_{i}(c), \quad \forall i \in \mathbb{N}^{*}
$$

- Assume we are in a situation where we can get L^{p} estimates for moments ρ_{k}, for all $p<\infty$ and all $k \in \mathbb{N}^{*}$.
- We then have, for all $i, k \in \mathbb{N}^{*}$ and all $p<\infty$

$$
\left(\partial_{t}-d_{i} \Delta_{x}\right) i^{k} c_{i} \in L^{p}([0, T] \times \Omega)
$$

- We can then use the regularizing properties of the heat equation to get $W^{1, p}$ estimates for $i^{k} c_{i}$ (uniform w.r.t. i, since the diffusion coefficients d_{i} are bounded away from 0).

$$
\partial_{t} c_{i}-d_{i} \Delta_{x} c_{i}=Q_{i}(c)+F_{i}(c), \quad \forall i \in \mathbb{N}^{*}
$$

- Assume we are in a situation where we can get L^{p} estimates for moments ρ_{k}, for all $p<\infty$ and all $k \in \mathbb{N}^{*}$.
- We then have, for all $i, k \in \mathbb{N}^{*}$ and all $p<\infty$

$$
\left(\partial_{t}-d_{i} \Delta_{x}\right) i^{k} c_{i} \in L^{p}([0, T] \times \Omega)
$$

- We can then use the regularizing properties of the heat equation to get $W^{1, p}$ estimates for $i^{k} c_{i}$ (uniform w.r.t. i, since the diffusion coefficients d_{i} are bounded away from 0).
- This then implies $W^{1, p}$ estimates for the moments ρ_{k}, and we can bootstrap the argument to get higher Sobolev regularity.

Conclusions

- Under the assumption $d_{i}>0, d_{i} \underset{i \rightarrow \infty}{\longrightarrow} d_{\infty}>0$, duality lemmas can be used to obtain moments estimates for the coagulation-fragmentation equations with diffusion.
- We obtained new moments estimates in the sublinear coagulation case $a_{i, j} \leq C\left(i^{\alpha} j^{\beta}+i^{\beta} j^{\alpha}\right), \alpha+\beta<1$; as well as in the strong fragmentation case $B_{i} \geq C i^{\gamma}, \gamma>\alpha+\beta$.
- These estimates imply mass conservation in the strong fragmentation case, as well as smoothness results.
- It would be interesting to extend these results to handle the case where $d_{i} \underset{i \rightarrow \infty}{\longrightarrow} 0$.
- The issue of mass conservation is still open for linear coagulation ($a_{i, j}=$ $i+j$).

THANK YOU!

