Exploring a first order hydrodynamic limit of the kinetic Cucker-Smale model with singular influence function YRW17: Current trends in kinetic theory

David Poyato ${ }^{1}$
Joint work with Juan Soler
Applied Mathematics Department
University of Granada, Spain
CSCAMM (UMD), October 2017

${ }^{1}$ FPU14/06304, MTM2014-53406-R, FQM 954

Introduction to the model

$$
\begin{cases}\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho u)=0, & t \geq 0, x \in \mathbb{R}^{N} \tag{1}\\ \nabla \psi+\nu u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u, & t \geq 0, x \in \mathbb{R}^{N}\end{cases}
$$

Introduction to the model

$$
\begin{cases}\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho u)=0, & t \geq 0, x \in \mathbb{R}^{N} \tag{1}\\ \nabla \psi+\nu u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u, & t \geq 0, x \in \mathbb{R}^{N}\end{cases}
$$

Notation:

- $t \in \mathbb{R}_{0}^{+}$and $x \in \mathbb{R}^{N}$ stand for time and position.
- $\rho=\rho(t, x)$ and $u=u(t, x)$ are the density of particles and velocity field.
- $\psi=\psi(t, x)$ is the potential of an external force (maybe self-generated).
- $\nu \in \mathbb{R}_{0}^{+}$is a friction coefficient.
- $N=2$ or $N=3$ are the physically meaningful cases.

Introduction to the model

$$
\begin{cases}\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho u)=0, & t \geq 0, x \in \mathbb{R}^{N} \tag{1}\\ \nabla \psi+\nu u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u, & t \geq 0, x \in \mathbb{R}^{N}\end{cases}
$$

Introduction to the model

$$
\begin{cases}\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho u)=0, & t \geq 0, x \in \mathbb{R}^{N} \tag{1}\\ \nabla \psi+\nu u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u, & t \geq 0, x \in \mathbb{R}^{N}\end{cases}
$$

(1) The influence function exhibits singularity at origin $\phi_{0}(x)=\phi_{0}(r)=r^{-2 \lambda}$.

Introduction to the model

$$
\begin{cases}\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho u)=0, & t \geq 0, x \in \mathbb{R}^{N} \tag{1}\\ \nabla \psi+\nu u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u, & t \geq 0, x \in \mathbb{R}^{N}\end{cases}
$$

(1) The influence function exhibits singularity at origin $\phi_{0}(x)=\phi_{0}(r)=r^{-2 \lambda}$.
(2) Transport equation for ρ driven by u.

Introduction to the model

$$
\begin{cases}\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho u)=0, & t \geq 0, x \in \mathbb{R}^{N} \tag{1}\\ \nabla \psi+\nu u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u, & t \geq 0, x \in \mathbb{R}^{N}\end{cases}
$$

(1) The influence function exhibits singularity at origin $\phi_{0}(x)=\phi_{0}(r)=r^{-2 \lambda}$.
(2) Transport equation for ρ driven by u.
(3) Implicit integral equation for u in terms of ρ to be solved.

Introduction to the model

$$
\begin{cases}\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho u)=0, & t \geq 0, x \in \mathbb{R}^{N} \tag{1}\\ \nabla \psi+\nu u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u, & t \geq 0, x \in \mathbb{R}^{N}\end{cases}
$$

(1) The influence function exhibits singularity at origin $\phi_{0}(x)=\phi_{0}(r)=r^{-2 \lambda}$.
(2) Transport equation for ρ driven by u.
(3) Implicit integral equation for u in terms of ρ to be solved.

It involves a commutator of mildly singular integrals.
R R. Coifman, R. Rochberg, G. Weiss (1976), S. Chanillo (1982).

Introduction to the model

Reminiscent of Eulerian dynamics with alignment forces and neglected inertia:

$$
\begin{cases}\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho u)=0, & t \geq 0, x \in \mathbb{R}^{N} \\ \frac{\partial u}{\partial t}+(u \cdot \nabla) u+\nu u+\nabla \psi=\phi *(\rho u)-(\phi * \rho) u, & t \geq 0, x \in \mathbb{R}^{N}\end{cases}
$$

Introduction to the model

Reminiscent of Eulerian dynamics with alignment forces and neglected inertia:

$$
\begin{cases}\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho u)=0, & t \geq 0, x \in \mathbb{R}^{N} \\ \frac{\partial u}{\partial t}+(u \cdot \nabla) u+\nu u+\nabla \psi=\phi *(\rho u)-(\phi * \rho) u, & t \geq 0, x \in \mathbb{R}^{N}\end{cases}
$$

General context:

(1) Regular weights:
R.-Y. Ha, E. Tadmor (2008). S.-Y. Ha, J.-G. Liu (2009).
J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani (2010).

Introduction to the model

Reminiscent of Eulerian dynamics with alignment forces and neglected inertia:

$$
\begin{cases}\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho u)=0, & t \geq 0, x \in \mathbb{R}^{N} \\ \frac{\partial u}{\partial t}+(u \cdot \nabla) u+\nu u+\nabla \psi=\phi *(\rho u)-(\phi * \rho) u, & t \geq 0, x \in \mathbb{R}^{N}\end{cases}
$$

General context:

(1) Regular weights:
R.-Y. Ha, E. Tadmor (2008). S.-Y. Ha, J.-G. Liu (2009).
J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani (2010).

國 T. K. Karper, A. Mellet, K. Trivisa (2015). A. Figalli, M.-J. Kang (2017).

Introduction to the model

Reminiscent of Eulerian dynamics with alignment forces and neglected inertia:

$$
\begin{cases}\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho u)=0, & t \geq 0, x \in \mathbb{R}^{N} \\ \frac{\partial u}{\partial t}+(u \cdot \nabla) u+\nu u+\nabla \psi=\phi *(\rho u)-(\phi * \rho) u, & t \geq 0, x \in \mathbb{R}^{N}\end{cases}
$$

General context:

(1) Regular weights:
R.-Y. Ha, E. Tadmor (2008). S.-Y. Ha, J.-G. Liu (2009).
J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani (2010).

T T. K. Karper, A. Mellet, K. Trivisa (2015). A. Figalli, M.-J. Kang (2017).
國 R. C. Fetecau, W. Sun, C. Tan (2016).

Introduction to the model

Reminiscent of Eulerian dynamics with alignment forces and neglected inertia:

$$
\begin{cases}\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho u)=0, & t \geq 0, x \in \mathbb{R}^{N} \\ \frac{\partial u}{\partial t}+(u \cdot \nabla) u+\nu u+\nabla \psi=\phi *(\rho u)-(\phi * \rho) u, & t \geq 0, x \in \mathbb{R}^{N}\end{cases}
$$

General context:

(1) Regular weights:
R.-Y. Ha, E. Tadmor (2008). S.-Y. Ha, J.-G. Liu (2009).
J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani (2010).
T. K. Karper, A. Mellet, K. Trivisa (2015). A. Figalli, M.-J. Kang (2017).

圊 R. C. Fetecau, W. Sun, C. Tan (2016).
E. Tadmor, C. Tan (2014).

Introduction to the model

Reminiscent of Eulerian dynamics with alignment forces and neglected inertia:

$$
\begin{cases}\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho u)=0, & t \geq 0, x \in \mathbb{R}^{N} \\ \frac{\partial u}{\partial t}+(u \cdot \nabla) u+\nu u+\nabla \psi=\phi *(\rho u)-(\phi * \rho) u, & t \geq 0, x \in \mathbb{R}^{N}\end{cases}
$$

General context:

(1) Regular weights:

T S.-Y. Ha, E. Tadmor (2008). S.-Y. Ha, J.-G. Liu (2009).
J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani (2010).

T T. K. Karper, A. Mellet, K. Trivisa (2015). A. Figalli, M.-J. Kang (2017).
圊 R. C. Fetecau, W. Sun, C. Tan (2016).
R
E. Tadmor, C. Tan (2014).
(2) Singular weights:
\square J. Peszek (2014). S. M. Ahn, H. Choi, S.-Y. Ha, H. Lee (2012).
P. B. Mucha, J. Peszek (2016). R. Shvydkoy, E. Tadmor (2017).

Introduction to the model

Reminiscent of Eulerian dynamics with alignment forces and neglected inertia:

$$
\begin{cases}\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho u)=0, & t \geq 0, x \in \mathbb{R}^{N} \\ \frac{\partial u}{\partial t}+(u \cdot \nabla) u+\nu u+\nabla \psi=\phi *(\rho u)-(\phi * \rho) u, & t \geq 0, x \in \mathbb{R}^{N}\end{cases}
$$

General context:

(3) Other related models: Kuramoto, aggregation, Vicsec, etc.

Synchronization: S.-Y. Ha et al.
Aggregation models: J. A. Carrillo, A. Bertozzi et al.
R Vicsec models: P. Degond, S. Motsch, M.-J. Kang, A. Figalli, et al.
Soft active matter: C. Marcheti et al.

Goals of the talk

Goal 1: The hydrodynamic limit.

(1) Introduce a singular hyperbolic scaling of the kinetic Cucker-Smale model with regular weights.
(2) Derive the rigorous hydrodynamic limit towards (1).
(3) Obtain measure-valued solutions of (1) for the range $\lambda \in\left(0, \frac{1}{2}\right]$.

Goals of the talk

Goal 1: The hydrodynamic limit.

(1) Introduce a singular hyperbolic scaling of the kinetic Cucker-Smale model with regular weights.
(2) Derive the rigorous hydrodynamic limit towards (1).
(3) Obtain measure-valued solutions of (1) for the range $\lambda \in\left(0, \frac{1}{2}\right]$.

Goal 2: Well-posedness.

(1) Obtain sharp estimates in Sobolev spaces of the commutator of mildly singular integrals.
(2) Derive a global in time well-posedness theory for (1) in Sobolev-type spaces for the range $\lambda \in(0, N / 2)$.

From micro to meso: the mean field limit

The discrete Cucker-Smale model

$$
\left\{\begin{aligned}
\frac{d x_{i}}{d t} & =v_{j} \\
m \frac{d v_{i}}{d t} & =\frac{K}{N} \sum_{j=1}^{N} \phi\left(\left|x_{i}-x_{j}\right|\right)\left(v_{j}-v_{i}\right)
\end{aligned}\right.
$$

where the influence function is

$$
\phi(r):=\frac{\sigma^{2 \lambda}}{\left(\sigma^{2}+c_{\kappa, \lambda} r^{2}\right)^{\lambda}} \text { and } c_{\kappa, \lambda}:=\kappa^{-1 / \lambda}-1, \kappa \in(0,1)
$$

国 F. Cucker, S. Smale (2007).

From micro to meso: the mean field limit

The discrete Cucker-Smale model

$$
\left\{\begin{aligned}
\frac{d x_{i}}{d t} & =v_{j} \\
m \frac{d v_{i}}{d t} & =\frac{K}{N} \sum_{j=1}^{N} \phi\left(\left|x_{i}-x_{j}\right|\right)\left(v_{j}-v_{i}\right)-\nu v_{i}-\nabla \psi\left(t, x_{i}\right)+m \xi_{i}(t)
\end{aligned}\right.
$$

where the influence function is

$$
\phi(r):=\frac{\sigma^{2 \lambda}}{\left(\sigma^{2}+c_{\kappa, \lambda} r^{2}\right)^{\lambda}} \text { and } c_{\kappa, \lambda}:=\kappa^{-1 / \lambda}-1, \kappa \in(0,1)
$$

and $\xi_{i}(t)$ is δ-correlated white noise with

$$
\left\langle\xi_{i}(t) \xi_{j}\left(t^{\prime}\right)\right\rangle=2 D \delta_{i j} \delta\left(t-t^{\prime}\right)
$$

國 F. Cucker, S. Smale (2007).

From micro to meso: the mean field limit

The discrete Cucker-Smale model

$$
\left\{\begin{aligned}
\frac{d x_{i}}{d t} & =v_{j} \\
m \frac{d v_{i}}{d t} & =\frac{K}{N} \sum_{j=1}^{N} \phi\left(\left|x_{i}-x_{j}\right|\right)\left(v_{j}-v_{i}\right)-\nu v_{i}-\nabla \psi\left(t, x_{i}\right)+m \xi_{i}(t)
\end{aligned}\right.
$$

where the influence function is

$$
\phi(r):=\frac{\sigma^{2 \lambda}}{\left(\sigma^{2}+c_{\kappa, \lambda} r^{2}\right)^{\lambda}} \text { and } c_{\kappa, \lambda}:=\kappa^{-1 / \lambda}-1, \kappa \in(0,1)
$$

and $\xi_{i}(t)$ is δ-correlated white noise with

$$
\left\langle\xi_{i}(t) \xi_{j}\left(t^{\prime}\right)\right\rangle=2 D \delta_{i j} \delta\left(t-t^{\prime}\right)
$$

國 F. Cucker, S. Smale (2007).

From micro to meso: the mean field limit

The discrete Cucker-Smale model

$$
\left\{\begin{aligned}
\frac{d x_{i}}{d t} & =v_{j} \\
m \frac{d v_{i}}{d t} & =\frac{K}{N} \sum_{j=1}^{N} \phi\left(\left|x_{i}-x_{j}\right|\right)\left(v_{j}-v_{i}\right)-\nu v_{i}-\nabla \psi\left(t, x_{i}\right)+m \xi_{i}(t)
\end{aligned}\right.
$$

where the influence function is

$$
\phi(r):=\frac{\sigma^{2 \lambda}}{\left(\sigma^{2}+c_{\kappa, \lambda} r^{2}\right)^{\lambda}} \text { and } c_{\kappa, \lambda}:=\kappa^{-1 / \lambda}-1, \kappa \in(0,1)
$$

and $\xi_{i}(t)$ is δ-correlated white noise with

$$
\left\langle\xi_{i}(t) \xi_{j}\left(t^{\prime}\right)\right\rangle=2 D \delta_{i j} \delta\left(t-t^{\prime}\right)
$$

嗇 F. Cucker, S. Smale (2007).
Consider τ, the relaxation time under friction, and $\sqrt{\mu}$, the mean thermal velocity of noise and set $\nu:=\frac{m}{\tau}, D:=\frac{\mu}{\tau^{2}}$.

From micro to meso: the mean field limit

The discrete Cucker-Smale model

$$
\left\{\begin{aligned}
\frac{d x_{i}}{d t} & =v_{j} \\
m \frac{d v_{i}}{d t} & =\frac{K}{N} \sum_{j=1}^{N} \phi\left(\left|x_{i}-x_{j}\right|\right)\left(v_{j}-v_{i}\right)-\frac{m}{\tau} v_{i}-\nabla \psi\left(t, x_{i}\right)+m \xi_{i}(t)
\end{aligned}\right.
$$

where the influence function is

$$
\phi(r):=\frac{\sigma^{2 \lambda}}{\left(\sigma^{2}+c_{\kappa, \lambda} r^{2}\right)^{\lambda}} \text { and } c_{\kappa, \lambda}:=\kappa^{-1 / \lambda}-1, \kappa \in(0,1)
$$

and $\xi_{i}(t)$ is δ-correlated white noise with

$$
\left\langle\xi_{i}(t) \xi_{j}\left(t^{\prime}\right)\right\rangle=2 \frac{\mu}{\tau^{2}} \delta_{i j} \delta\left(t-t^{\prime}\right)
$$

国 F. Cucker, S. Smale (2007).

From micro to meso: the mean field limit

The mean field limit $N \rightarrow \infty$

$$
\frac{\partial f}{\partial t}+v \cdot \nabla_{x} f-\frac{1}{m} \nabla \psi \cdot \nabla_{v} f=\operatorname{div}_{v}\left(\frac{1}{\tau} v f+\frac{\mu}{\tau} \nabla_{v} f+\frac{K}{m M}\left(\left(\phi^{\sigma} v\right) * f\right) f\right)
$$

where M is the total mass of the system and $f=f(t, x, v)$ is the density of particles.
䍰 S.-Y. Ha, E. Tadmor (2008). S.-Y. Ha, J.-G. Liu (2009).
R M. Hauray, P. E. Jabin (2015). P. B. Mucha, J. Peszec (2015).

From micro to meso: the mean field limit

The mean field limit $N \rightarrow \infty$

$$
\frac{\partial f}{\partial t}+v \cdot \nabla_{x} f-\frac{1}{m} \nabla \psi \cdot \nabla_{v} f=\operatorname{div}_{v}\left(\frac{1}{\tau} v f+\frac{\mu}{\tau} \nabla_{v} f+\frac{K}{m M}\left(\left(\phi^{\sigma} v\right) * f\right) f\right)
$$

where M is the total mass of the system and $f=f(t, x, v)$ is the density of particles.
䍰 S.-Y. Ha, E. Tadmor (2008). S.-Y. Ha, J.-G. Liu (2009).
國 M. Hauray, P. E. Jabin (2015). P. B. Mucha, J. Peszec (2015).
Adimensionalize the system

$$
\bar{t}=\frac{t}{T}, \quad \bar{x}=\frac{x}{L}, \quad \bar{v}=\frac{v}{V}, \quad \bar{f}(\bar{t}, \bar{x}, \bar{v})=\frac{f(t, x, v)}{f_{0}}, \quad \bar{\psi}(\bar{t}, \bar{x})=\frac{\psi(t, x)}{\psi_{0}},
$$

and link characteristic units to physical parameters as follows

$$
\frac{L}{T}=\frac{1}{m} \frac{\tau}{L} \psi_{0}, \quad M=V^{N} L^{N} f_{0}
$$

From micro to meso: the mean field limit

The mean field limit $N \rightarrow \infty$
$\frac{\partial f}{\partial t}+\frac{V T}{L} v \cdot \nabla_{x} f-\frac{1}{m} \frac{\psi_{0} T}{L V} \nabla \psi \cdot \nabla_{v} f=\operatorname{div}_{v}\left(\frac{T}{\tau} v f+\frac{T}{\tau} \frac{\mu}{V^{2}} \nabla_{v} f+\frac{T K}{m}\left(\left(\phi^{\sigma / L} v\right) * f\right) f\right)$.
: S.-Y. Ha, E. Tadmor (2008). S.-Y. Ha, J.-G. Liu (2009).
R M. Hauray, P. E. Jabin (2015). P. B. Mucha, J. Peszec (2015).

From micro to meso: the mean field limit

The mean field limit $N \rightarrow \infty$
$\frac{\partial f}{\partial t}+\frac{V T}{L} v \cdot \nabla_{x} f-\frac{1}{m} \frac{\psi_{0} T}{L V} \nabla \psi \cdot \nabla_{v} f=\operatorname{div}_{v}\left(\frac{T}{\tau} v f+\frac{T}{\tau} \frac{\mu}{V^{2}} \nabla_{v} f+\frac{T K}{m}\left(\left(\phi^{\sigma / L} v\right) * f\right) f\right)$.
䍰 S.-Y. Ha, E. Tadmor (2008). S.-Y. Ha, J.-G. Liu (2009).
國 M. Hauray, P. E. Jabin (2015). P. B. Mucha, J. Peszec (2015).

Define the scaled mean free path, mean thermal velocities, mass, range of interactions and maximum strength of interactions by

$$
\alpha:=\frac{\sqrt{\mu}}{L / T}, \quad \beta:=\frac{\sqrt{\mu} \tau}{L}, \quad \mathcal{V}:=\frac{\sqrt{\mu}}{V}, \quad \mathcal{M}:=\frac{m}{M}, \quad \delta:=\frac{\sigma}{L}, \quad \mathcal{K}:=\tau K .
$$

From micro to meso: the mean field limit

The mean field limit $N \rightarrow \infty$

$$
\frac{\partial f}{\partial t}+\frac{\alpha}{\mathcal{V}} v \cdot \nabla_{x} f-\frac{V}{\beta} \nabla \psi \cdot \nabla_{v} f=\frac{\alpha}{\beta} \operatorname{div}_{v}\left(v f+\mathcal{V}^{2} \nabla_{v} f+\frac{\mathcal{K}}{\mathcal{M}}\left(\left(\phi^{\delta} v\right) * f\right) f\right) .
$$

國 S.-Y. Ha, E. Tadmor (2008). S.-Y. Ha, J.-G. Liu (2009).
國 M. Hauray, P. E. Jabin (2015). P. B. Mucha, J. Peszec (2015).

From micro to meso: the mean field limit

The mean field limit $N \rightarrow \infty$

$$
\frac{\partial f}{\partial t}+\frac{\alpha}{\mathcal{V}} v \cdot \nabla_{x} f-\frac{V}{\beta} \nabla \psi \cdot \nabla_{v} f=\frac{\alpha}{\beta} \operatorname{div}_{v}\left(v f+\mathcal{V}^{2} \nabla_{v} f+\frac{\mathcal{K}}{\mathcal{M}}\left(\left(\phi^{\delta} v\right) * f\right) f\right) .
$$

回 S.-Y. Ha, E. Tadmor (2008). S.-Y. Ha, J.-G. Liu (2009).
R M. Hauray, P. E. Jabin (2015). P. B. Mucha, J. Peszec (2015).

Assume the next hyperbolic singular scaling of the dimensionless parameters

$$
\alpha=1, \beta=\varepsilon, \mathcal{V}=1, \mathcal{M}=1, \delta=\varepsilon, \mathcal{K}=\varepsilon^{-2 \lambda}
$$

From micro to meso: the mean field limit

The singular hyperbolic scaling

$$
\varepsilon \frac{\partial f_{\varepsilon}}{\partial t}+\varepsilon v \cdot \nabla_{x} f_{\varepsilon}-\nabla \psi_{\varepsilon} \cdot \nabla_{v} f_{\varepsilon}=\operatorname{div}_{v}\left(v f_{\varepsilon}+\nabla_{v} f_{\varepsilon}+\left(\left(\phi_{\varepsilon} v\right) * f_{\varepsilon}\right) f_{\varepsilon}\right)
$$

where the scaled influence function is $\phi_{\varepsilon}(r)=\frac{1}{\left(\varepsilon^{2}+c_{\kappa, \lambda} r^{2}\right)^{\lambda}}$.
國 D. P., J. Soler (2017).

From micro to meso: the mean field limit

The singular hyperbolic scaling

$$
\varepsilon \frac{\partial f_{\varepsilon}}{\partial t}+\varepsilon v \cdot \nabla_{x} f_{\varepsilon}-\nabla \psi_{\varepsilon} \cdot \nabla_{v} f_{\varepsilon}=\operatorname{div}_{v}\left(v f_{\varepsilon}+\nabla_{v} f_{\varepsilon}+\left(\left(\phi_{\varepsilon} v\right) * f_{\varepsilon}\right) f_{\varepsilon}\right)
$$

where the scaled influence function is $\phi_{\varepsilon}(r)=\frac{1}{\left(\varepsilon^{2}+c_{\kappa, \lambda} r^{2}\right)^{\lambda}}$.
D D. P., J. Soler (2017).

The limit $\varepsilon \searrow 0$ can be understood as a coupled limit where inertia vanishes and singular interactions appear.

From micro to meso: the mean field limit

The singular hyperbolic scaling

$$
\varepsilon \frac{\partial f_{\varepsilon}}{\partial t}+\varepsilon v \cdot \nabla_{x} f_{\varepsilon}-\nabla \psi_{\varepsilon} \cdot \nabla_{v} f_{\varepsilon}=\operatorname{div}_{v}\left(v f_{\varepsilon}+\nabla_{v} f_{\varepsilon}+\left(\left(\phi_{\varepsilon} v\right) * f_{\varepsilon}\right) f_{\varepsilon}\right)
$$

where the scaled influence function is $\phi_{\varepsilon}(r)=\frac{1}{\left(\varepsilon^{2}+c_{\kappa, \lambda} r^{2}\right)^{\lambda}}$.
國 D. P., J. Soler (2017).

The limit $\varepsilon \searrow 0$ can be understood as a coupled limit where inertia vanishes and singular interactions appear.

Formally, let us assume that f_{ε} would converge to f in some weak sense. Then,

$$
-\nabla \psi \cdot \nabla_{v} f=\operatorname{div}_{v}\left(v f+\nabla_{v} f_{+}\left(\left(\phi_{0} v\right) * f\right) f\right)
$$

From micro to meso: the mean field limit

The singular hyperbolic scaling

$$
\varepsilon \frac{\partial f_{\varepsilon}}{\partial t}+\varepsilon v \cdot \nabla_{x} f_{\varepsilon}-\nabla \psi_{\varepsilon} \cdot \nabla_{v} f_{\varepsilon}=\operatorname{div}_{v}\left(v f_{\varepsilon}+\nabla_{v} f_{\varepsilon}+\left(\left(\phi_{\varepsilon} v\right) * f_{\varepsilon}\right) f_{\varepsilon}\right)
$$

where the scaled influence function is $\phi_{\varepsilon}(r)=\frac{1}{\left(\varepsilon^{2}+c_{\kappa, \lambda} r^{2}\right)^{\lambda}}$.
國 D. P., J. Soler (2017).

The limit $\varepsilon \searrow 0$ can be understood as a coupled limit where inertia vanishes and singular interactions appear.

Formally, let us assume that f_{ε} would converge to f in some weak sense. Then,

$$
-\nabla \psi \cdot \nabla_{v} f=\operatorname{div}_{v}\left(v f+\nabla_{v} f_{+}\left(\left(\phi_{0} v\right) * f\right) f\right)
$$

It then entails that

$$
f(t, x, v)=\frac{\rho(t, x)}{(2 \pi)^{N / 2}} \exp \left(-\frac{\left|v+\nabla \psi+v\left(\phi_{0} * \rho\right)-\phi_{0} *(\rho u)\right|^{2}}{2}\right)
$$

where (ρ, u) is a solution to the macroscopic singular system (1).

From micro to meso: the mean field limit

The singular hyperbolic scaling

$$
\varepsilon \frac{\partial f_{\varepsilon}}{\partial t}+\varepsilon v \cdot \nabla_{x} f_{\varepsilon}-\nabla \psi_{\varepsilon} \cdot \nabla_{v} f_{\varepsilon}=\operatorname{div}_{v}\left(v f_{\varepsilon}+\nabla_{v} f_{\varepsilon}+\left(\left(\phi_{\varepsilon} v\right) * f_{\varepsilon}\right) f_{\varepsilon}\right)
$$

where the scaled influence function is $\phi_{\varepsilon}(r)=\frac{1}{\left(\varepsilon^{2}+c_{\kappa, \lambda} r^{2}\right)^{\lambda}}$.D. P., J. Soler (2017).

The limit $\varepsilon \searrow 0$ can be understood as a coupled limit where inertia vanishes and singular interactions appear.

In order to derive the rigorous limit we will assume the following hypothesis:

$$
\begin{align*}
& \left\{\begin{array}{l}
f_{\varepsilon}^{0}=f_{\varepsilon}^{0}(x, v) \geq 0 \text { and } f_{\varepsilon}^{0} \in C_{c}^{\infty}\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right), \\
\left\|\rho_{\varepsilon}^{0}\right\|_{L^{1}\left(\mathbb{R}^{N}\right)} \leq M_{0} \text { and } \rho_{\varepsilon}^{0} \stackrel{*}{\rightharpoonup} \rho^{0} \text { in } \mathcal{M}\left(\mathbb{R}^{N}\right), \\
\left\|E_{\varepsilon}^{0}\right\|_{L^{1}\left(\mathbb{R}^{N}\right)} \leq E_{0},
\end{array}\right. \tag{1}
\end{align*}
$$

Hydrodynamic limit: hierarchy of velocity moments

The hierarchy of velocity moments
Density: $\quad \rho_{\varepsilon}(t, x):=\int_{\mathbb{R}^{N}} f_{\varepsilon}(t, x, v) d v$,
Current: $\quad j_{\varepsilon}(t, x):=\int_{\mathbb{R}^{N}} v f_{\varepsilon}(t, x, v) d v$,
Stress tensor: $\quad \mathcal{S}_{\varepsilon}(t, x):=\int_{\mathbb{R}^{N}} v \otimes v f_{\varepsilon}(t, x, v) d v$,
Stress flux tensor: $\quad \mathcal{T}_{\varepsilon}(t, x):=\int_{\mathbb{R}^{N}}(v \otimes v) \otimes v f_{\varepsilon}(t, x, v) d v$.

Hydrodynamic limit: hierarchy of velocity moments

The hierarchy of velocity moments
Density: $\quad \rho_{\varepsilon}(t, x):=\int_{\mathbb{R}^{N}} f_{\varepsilon}(t, x, v) d v$,
Current: $\quad j_{\varepsilon}(t, x):=\int_{\mathbb{R}^{N}} v f_{\varepsilon}(t, x, v) d v$,
Stress tensor: $\quad \mathcal{S}_{\varepsilon}(t, x):=\int_{\mathbb{R}^{N}} v \otimes v f_{\varepsilon}(t, x, v) d v$,
Stress flux tensor: $\quad \mathcal{T}_{\varepsilon}(t, x):=\int_{\mathbb{R}^{N}}(v \otimes v) \otimes v f_{\varepsilon}(t, x, v) d v$.

Velocity field: $\quad u_{\varepsilon}(t, x):=\frac{j_{\varepsilon}(t, x)}{\rho_{\varepsilon}(t, x)}$,
Energy: $\quad E_{\varepsilon}(t, x):=\frac{1}{2} \operatorname{Tr}\left(\mathcal{S}_{\varepsilon}(t, x)\right)=\frac{1}{2} \int_{\mathbb{R}^{N}}|v|^{2} f_{\varepsilon}(t, x, v) d v$,
Energy flux: $\quad Q_{\varepsilon}(t, x):=\frac{1}{2} \operatorname{Tr}\left(\mathcal{T}_{\varepsilon}(t, x)\right)=\frac{1}{2} \int_{\mathbb{R}^{N}} v|v|^{2} f_{\varepsilon}(t, x, v) d v$

Hydrodynamic limit: hierarchy of velocity moments

The hierarchy of velocity moments

$$
\frac{\partial \rho_{\varepsilon}}{\partial t}+\operatorname{div}_{x} j_{\varepsilon}=0
$$

Hydrodynamic limit: hierarchy of velocity moments

The hierarchy of velocity moments

$$
\begin{gathered}
\frac{\partial \rho_{\varepsilon}}{\partial t}+\operatorname{div}_{x} j_{\varepsilon}=0 \\
\varepsilon \frac{\partial j_{\varepsilon}}{\partial t}+\varepsilon \operatorname{div}_{x} \mathcal{S}_{\varepsilon}+\rho_{\varepsilon} \nabla_{x} \psi_{\varepsilon}+j_{\varepsilon}+\left(\phi_{\varepsilon} * \rho_{\varepsilon}\right) j_{\varepsilon}-\left(\phi_{\varepsilon} * j_{\varepsilon}\right) \rho_{\varepsilon}=0
\end{gathered}
$$

Hydrodynamic limit: hierarchy of velocity moments

The hierarchy of velocity moments

$$
\begin{gathered}
\frac{\partial \rho_{\varepsilon}}{\partial t}+\operatorname{div}_{x} j_{\varepsilon}=0 . \\
\varepsilon \frac{\partial j_{\varepsilon}}{\partial t}+\varepsilon \operatorname{div}_{x} \mathcal{S}_{\varepsilon}+\rho_{\varepsilon} \nabla_{x} \psi_{\varepsilon}+j_{\varepsilon}+\left(\phi_{\varepsilon} * \rho_{\varepsilon}\right) j_{\varepsilon}-\left(\phi_{\varepsilon} * j_{\varepsilon}\right) \rho_{\varepsilon}=0 . \\
\varepsilon \frac{\partial \mathcal{S}_{\varepsilon}}{\partial t}+\varepsilon \operatorname{div}_{x} \mathcal{T}_{\varepsilon}+2 \operatorname{Sym}\left(j_{\varepsilon} \otimes \nabla_{x} \psi_{\varepsilon}\right)+2 \mathcal{S}_{\varepsilon}+2\left(\phi_{\varepsilon} * \rho_{\varepsilon}\right) \mathcal{S}_{\varepsilon}-2 \operatorname{Sym}\left(\left(\phi_{\varepsilon} * j_{\varepsilon}\right) \otimes j_{\varepsilon}\right)-2 \rho_{\varepsilon} I=0 .
\end{gathered}
$$

Hydrodynamic limit: hierarchy of velocity moments

The hierarchy of velocity moments

$$
\begin{gathered}
\frac{\partial \rho_{\varepsilon}}{\partial t}+\operatorname{div}_{x} j_{\varepsilon}=0 . \\
\varepsilon \frac{\partial j_{\varepsilon}}{\partial t}+\varepsilon \operatorname{div}_{x} \mathcal{S}_{\varepsilon}+\rho_{\varepsilon} \nabla_{x} \psi_{\varepsilon}+j_{\varepsilon}+\left(\phi_{\varepsilon} * \rho_{\varepsilon}\right) j_{\varepsilon}-\left(\phi_{\varepsilon} * j_{\varepsilon}\right) \rho_{\varepsilon}=0 . \\
\varepsilon \frac{\partial \mathcal{S}_{\varepsilon}}{\partial t}+\varepsilon \operatorname{div}_{x} \mathcal{T}_{\varepsilon}+2 \operatorname{Sym}\left(j_{\varepsilon} \otimes \nabla_{x} \psi_{\varepsilon}\right)+2 \mathcal{S}_{\varepsilon}+2\left(\phi_{\varepsilon} * \rho_{\varepsilon}\right) \mathcal{S}_{\varepsilon}-2 \operatorname{Sym}\left(\left(\phi_{\varepsilon} * j_{\varepsilon}\right) \otimes j_{\varepsilon}\right)-2 \rho_{\varepsilon} I=0 .
\end{gathered}
$$

Formally, if we could pass to the limit in the nonlinear term of the current equation and we had some a priori estimate for $\rho_{\varepsilon}, j_{\varepsilon}$ and $\mathcal{S}_{\varepsilon}$, then we might show that inertia vanishes when $\varepsilon \rightarrow 0$ in the moment equation and we would success in closing a limiting system in terms of ρ and j.

Hydrodynamic limit: weak form of the moment equations

The continuity and momentum equation in weak form read

$$
\begin{aligned}
& \int_{0}^{T} \int_{\mathbb{R}^{N}}\left(\frac{\partial \varphi}{\partial t} \rho_{\varepsilon}+\nabla \varphi \cdot j_{\varepsilon}\right) d x d t=-\int_{\mathbb{R}^{N}} \rho_{\varepsilon}^{0} \varphi(0, \cdot) d x \\
& \int_{0}^{T} \int_{\mathbb{R}^{N}}\left(-\varepsilon j_{\varepsilon} \frac{\partial \varphi}{\partial t}-\varepsilon \mathcal{S}_{\varepsilon} \nabla \varphi+\rho_{\varepsilon} \nabla \psi_{\varepsilon} \varphi+j_{\varepsilon} \varphi\right) d x d t \\
& \quad \quad-\int_{0}^{T} \int_{\mathbb{R}^{N}}\left(\left(\phi_{\varepsilon} * j_{\varepsilon}\right) \rho_{\varepsilon}-\left(\phi_{\varepsilon} * \rho_{\varepsilon}\right) j_{\varepsilon}\right) \varphi d x d t=\int_{\mathbb{R}^{N}} j_{\varepsilon}^{0} \varphi(0, \cdot) d x,
\end{aligned}
$$

for every test function $\varphi \in C_{0}^{1}\left([0, T) \times \mathbb{R}^{N}\right)$.

Hydrodynamic limit: weak form of the moment equations

The continuity and momentum equation in weak form read

$$
\begin{aligned}
& \int_{0}^{T} \int_{\mathbb{R}^{N}}\left(\frac{\partial \varphi}{\partial t} \rho_{\varepsilon}+\nabla \varphi \cdot j_{\varepsilon}\right) d x d t=-\int_{\mathbb{R}^{N}} \rho_{\varepsilon}^{0} \varphi(0, \cdot) d x \\
& \int_{0}^{T} \int_{\mathbb{R}^{N}}\left(-\varepsilon j_{\varepsilon} \frac{\partial \varphi}{\partial t}-\varepsilon \mathcal{S}_{\varepsilon} \nabla \varphi+\rho_{\varepsilon} \nabla \psi_{\varepsilon} \varphi+j_{\varepsilon} \varphi\right) d x d t \\
& \quad-\int_{0}^{T} \int_{\mathbb{R}^{N}}\left(\left(\phi_{\varepsilon} * j_{\varepsilon}\right) \rho_{\varepsilon}-\left(\phi_{\varepsilon} * \rho_{\varepsilon}\right) j_{\varepsilon}\right) \varphi d x d t=\int_{\mathbb{R}^{N}} j_{\varepsilon}^{0} \varphi(0, \cdot) d x,
\end{aligned}
$$

for every test function $\varphi \in C_{0}^{1}\left([0, T) \times \mathbb{R}^{N}\right)$.
The nonlinear term can be restated as follows

$$
\int_{0}^{T} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \underbrace{\frac{1}{2} \phi_{\varepsilon}(|x-y|)(\varphi(t, x)-\varphi(t, y))}_{H_{\varphi}^{\lambda, \varepsilon}(t, x, y)}\left(\rho_{\varepsilon}(t, x) j_{\varepsilon}(t, y)-\rho_{\varepsilon}(t, y) j_{\varepsilon}(t, x)\right) d x d y d t
$$

Hydrodynamic limit: weak form of the moment equations

The continuity and momentum equation in weak form read

$$
\begin{aligned}
& \int_{0}^{T} \int_{\mathbb{R}^{N}}\left(\frac{\partial \varphi}{\partial t} \rho_{\varepsilon}+\nabla \varphi \cdot j_{\varepsilon}\right) d x d t=-\int_{\mathbb{R}^{N}} \rho_{\varepsilon}^{0} \varphi(0, \cdot) d x \\
& \int_{0}^{T} \int_{\mathbb{R}^{N}}\left(-\varepsilon j_{\varepsilon} \frac{\partial \varphi}{\partial t}-\varepsilon \mathcal{S}_{\varepsilon} \nabla \varphi+\rho_{\varepsilon} \nabla \psi_{\varepsilon} \varphi+j_{\varepsilon} \varphi\right) d x d t \\
& \quad-\int_{0}^{T} \int_{\mathbb{R}^{N}}\left(\left(\phi_{\varepsilon} * j_{\varepsilon}\right) \rho_{\varepsilon}-\left(\phi_{\varepsilon} * \rho_{\varepsilon}\right) j_{\varepsilon}\right) \varphi d x d t=\int_{\mathbb{R}^{N}} j_{\varepsilon}^{0} \varphi(0, \cdot) d x,
\end{aligned}
$$

for every test function $\varphi \in C_{0}^{1}\left([0, T) \times \mathbb{R}^{N}\right)$.
The nonlinear term can be restated as follows

$$
\int_{0}^{T} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \underbrace{\frac{1}{2} \phi_{\varepsilon}(|x-y|)(\varphi(t, x)-\varphi(t, y))}_{H_{\varphi}^{\lambda, \varepsilon}(t, x, y)}\left(\rho_{\varepsilon}(t, x) j_{\varepsilon}(t, y)-\rho_{\varepsilon}(t, y) j_{\varepsilon}(t, x)\right) d x d y d t
$$

(1) Passing to the limit in the linear terms: weak-* compactness of ρ_{ε} and j_{ε} along with a priori bound of E_{ε}.
(2) Passing to the limit in the nonlinear term:
strong compactness of the kernel $H_{\varphi}^{\lambda, \varepsilon}$ and weak-* compactness of $\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}$.
(3) The value of λ in the singularity plays a role.

Hydrodynamic limit: a priori estimates

(1) Estimate for ρ_{ε} :

$$
\left\|\rho_{\varepsilon}\right\|_{L^{\infty}\left(0, T ; L^{1}\left(\mathbb{R}^{N}\right)\right)} \leq M_{0}
$$

Hydrodynamic limit: a priori estimates

(1) Estimate for ρ_{ε} :

$$
\left\|\rho_{\varepsilon}\right\|_{L^{\infty}\left(0, T ; L^{1}\left(\mathbb{R}^{N}\right)\right)} \leq M_{0}
$$

(2) Estimate for E_{ε} :

Taking traces in the equation for $\mathcal{S}_{\varepsilon}$ we obtain the corresponding one for the energy E_{ε} :

$$
\varepsilon \frac{\partial E_{\varepsilon}}{\partial t}+\varepsilon \operatorname{div}_{x} Q_{\varepsilon}+j_{\varepsilon} \cdot \nabla_{x} \psi_{\varepsilon}+2 E_{\varepsilon}+2\left(\phi_{\varepsilon} * \rho_{\varepsilon}\right) E_{\varepsilon}-2\left(\phi_{\varepsilon} * j_{\varepsilon}\right) \cdot j_{\varepsilon}-N \rho_{\varepsilon}=0
$$

Hydrodynamic limit: a priori estimates

(1) Estimate for ρ_{ε} :

$$
\left\|\rho_{\varepsilon}\right\|_{L^{\infty}\left(0, T ; L^{1}\left(\mathbb{R}^{N}\right)\right)} \leq M_{0}
$$

(2) Estimate for E_{ε} :

Taking traces in the equation for $\mathcal{S}_{\varepsilon}$ we obtain the corresponding one for the energy E_{ε} :

$$
\varepsilon \frac{\partial E_{\varepsilon}}{\partial t}+\varepsilon \operatorname{div}_{x} Q_{\varepsilon}+j_{\varepsilon} \cdot \nabla_{x} \psi_{\varepsilon}+2 E_{\varepsilon}+2\left(\phi_{\varepsilon} * \rho_{\varepsilon}\right) E_{\varepsilon}-2\left(\phi_{\varepsilon} * j_{\varepsilon}\right) \cdot j_{\varepsilon}-N \rho_{\varepsilon}=0
$$

Then, integrating with respect to x we obtain the next bound of energy

$$
\begin{aligned}
& \left\|E_{\varepsilon}\right\|_{L^{1}\left(0, T ; L^{1}\left(\mathbb{R}^{N}\right)\right)} \\
& \qquad \begin{array}{l}
\quad+\int_{0}^{T} \int_{\mathbb{R}^{4 N}} \phi_{\varepsilon}(|x-y|)|v-w|^{2} f_{\varepsilon}(t, x, v) f_{\varepsilon}(t, y, w) d x d y d v d w d t \\
\end{array} \quad \leq \varepsilon E_{0}+\frac{1}{2} F_{0}+\frac{1}{8} M_{0}
\end{aligned}
$$

Hydrodynamic limit: a priori estimates

(1) Estimate for ρ_{ε} :

$$
\left\|\rho_{\varepsilon}\right\|_{L^{\infty}\left(0, T ; L^{1}\left(\mathbb{R}^{N}\right)\right)} \leq M_{0}
$$

(2) Estimate for E_{ε} :

Taking traces in the equation for $\mathcal{S}_{\varepsilon}$ we obtain the corresponding one for the energy E_{ε} :

$$
\varepsilon \frac{\partial E_{\varepsilon}}{\partial t}+\varepsilon \operatorname{div}_{x} Q_{\varepsilon}+j_{\varepsilon} \cdot \nabla_{x} \psi_{\varepsilon}+2 E_{\varepsilon}+2\left(\phi_{\varepsilon} * \rho_{\varepsilon}\right) E_{\varepsilon}-2\left(\phi_{\varepsilon} * j_{\varepsilon}\right) \cdot j_{\varepsilon}-N \rho_{\varepsilon}=0
$$

Then, integrating with respect to x we obtain the next bound of energy

$$
\begin{aligned}
& \left\|E_{\varepsilon}\right\|_{L^{1}\left(0, T ; L^{1}\left(\mathbb{R}^{N}\right)\right)} \\
& \qquad \quad+\int_{0}^{T} \int_{\mathbb{R}^{4 N}} \phi_{\varepsilon}(|x-y|)|v-w|^{2} f_{\varepsilon}(t, x, v) f_{\varepsilon}(t, y, w) d x d y d v d w d t \\
& \quad \leq \varepsilon E_{0}+\frac{1}{2} F_{0}+\frac{1}{8} M_{0}
\end{aligned}
$$

Hydrodynamic limit: a priori estimates

(1) Estimate for ρ_{ε} :

$$
\left\|\rho_{\varepsilon}\right\|_{L^{\infty}\left(0, T ; L^{1}\left(\mathbb{R}^{N}\right)\right)} \leq M_{0}
$$

(2) Estimate for E_{ε} :

Taking traces in the equation for $\mathcal{S}_{\varepsilon}$ we obtain the corresponding one for the energy E_{ε} :

$$
\varepsilon \frac{\partial E_{\varepsilon}}{\partial t}+\varepsilon \operatorname{div}_{x} Q_{\varepsilon}+j_{\varepsilon} \cdot \nabla_{x} \psi_{\varepsilon}+2 E_{\varepsilon}+2\left(\phi_{\varepsilon} * \rho_{\varepsilon}\right) E_{\varepsilon}-2\left(\phi_{\varepsilon} * j_{\varepsilon}\right) \cdot j_{\varepsilon}-N \rho_{\varepsilon}=0
$$

Then, integrating with respect to x we obtain the next bound of energy

$$
\begin{aligned}
& \left\|E_{\varepsilon}\right\|_{L^{1}\left(0, T ; L^{1}\left(\mathbb{R}^{N}\right)\right)} \\
& \qquad \quad+\int_{0}^{T} \int_{\mathbb{R}^{4 N}} \phi_{\varepsilon}(|x-y|)|v-w|^{2} f_{\varepsilon}(t, x, v) f_{\varepsilon}(t, y, w) d x d y d v d w d t \\
& \quad \leq \varepsilon E_{0}+\frac{1}{2} F_{0}+\frac{1}{8} M_{0}
\end{aligned}
$$

(3) Estimate for j_{ε} :

$$
\left\|j_{\varepsilon}\right\|_{L^{2}\left(0, T ; L^{1}\left(\mathbb{R}^{N}\right)\right)} \leq\left[2 M_{0}\left(\varepsilon E_{0}+\frac{1}{2} F_{0}+\frac{1}{8} M_{0}\right)\right]^{1 / 2}
$$

Hydrodynamic limit: passing to the limit the linear terms

The above estimates for ρ_{ε} and j_{ε} yield weak-* limits $\rho \in L^{\infty}\left(0, T ; \mathcal{M}\left(\mathbb{R}^{N}\right)\right)$ and $j \in L^{2}\left(0, T ; \mathcal{M}\left(\mathbb{R}^{N}\right)\right)^{N}$, i.e.,

$$
\begin{array}{lll}
\rho_{\varepsilon} \stackrel{*}{\rightharpoonup} \rho & \text { in } & L^{\infty}\left(0, T ; \mathcal{M}\left(\mathbb{R}^{N}\right)\right), \\
j_{\varepsilon} \stackrel{*}{\rightharpoonup} j & \text { in } & L^{2}\left(0, T ; \mathcal{M}\left(\mathbb{R}^{N}\right)\right)^{N} .
\end{array}
$$

Hydrodynamic limit: passing to the limit the linear terms

The above estimates for ρ_{ε} and j_{ε} yield weak-* limits $\rho \in L^{\infty}\left(0, T ; \mathcal{M}\left(\mathbb{R}^{N}\right)\right)$ and $j \in L^{2}\left(0, T ; \mathcal{M}\left(\mathbb{R}^{N}\right)\right)^{N}$, i.e.,

$$
\begin{array}{lll}
\rho_{\varepsilon} \stackrel{*}{\sim} \rho & \text { in } & L^{\infty}\left(0, T ; \mathcal{M}\left(\mathbb{R}^{N}\right)\right), \\
j_{\varepsilon} \stackrel{*}{\rightharpoonup} j & \text { in } & L^{2}\left(0, T ; \mathcal{M}\left(\mathbb{R}^{N}\right)\right)^{N} .
\end{array}
$$

This, along with the boundedness in $L^{1}\left(0, T ; L^{1}\left(\mathbb{R}^{N}\right)\right)$ of $\mathcal{S}_{\varepsilon}$ allow passing to the limit in the linear terms:

$$
\begin{aligned}
& \int_{0}^{T} \int_{\mathbb{R}^{N}}\left(\frac{\partial \varphi}{\partial t} \rho_{\varepsilon}+\nabla \varphi \cdot j_{\varepsilon}\right) d x d t=-\int_{\mathbb{R}^{N}} \rho_{\varepsilon}^{0} \varphi(0, \cdot) d x \\
& \int_{0}^{T} \int_{\mathbb{R}^{N}}\left(-\varepsilon j_{\varepsilon} \frac{\partial \varphi}{\partial t}-\varepsilon \mathcal{S}_{\varepsilon} \nabla \varphi+\rho_{\varepsilon} \nabla \psi_{\varepsilon} \varphi+j_{\varepsilon} \varphi\right) d x d t \\
& \quad-\int_{0}^{T} \int_{\mathbb{R}^{N}}\left(\left(\phi_{\varepsilon} * j_{\varepsilon}\right) \rho_{\varepsilon}-\left(\phi_{\varepsilon} * \rho_{\varepsilon}\right) j_{\varepsilon}\right) \varphi d x d t=\int_{\mathbb{R}^{N}} j_{\varepsilon}^{0} \varphi(0, \cdot) d x
\end{aligned}
$$

Hydrodynamic limit: passing to the limit the nonlinear term

Recall that the nonlinear term can be restated as follows:

$$
\int_{0}^{T} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \underbrace{\frac{1}{2} \phi_{\varepsilon}(|x-y|)(\varphi(t, x)-\varphi(t, y)}_{H_{\varphi}^{\lambda, \varepsilon}(t, x, y)})\left(\rho_{\varepsilon}(t, x) j_{\varepsilon}(t, y)-\rho_{\varepsilon}(t, y) j_{\varepsilon}(t, x)\right) d x d y d t
$$

Hydrodynamic limit: passing to the limit the nonlinear term

Recall that the nonlinear term can be restated as follows:

$$
\int_{0}^{T} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \underbrace{\frac{1}{2} \phi_{\varepsilon}(|x-y|)(\varphi(t, x)-\varphi(t, y))}_{H_{\varphi}^{\lambda, \varepsilon}(t, x, y)}\left(\rho_{\varepsilon}(t, x) j_{\varepsilon}(t, y)-\rho_{\varepsilon}(t, y) j_{\varepsilon}(t, x)\right) d x d y d t
$$

We will now focus on $\lambda \in\left(0, \frac{1}{2}\right)$.

Hydrodynamic limit: passing to the limit the nonlinear term

Recall that the nonlinear term can be restated as follows:

$$
\int_{0}^{T} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \underbrace{\frac{1}{2} \phi_{\varepsilon}(|x-y|)(\varphi(t, x)-\varphi(t, y)}_{H_{\varphi}^{\lambda, \varepsilon}(t, x, y)})\left(\rho_{\varepsilon}(t, x) j_{\varepsilon}(t, y)-\rho_{\varepsilon}(t, y) j_{\varepsilon}(t, x)\right) d x d y d t
$$

We will now focus on $\lambda \in\left(0, \frac{1}{2}\right)$.
(1) Strong convergence of the kernel:

It is clear that

$$
\left|\phi_{\varepsilon}(r)-\phi_{0}(r)\right| \leq C_{\lambda} \frac{\varepsilon^{1-2 \lambda}}{r} \stackrel{\lambda \in\left(0, \frac{1}{2}\right)}{\Longrightarrow} \lim _{\varepsilon \searrow 0}\left\|H_{\varphi}^{\lambda, \varepsilon}-H_{\varphi}^{\lambda, 0}\right\|_{C\left([0, T], C_{0}\left(\mathbb{R}^{N}\right)\right)}=0
$$

Hydrodynamic limit: passing to the limit the nonlinear term

Recall that the nonlinear term can be restated as follows:

$$
\int_{0}^{T} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \underbrace{\frac{1}{2} \phi_{\varepsilon}(|x-y|)(\varphi(t, x)-\varphi(t, y)}_{H_{\varphi}^{\lambda, \varepsilon}(t, x, y)})\left(\rho_{\varepsilon}(t, x) j_{\varepsilon}(t, y)-\rho_{\varepsilon}(t, y) j_{\varepsilon}(t, x)\right) d x d y d t
$$

We will now focus on $\lambda \in\left(0, \frac{1}{2}\right)$.
(1) Strong convergence of the kernel:

It is clear that

$$
\left|\phi_{\varepsilon}(r)-\phi_{0}(r)\right| \leq C_{\lambda} \frac{\varepsilon^{1-2 \lambda}}{r} \stackrel{\lambda \in\left(0, \frac{1}{2}\right)}{\Longrightarrow} \lim _{\varepsilon \searrow 0}\left\|H_{\varphi}^{\lambda, \varepsilon}-H_{\varphi}^{\lambda, 0}\right\|_{C\left([0, T], C_{0}\left(\mathbb{R}^{N}\right)\right)}=0 .
$$

(2) Weak-* convergence of $\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}$:

Hydrodynamic limit: passing to the limit the nonlinear term

Recall that the nonlinear term can be restated as follows:

$$
\int_{0}^{T} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \underbrace{\frac{1}{2} \phi_{\varepsilon}(|x-y|)(\varphi(t, x)-\varphi(t, y)}_{H_{\varphi}^{\lambda, \varepsilon}(t, x, y)})\left(\rho_{\varepsilon}(t, x) j_{\varepsilon}(t, y)-\rho_{\varepsilon}(t, y) j_{\varepsilon}(t, x)\right) d x d y d t
$$

We will now focus on $\lambda \in\left(0, \frac{1}{2}\right)$.
(1) Strong convergence of the kernel:

It is clear that

$$
\left|\phi_{\varepsilon}(r)-\phi_{0}(r)\right| \leq C_{\lambda} \frac{\varepsilon^{1-2 \lambda}}{r} \stackrel{\lambda \in\left(0, \frac{1}{2}\right)}{\Longrightarrow} \lim _{\varepsilon \searrow 0}\left\|H_{\varphi}^{\lambda, \varepsilon}-H_{\varphi}^{\lambda, 0}\right\|_{C\left([0, T], C_{0}\left(\mathbb{R}^{N}\right)\right)}=0 .
$$

(2) Weak-* convergence of $\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}$:

Using the a priori bounds of ρ_{ε} and j_{ε} along with the continuity equation one has

$$
\left\|\rho_{\varepsilon}\right\|_{C^{0, \frac{1}{2}}\left([0, T], W^{-1,1}\left(\mathbb{R}^{N}\right)\right)} \leq T^{1 / 2}\left\|\rho_{\varepsilon}\right\|_{L^{\infty}\left(0, T ; L^{1}\left(\mathbb{R}^{N}\right)\right)}+\left\|j_{\varepsilon}\right\|_{L^{2}\left(0, T ; L^{1}\left(\mathbb{R}^{N}\right)\right)}
$$

Hydrodynamic limit: passing to the limit the nonlinear term

Recall that the nonlinear term can be restated as follows:

$$
\int_{0}^{T} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \underbrace{\frac{1}{2} \phi_{\varepsilon}(|x-y|)(\varphi(t, x)-\varphi(t, y))}_{H_{\varphi}^{\lambda, \varepsilon}(t, x, y)}\left(\rho_{\varepsilon}(t, x) j_{\varepsilon}(t, y)-\rho_{\varepsilon}(t, y) j_{\varepsilon}(t, x)\right) d x d y d t
$$

We will now focus on $\lambda \in\left(0, \frac{1}{2}\right)$.
(1) Strong convergence of the kernel:

It is clear that

$$
\left|\phi_{\varepsilon}(r)-\phi_{0}(r)\right| \leq C_{\lambda} \frac{\varepsilon^{1-2 \lambda}}{r} \stackrel{\lambda \in\left(0, \frac{1}{2}\right)}{\Longrightarrow} \lim _{\varepsilon \searrow 0}\left\|H_{\varphi}^{\lambda, \varepsilon}-H_{\varphi}^{\lambda, 0}\right\|_{C\left([0, T], C_{0}\left(\mathbb{R}^{N}\right)\right)}=0
$$

(2) Weak-* convergence of $\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}$:

Using the a priori bounds of ρ_{ε} and j_{ε} along with the continuity equation one has

$$
\left\|\rho_{\varepsilon}\right\|_{C^{0, \frac{1}{2}}\left([0, T], W^{-1,1}\left(\mathbb{R}^{N}\right)\right)} \leq T^{1 / 2}\left\|\rho_{\varepsilon}\right\|_{L^{\infty}\left(0, T ; L^{1}\left(\mathbb{R}^{N}\right)\right)}+\left\|j_{\varepsilon}\right\|_{L^{2}\left(0, T ; L^{1}\left(\mathbb{R}^{N}\right)\right)}
$$

By Ascoli-Arzelà theorem in weak-* form one can show that

$$
\rho_{\varepsilon} \rightarrow \rho \text { in } C\left([0, T] ; W^{-1,1}\left(\mathbb{R}^{N}\right)-\text { weak }^{*}\right)
$$

Hydrodynamic limit: passing to the limit the nonlinear term

Recall that the nonlinear term can be restated as follows:

$$
\int_{0}^{T} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \underbrace{\frac{1}{2} \phi_{\varepsilon}(|x-y|)(\varphi(t, x)-\varphi(t, y)}_{H_{\varphi}^{\lambda, \varepsilon}(t, x, y)})\left(\rho_{\varepsilon}(t, x) j_{\varepsilon}(t, y)-\rho_{\varepsilon}(t, y) j_{\varepsilon}(t, x)\right) d x d y d t
$$

We will now focus on $\lambda \in\left(0, \frac{1}{2}\right)$.
(1) Strong convergence of the kernel:

It is clear that

$$
\left|\phi_{\varepsilon}(r)-\phi_{0}(r)\right| \leq C_{\lambda} \frac{\varepsilon^{1-2 \lambda}}{r} \stackrel{\lambda \in\left(0, \frac{1}{2}\right)}{\Longrightarrow} \lim _{\varepsilon \searrow 0}\left\|H_{\varphi}^{\lambda, \varepsilon}-H_{\varphi}^{\lambda, 0}\right\|_{C\left([0, T], C_{0}\left(\mathbb{R}^{N}\right)\right)}=0 .
$$

(2) Weak-* convergence of $\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}$:

Hydrodynamic limit: passing to the limit the nonlinear term

Recall that the nonlinear term can be restated as follows:

$$
\int_{0}^{T} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \underbrace{\frac{1}{2} \phi_{\varepsilon}(|x-y|)(\varphi(t, x)-\varphi(t, y))}_{H_{\varphi}^{\lambda, \varepsilon}(t, x, y)}\left(\rho_{\varepsilon}(t, x) j_{\varepsilon}(t, y)-\rho_{\varepsilon}(t, y) j_{\varepsilon}(t, x)\right) d x d y d t
$$

We will now focus on $\lambda \in\left(0, \frac{1}{2}\right)$.
(1) Strong convergence of the kernel:

It is clear that

$$
\left|\phi_{\varepsilon}(r)-\phi_{0}(r)\right| \leq C_{\lambda} \frac{\varepsilon^{1-2 \lambda}}{r} \stackrel{\lambda \in\left(0, \frac{1}{2}\right)}{\Longrightarrow} \lim _{\varepsilon \searrow 0}\left\|H_{\varphi}^{\lambda, \varepsilon}-H_{\varphi}^{\lambda, 0}\right\|_{C\left([0, T], C_{0}\left(\mathbb{R}^{N}\right)\right)}=0 .
$$

(2) Weak-* convergence of $\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}$:

$$
\begin{aligned}
& \rho_{\varepsilon} \rightarrow \rho \text { in } C\left([0, T] ; \mathcal{M}\left(\mathbb{R}^{N}\right)-\text { weak*}^{*}\right), \\
& j_{\varepsilon} \xrightarrow{*} j \quad \text { in } L^{2}\left(0, T ; \mathcal{M}\left(\mathbb{R}^{N}\right)\right), \\
& \Longrightarrow \rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon} \xrightarrow{*} \rho \otimes j-j \otimes \rho \text { in } L^{2}\left(0, T ; \mathcal{M}\left(\mathbb{R}^{2 N}\right)\right) .
\end{aligned}
$$

Hydrodynamic limit: the critical exponent $\lambda=\frac{1}{2}$

(1) We can still pass to the limit in $\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}$.

Hydrodynamic limit: the critical exponent $\lambda=\frac{1}{2}$

(1) We can still pass to the limit in $\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}$.
(2) We cannot pass to the limit in the kernels.

Indeed, $H_{\varphi}^{\frac{1}{2}, 0}(t, x, y)$ may exhibit jump discontinuities along the diagonal points $x=y$, but it is bounded and continuous outside such set and falls-off at infinity.

Hydrodynamic limit: the critical exponent $\lambda=\frac{1}{2}$

(1) We can still pass to the limit in $\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}$.
(2) We cannot pass to the limit in the kernels.

Indeed, $H_{\varphi}^{\frac{1}{2}, 0}(t, x, y)$ may exhibit jump discontinuities along the diagonal points $x=y$, but it is bounded and continuous outside such set and falls-off at infinity.
(3) Solution: absence of concentration for all $\lambda \in(0, N / 2)$. Set $\Omega_{R}:=\left\{(x, y) \in \mathbb{R}^{2 N}:|x-y|<R\right\}$ and notice that

$$
\begin{aligned}
& \left\|\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right\|_{L^{2}\left(0, T ; \mathcal{M}\left(\Omega_{R}\right)\right)} \leq\left(\varepsilon^{2}+R^{2}\right)^{\lambda / 2} M_{0} \\
& \quad \times\left(\int_{0}^{T} \int_{\mathbb{R}^{4 N}} \phi_{\varepsilon}(|x-y|)|v-w|^{2} f_{\varepsilon}(t, x, v) f_{\varepsilon}(t, y, w) d t d x d y d v d w\right)^{1 / 2}
\end{aligned}
$$

Hydrodynamic limit: the critical exponent $\lambda=\frac{1}{2}$

(1) We can still pass to the limit in $\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}$.
(2) We cannot pass to the limit in the kernels.

Indeed, $H_{\varphi}^{\frac{1}{2}, 0}(t, x, y)$ may exhibit jump discontinuities along the diagonal points $x=y$, but it is bounded and continuous outside such set and falls-off at infinity.
(3) Solution: absence of concentration for all $\lambda \in(0, N / 2)$. Set $\Omega_{R}:=\left\{(x, y) \in \mathbb{R}^{2 N}:|x-y|<R\right\}$ and notice that

$$
\begin{aligned}
& \left\|\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right\|_{L^{2}\left(0, T ; \mathcal{M}\left(\Omega_{R}\right)\right)} \leq\left(\varepsilon^{2}+R^{2}\right)^{\lambda / 2} M_{0} \\
& \quad \times\left(\int_{0}^{T} \int_{\mathbb{R}^{4 N}} \phi_{\varepsilon}(|x-y|)|v-w|^{2} f_{\varepsilon}(t, x, v) f_{\varepsilon}(t, y, w) d t d x d y d v d w\right)^{1 / 2}
\end{aligned}
$$

Thus, there is non-concentration in the following sense

$$
\liminf _{\varepsilon, R \rightarrow 0}\left\|\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right\|_{L^{2}\left(0, T ; \mathcal{M}\left(\Omega_{R}\right)\right)}=0
$$

Hydrodynamic limit: the critical exponent $\lambda=\frac{1}{2}$

How does the non-concentration helps ?

Hydrodynamic limit: the critical exponent $\lambda=\frac{1}{2}$

How does the non-concentration helps ?

$$
\int_{0}^{T} \int_{\mathbb{R}^{2 N}} H_{\varphi}^{\frac{1}{2}, \varepsilon}\left(\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right)-\int_{0}^{T} \int_{\mathbb{R}^{2 N}} H_{\varphi}^{\frac{1}{2}, 0}(\rho \otimes j-j \otimes \rho)
$$

Hydrodynamic limit: the critical exponent $\lambda=\frac{1}{2}$

How does the non-concentration helps ?

$$
\begin{aligned}
\int_{0}^{T} \int_{\mathbb{R}^{2 N}} H_{\varphi}^{\frac{1}{2}, \varepsilon} & \left(\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right)-\int_{0}^{T} \int_{\mathbb{R}^{2 N}} H_{\varphi}^{\frac{1}{2}, 0}(\rho \otimes j-j \otimes \rho) \\
& =\int_{0}^{T} \int_{\mathbb{R}^{2 N}}\left(H_{\varphi}^{\frac{1}{2}, \varepsilon}-H_{\varphi}^{\frac{1}{2}, 0}\right)\left(\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right) \\
& +\int_{0}^{T} \int_{\mathbb{R}^{2 N}} H_{\varphi}^{\frac{1}{2}, 0}\left[\left(\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right)-(\rho \otimes j-j \otimes \rho)\right]
\end{aligned}
$$

Hydrodynamic limit: the critical exponent $\lambda=\frac{1}{2}$

How does the non-concentration helps ?

$$
\begin{aligned}
\int_{0}^{T} \int_{\mathbb{R}^{2 N}} H_{\varphi}^{\frac{1}{2}, \varepsilon} & \left(\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right)-\int_{0}^{T} \int_{\mathbb{R}^{2 N}} H_{\varphi}^{\frac{1}{2}, 0}(\rho \otimes j-j \otimes \rho) \\
& =\int_{0}^{T} \int_{\mathbb{R}^{2 N}}\left(H_{\varphi}^{\frac{1}{2}, \varepsilon}-H_{\varphi}^{\frac{1}{2}, 0}\right)\left(\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right) \\
& +\int_{0}^{T} \int_{\mathbb{R}^{2 N}} H_{\varphi}^{\frac{1}{2}, 0}\left[\left(\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right)-(\rho \otimes j-j \otimes \rho)\right]
\end{aligned}
$$

(1) The non-concentration result allows passing to the limit in the pink term even though $H_{\varphi}^{\frac{1}{2}, 0}$ may be discontinuous along the diagonal points.

Hydrodynamic limit: the critical exponent $\lambda=\frac{1}{2}$

How does the non-concentration helps ?

$$
\begin{aligned}
\int_{0}^{T} \int_{\mathbb{R}^{2 N}} H_{\varphi}^{\frac{1}{2}, \varepsilon} & \left(\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right)-\int_{0}^{T} \int_{\mathbb{R}^{2 N}} H_{\varphi}^{\frac{1}{2}, 0}(\rho \otimes j-j \otimes \rho) \\
& =\int_{0}^{T} \int_{\mathbb{R}^{2 N}}\left(H_{\varphi}^{\frac{1}{2}, \varepsilon}-H_{\varphi}^{\frac{1}{2}, 0}\right)\left(\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right) \\
& +\int_{0}^{T} \int_{\mathbb{R}^{2 N}} H_{\varphi}^{\frac{1}{2}, 0}\left[\left(\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right)-(\rho \otimes j-j \otimes \rho)\right]
\end{aligned}
$$

(1) The non-concentration result allows passing to the limit in the pink term even though $H_{\varphi}^{\frac{1}{2}, 0}$ may be discontinuous along the diagonal points.
(2) For the blue term notice that $\left|\phi_{\varepsilon}(r)-\phi_{0}(r)\right| \leq \frac{\varepsilon^{1 / 2}}{\sqrt{3} r} \phi_{\varepsilon}(r)^{1 / 2}$.

Hydrodynamic limit: the critical exponent $\lambda=\frac{1}{2}$

How does the non-concentration helps ?

$$
\begin{aligned}
\int_{0}^{T} \int_{\mathbb{R}^{2 N}} H_{\varphi}^{\frac{1}{2}, \varepsilon} & \left(\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right)-\int_{0}^{T} \int_{\mathbb{R}^{2 N}} H_{\varphi}^{\frac{1}{2}, 0}(\rho \otimes j-j \otimes \rho) \\
& =\int_{0}^{T} \int_{\mathbb{R}^{2 N}}\left(H_{\varphi}^{\frac{1}{2}, \varepsilon}-H_{\varphi}^{\frac{1}{2}, 0}\right)\left(\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right) \\
& +\int_{0}^{T} \int_{\mathbb{R}^{2 N}} H_{\varphi}^{\frac{1}{2}, 0}\left[\left(\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right)-(\rho \otimes j-j \otimes \rho)\right]
\end{aligned}
$$

(1) The non-concentration result allows passing to the limit in the pink term even though $H_{\varphi}^{\frac{1}{2}, 0}$ may be discontinuous along the diagonal points.
(2) For the blue term notice that $\left|\phi_{\varepsilon}(r)-\phi_{0}(r)\right| \leq \frac{\varepsilon^{1 / 2}}{\sqrt{3} r} \phi_{\varepsilon}(r)^{1 / 2}$.

Thus, it can be bounded by
$\varepsilon^{1 / 2} T^{1 / 2} M_{0}\left(\int_{0}^{T} \int_{\mathbb{R}^{4 N}}|v-w|^{2} \phi_{\varepsilon}(|x-y|) f_{\varepsilon}(t, x, v) f_{\varepsilon}(t, y, w) d t d x d y d v d w\right)^{1 / 2}$.

Hydrodynamic limit: the critical exponent $\lambda=\frac{1}{2}$

How does the non-concentration helps ?

$$
\begin{aligned}
\int_{0}^{T} \int_{\mathbb{R}^{2 N}} H_{\varphi}^{\frac{1}{2}, \varepsilon} & \left(\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right)-\int_{0}^{T} \int_{\mathbb{R}^{2 N}} H_{\varphi}^{\frac{1}{2}, 0}(\rho \otimes j-j \otimes \rho) \\
& =\int_{0}^{T} \int_{\mathbb{R}^{2 N}}\left(H_{\varphi}^{\frac{1}{2}, \varepsilon}-H_{\varphi}^{\frac{1}{2}, 0}\right)\left(\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right) \\
& +\int_{0}^{T} \int_{\mathbb{R}^{2 N}} H_{\varphi}^{\frac{1}{2}, 0}\left[\left(\rho_{\varepsilon} \otimes j_{\varepsilon}-j_{\varepsilon} \otimes \rho_{\varepsilon}\right)-(\rho \otimes j-j \otimes \rho)\right]
\end{aligned}
$$

(1) The non-concentration result allows passing to the limit in the pink term even though $H_{\varphi}^{\frac{1}{2}, 0}$ may be discontinuous along the diagonal points.
(2) For the blue term notice that $\left|\phi_{\varepsilon}(r)-\phi_{0}(r)\right| \leq \frac{\varepsilon^{1 / 2}}{\sqrt{3} r} \phi_{\varepsilon}(r)^{1 / 2}$.

Thus, it can be bounded by

$$
\varepsilon^{1 / 2} T^{1 / 2} M_{0}\left(\int_{0}^{T} \int_{\mathbb{R}^{4 N}}|v-w|^{2} \phi_{\varepsilon}(|x-y|) f_{\varepsilon}(t, x, v) f_{\varepsilon}(t, y, w) d t d x d y d v d w\right)^{1 / 2}
$$

F. Poupaud, Diagonal defect measures, adhesion dynamics and Euler equation, Methods Appl. Anal. 9 (2002) 533-562.

Hydrodynamic limit

Theorem

Under the hypothesis $\left(H_{1}\right)$ and $\left(H_{2}\right)$ and for any $\lambda \in(0,1 / 2]$ the macroscopic quantities ρ_{ε} and j_{ε} satisfy

$$
\begin{aligned}
& \rho_{\varepsilon} \rightarrow \rho, \quad \text { in } C\left([0, T], \mathcal{M}\left(\mathbb{R}^{N}\right)-\text { weak }^{*}\right), \\
& j_{\varepsilon} \xrightarrow{*} j, \quad \text { in } L^{2}\left(0, T ; \mathcal{M}\left(\mathbb{R}^{N}\right)\right)^{N} .
\end{aligned}
$$

where (ρ, j) is a local-in-time weak measure-valued solution to the Cauchy problem associated with the following Euler-type system

$$
\begin{cases}\partial_{t} \rho+\operatorname{div} j=0, & x \in \mathbb{R}^{N}, t \in[0, T), \\ \rho \nabla \psi+j=\left(\phi_{0} * j\right) \rho-\left(\phi_{0} * \rho\right) j, & x \in \mathbb{R}^{N}, t \in[0, T) \\ \rho(0, \cdot)=\rho^{0}, & x \in \mathbb{R}^{N} .\end{cases}
$$

Singular macro system: well-posedness in Sobolev spaces

In terms of ρ and u, the singular macroscopic system can be restated as

$$
\begin{cases}\partial_{t} \rho+\operatorname{div}(\rho u)=0, & x \in \mathbb{R}^{N}, t \geq 0 \\ \rho(0, x)=\rho^{0}(x), & x \in \mathbb{R}^{N}, \\ u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u-\nabla \psi, & x \in \mathbb{R}^{N}, t \geq 0\end{cases}
$$

Singular macro system: well-posedness in Sobolev spaces

In terms of ρ and u, the singular macroscopic system can be restated as

$$
\begin{cases}\partial_{t} \rho+\operatorname{div}(\rho u)=0, & x \in \mathbb{R}^{N}, t \geq 0 \\ \rho(0, x)=\rho^{0}(x), & x \in \mathbb{R}^{N}, \\ u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u-\nabla \psi, & x \in \mathbb{R}^{N}, t \geq 0\end{cases}
$$

We will uncouple the problem into a transport equation for ρ driven by u and an implicit equation for u for a given ρ, i.e.,

Singular macro system: well-posedness in Sobolev spaces

In terms of ρ and u, the singular macroscopic system can be restated as

$$
\begin{cases}\partial_{t} \rho+\operatorname{div}(\rho u)=0, & x \in \mathbb{R}^{N}, t \geq 0 \\ \rho(0, x)=\rho^{0}(x), & x \in \mathbb{R}^{N}, \\ u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u-\nabla \psi, & x \in \mathbb{R}^{N}, t \geq 0\end{cases}
$$

We will uncouple the problem into a transport equation for ρ driven by u and an implicit equation for u for a given ρ, i.e.,

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho u)=0 \tag{TE}\\
\rho(0, x)=\rho^{0}(x)
\end{array}\right.
$$

Singular macro system: well-posedness in Sobolev spaces

In terms of ρ and u, the singular macroscopic system can be restated as

$$
\begin{cases}\partial_{t} \rho+\operatorname{div}(\rho u)=0, & x \in \mathbb{R}^{N}, t \geq 0 \\ \rho(0, x)=\rho^{0}(x), & x \in \mathbb{R}^{N} \\ u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u-\nabla \psi, & x \in \mathbb{R}^{N}, t \geq 0\end{cases}
$$

We will uncouple the problem into a transport equation for ρ driven by u and an implicit equation for u for a given ρ, i.e.,

$$
\begin{gather*}
\left\{\begin{array}{c}
\partial_{t} \rho+\operatorname{div}(\rho u)=0 \\
\rho(0, x)=\rho^{0}(x)
\end{array}\right. \tag{TE}\\
u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u-\nabla \psi . \tag{IE}
\end{gather*}
$$

Singular macro system: well-posedness in Sobolev spaces

In terms of ρ and u, the singular macroscopic system can be restated as

$$
\begin{cases}\partial_{t} \rho+\operatorname{div}(\rho u)=0, & x \in \mathbb{R}^{N}, t \geq 0 \\ \rho(0, x)=\rho^{0}(x), & x \in \mathbb{R}^{N}, \\ u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u-\nabla \psi, & x \in \mathbb{R}^{N}, t \geq 0\end{cases}
$$

We will uncouple the problem into a transport equation for ρ driven by u and an implicit equation for u for a given ρ, i.e.,

$$
\begin{gather*}
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho u)=0 \\
\rho(0, x)=\rho^{0}(x)
\end{array}\right. \tag{TE}\\
u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u-\nabla \psi . \tag{IE}
\end{gather*}
$$

Then, we will study each problem separately and will try to find a solution via a fixed point argument when ρ and u are taken in spaces with high enough Sobolev regularity.

Singular macro system: the transport equation

First, let us focus on the transport problem:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho u)=0 \tag{TE}\\
\rho(0, x)=\rho^{0}(x)
\end{array}\right.
$$

Singular macro system: the transport equation

First, let us focus on the transport problem:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho u)=0 \tag{TE}\\
\rho(0, x)=\rho^{0}(x)
\end{array}\right.
$$

(1) If $u \in L^{1}\left(0, T ; W^{1, \infty}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)\right)$

Singular macro system: the transport equation

First, let us focus on the transport problem:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho u)=0 \tag{TE}\\
\rho(0, x)=\rho^{0}(x)
\end{array}\right.
$$

(1) If $u \in L^{1}\left(0, T ; W^{1, \infty}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)\right) \rightsquigarrow$ Caratheodory conditions.

Singular macro system: the transport equation

First, let us focus on the transport problem:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho u)=0 \tag{TE}\\
\rho(0, x)=\rho^{0}(x)
\end{array}\right.
$$

(1) If $u \in L^{1}\left(0, T ; W^{1, \infty}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)\right) \rightsquigarrow$ Caratheodory conditions.
(2) The characteristic system defines a bi-Lipschitz particle flow.

Singular macro system: the transport equation

First, let us focus on the transport problem:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho u)=0 \tag{TE}\\
\rho(0, x)=\rho^{0}(x)
\end{array}\right.
$$

(1) If $u \in L^{1}\left(0, T ; W^{1, \infty}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)\right) \rightsquigarrow$ Caratheodory conditions.
(2) The characteristic system defines a bi-Lipschitz particle flow.
(3) For any $1 \leq p \leq \infty$ and $0 \leq \rho^{0} \in L^{p}\left(\mathbb{R}^{N}\right)$, there exists a unique weak solution

$$
\rho \equiv \mathcal{D}[u] \in L^{\infty}\left(0, T ; L^{p}\left(\mathbb{R}^{N}\right)\right)
$$

Singular macro system: the transport equation

First, let us focus on the transport problem:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho u)=0 \tag{TE}\\
\rho(0, x)=\rho^{0}(x)
\end{array}\right.
$$

(1) If $u \in L^{1}\left(0, T ; W^{1, \infty}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)\right) \rightsquigarrow$ Caratheodory conditions.
(2) The characteristic system defines a bi-Lipschitz particle flow.
(3) For any $1 \leq p \leq \infty$ and $0 \leq \rho^{0} \in L^{p}\left(\mathbb{R}^{N}\right)$, there exists a unique weak solution

$$
\rho \equiv \mathcal{D}[u] \in L^{\infty}\left(0, T ; L^{p}\left(\mathbb{R}^{N}\right)\right)
$$

Indeed, the next estimate holds

$$
\|D[u]\|_{L^{\infty}\left(0, T ; L^{p}\left(\mathbb{R}^{N}\right)\right)} \leq \exp \left(\frac{1}{p^{\prime}}\|u\|_{L^{1}\left(0, T ; W^{1, \infty}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)\right)}\right)\left\|\rho^{0}\right\|_{L^{p}\left(\mathbb{R}^{N}\right)}
$$

Singular macro system: the implicit equation

Second, let us concentrate in the implicit integral equation:

$$
\begin{equation*}
u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u-\nabla \psi \tag{IE}
\end{equation*}
$$

Singular macro system: the implicit equation

Second, let us concentrate in the implicit integral equation:

$$
\begin{equation*}
u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u-\nabla \psi \tag{IE}
\end{equation*}
$$

Singular macro system: the implicit equation

Second, let us concentrate in the implicit integral equation:

$$
\begin{equation*}
u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u-\nabla \psi \tag{IE}
\end{equation*}
$$

Let us set the next integral operator:

$$
\mathcal{C}[\rho, u]:=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u=-\frac{1}{c_{\lambda}^{\lambda}}\left[u, I_{N-2 \lambda}\right] \rho
$$

Singular macro system: the implicit equation

Second, let us concentrate in the implicit integral equation:

$$
\begin{equation*}
u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u-\nabla \psi \tag{IE}
\end{equation*}
$$

Let us set the next integral operator:

$$
\mathcal{C}[\rho, u]:=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u=-\frac{1}{c_{\lambda}^{\lambda}}\left[u, I_{N-2 \lambda}\right] \rho
$$

\rightsquigarrow Harmonic analysis: Commutator of mildly singular integrals.

$$
\rho \in L^{p}\left(\mathbb{R}^{N}\right), u \in B M O\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right), 1<p<\frac{N}{N-2 \lambda}
$$

Singular macro system: the implicit equation

Second, let us concentrate in the implicit integral equation:

$$
\begin{equation*}
u=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u-\nabla \psi \tag{IE}
\end{equation*}
$$

Let us set the next integral operator:

$$
\mathcal{C}[\rho, u]:=\phi_{0} *(\rho u)-\left(\phi_{0} * \rho\right) u=-\frac{1}{c_{\lambda}^{\lambda}}\left[u, I_{N-2 \lambda}\right] \rho .
$$

\rightsquigarrow Harmonic analysis: Commutator of mildly singular integrals.

$$
\rho \in L^{p}\left(\mathbb{R}^{N}\right), u \in B M O\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right), 1<p<\frac{N}{N-2 \lambda}
$$

奢
S. Chanillo, A note on commutator, Indiana Univ. Math. J. 31 (1982) 7-16.
(D. Cruz-Uribe, A. Fiorenza, Endpoint estimates and weighted norm inequalities for commutator of fractional integrals, Pub. Mat. 47 (2003), 103-131.

Singular macro system: estimates of commutators

Based on Hardy-Littlewood-Sovolev theorem we obtain the next results:

Theorem ($W^{1, \infty}$ regularity)

Consider $1 \leq p_{1}<p_{2} \leq \infty$ with $\frac{1}{p_{2}}<1-\frac{2 \lambda}{N}<\frac{1}{p_{1}}$. Then,

$$
\begin{aligned}
& \left\|\left(\left[u, I_{N-2 \lambda}\right] \rho\right)\right\|_{L^{1}\left(0, T ; W^{1, \infty}\right)} \\
& \quad \leq C\|u\|_{L^{1}\left(0, T ; W^{1, \infty}\right)}\|\rho\|_{L^{\infty}\left(0, T ; L^{p_{1}}\right)}^{\left(1 / p_{2}^{\prime}-\frac{2 \lambda}{N}\right) /\left(1 / p_{1}-1 / p_{2}\right)}\|\rho\|_{L^{\infty}\left(0, T ; L^{p_{2}}\right)}^{\left(\frac{2 \lambda}{N}-1 / p_{1}^{\prime}\right) /\left(1 / p_{1}-1 / p_{2}\right)}
\end{aligned}
$$

Theorem (L^{s} regularity)

Consider $1 \leq p_{1}<p_{2} \leq \infty$ and $1 \leq s<\infty$ with $\frac{1}{p_{2}}<1-\frac{2 \lambda}{N}<\frac{1}{p_{1}}$ and $s>\frac{N}{2 \lambda}$. Then,

$$
\begin{aligned}
& \left\|\left(\left[u, I_{N-2 \lambda}\right] \rho\right)\right\|_{L^{1}\left(0, T ; L^{s}\right)} \\
& \quad \leq C\|u\|_{L^{1}\left(0, T ; L^{s}\right)}\|\rho\|_{L^{\infty}\left(0, T ; L^{p_{1}}\right)}^{\left(1 / p_{2}^{\prime}-\frac{2 \lambda}{N}\right) /\left(1 / p_{1}-1 / p_{2}\right)}\|\rho\|_{L^{\infty}\left(0, T ; L^{p_{2}}\right)}^{\left(\frac{2 \lambda}{N}-1 / p_{1}^{\prime}\right) /\left(1 / p_{1}-1 / p_{2}\right)} .
\end{aligned}
$$

Singular macro system: the fixed-point argument

(1) Restating the macroscopic system:

$$
\mathcal{C}[\mathcal{D}[u], u]-\nabla \psi=u
$$

Singular macro system: the fixed-point argument

(1) Restating the macroscopic system:

$$
\mathcal{C}[\mathcal{D}[u], u]-\nabla \psi=u
$$

(2) Defining the fixed-point problem: Set $\Phi[u]:=\mathcal{C}[\mathcal{D}[u], u]-\nabla \psi$, then the system amounts to the fixed point equation

$$
\Phi[u]=u
$$

Singular macro system: the fixed-point argument

(1) Restating the macroscopic system:

$$
\mathcal{C}[\mathcal{D}[u], u]-\nabla \psi=u
$$

(2) Defining the fixed-point problem: Set $\Phi[u]:=\mathcal{C}[\mathcal{D}[u], u]-\nabla \psi$, then the system amounts to the fixed point equation

$$
\Phi[u]=u
$$

(3) Definition of Banach spaces:

$$
W^{k, p, q}\left(\mathbb{R}^{N}\right):=\left(W^{k-1, p} \cap W^{k-1, q} \cap W^{k, \infty}\right)\left(\mathbb{R}^{N}\right)
$$

Singular macro system: the fixed-point argument

(1) Restating the macroscopic system:

$$
\mathcal{C}[\mathcal{D}[u], u]-\nabla \psi=u
$$

(2) Defining the fixed-point problem: Set $\Phi[u]:=\mathcal{C}[\mathcal{D}[u], u]-\nabla \psi$, then the system amounts to the fixed point equation

$$
\Phi[u]=u
$$

(3) Definition of Banach spaces:

$$
W^{k, p, q}\left(\mathbb{R}^{N}\right):=\left(W^{k-1, p} \cap W^{k-1, q} \cap W^{k, \infty}\right)\left(\mathbb{R}^{N}\right)
$$

(4) High regularity estimates of the operators: Consider $\lambda \in(0, N / 2)$ and $1 \leq p_{1}<p_{2} \leq \infty$ such that $\frac{1}{p_{2}}<1-\frac{2 \lambda}{N}<\frac{1}{p_{1}}$. Set any $k \in \mathbb{N}$ so that $k>\max \left\{\frac{k}{2 N}-1, \frac{N}{2 \lambda p_{1}}\right\}$. Then,

$$
\begin{gathered}
\|\mathcal{D}[u]\|_{L^{\infty}\left(0, T ; L^{p_{i}}\right)} \leq \exp \left(\frac{1}{p_{i}^{\prime}}\|u\|_{L^{1}\left(0, T ; W^{1, \infty}\right)}\right)\left\|\rho^{0}\right\|_{L^{p_{i}}} \\
\|\mathcal{C}[\rho, u]\|_{L^{1}\left(0, T ; W^{1, k p_{1}, k p_{2}}\right)} \leq C\|u\|_{L^{1}\left(0, T ; W^{\left.1, k p_{1}, k p_{2}\right)}\right.} \\
\quad \times\|\rho\|_{L^{\infty}\left(0, T ; L^{p_{1}}\right)}^{\left(1 / p_{2}^{\prime}-\frac{2 \lambda}{N}\right) /\left(1 / p_{1}-1 / p_{2}\right)}\|\rho\|_{L^{\infty}\left(0, T ; L^{p_{2}}\right)}^{\left(\frac{2 \lambda}{N}-1 / p_{1}^{\prime}\right) /\left(1 / p_{1}-1 / p_{2}\right)}
\end{gathered}
$$

Singular macro system: the fixed-point argument

(5) Domain and codomain of Φ : Consider $\lambda \in(0, N / 2)$ and $1 \leq p_{1}<p_{2} \leq \infty$ such that $\frac{1}{p_{2}}<1-\frac{2 \lambda}{N}<\frac{1}{p_{1}}$. Set any $k \in \mathbb{N}$ so that $k>\max \left\{\frac{k}{2 N}-1, \frac{N}{2 \lambda p_{1}}\right\}$. Then,

$$
\Phi: L^{1}\left(0, T ; W^{1, k p_{1}, k p_{2}}\right) \longrightarrow L^{1}\left(0, T ; W^{1, k p_{1}, k p_{2}}\right)
$$

and

$$
\begin{aligned}
& \|\Phi[u]\|_{L^{1}\left(0, T ; W^{1, k p_{1}, k p_{2}}\right)} \\
& \quad \leq\left\|\rho^{0}\right\|_{L^{p_{1}}}^{\left(1 p_{2}^{\prime}-\frac{2 \lambda}{N}\right) /\left(1 / p_{1}-1 / p_{2}\right)}\left\|\rho^{0}\right\|_{L^{p_{2}}}^{\left(\frac{2 \lambda}{N}-1 / p_{1}^{\prime}\right) /\left(1 / p_{1}-1 / p_{2}\right)} \kappa_{1}\left(\|u\|_{L^{1}\left(0, T ; W^{\left.1, k p_{1}, k p_{2}\right)}\right.}\right) \\
& \quad+\|\nabla \psi\|_{L^{1}\left(0, T ; W^{\left.1, k p_{1}, k p_{2}\right)}\right.}, \\
& \quad\left\|\Phi\left[u_{1}\right]-\Phi\left[u_{2}\right]\right\|_{L^{1}\left(0, T ; W^{1, k p_{1}, k p_{2}}\right)} \leq\left\|u_{1}-u_{2}\right\|_{L^{1}\left(0, T ; W^{\left.1, k p_{1}, k p_{2}\right)}\right.} \\
& \quad \quad \quad\left\|\rho^{0}\right\|_{W^{k, p_{1}, p_{2}}} \kappa_{2}\left(\left\|u_{1}\right\|_{L^{1}\left(0, T ; W^{\left.1, k p_{1}, k p_{2}\right)}\right.},\left\|u_{2}\right\|_{L^{1}\left(0, T ; W^{1, k p_{1}, k p_{2}}\right)}\right)
\end{aligned}
$$

Singular macro system: the fixed point argument

(6) For any $R>\|\nabla \psi\|_{L^{1}\left(0, T ; W^{\left.1, k p_{1}, k p_{2}\right)}\right.}$, set

$$
\mathcal{B}_{R}:=\left\{u \in W^{1, k p_{1}, k p_{2}}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right):\|u\|_{W^{1, k p_{1}, k p_{2}}} \leq R\right\}
$$

and assume that $\rho^{0} \in W^{k, p_{1}, p_{2}}\left(\mathbb{R}^{N}\right)$ is small enough.

Singular macro system: the fixed point argument

(6) For any $R>\|\nabla \psi\|_{L^{1}\left(0, T ; W^{\left.1, k p_{1}, k p_{2}\right)}\right.}$, set

$$
\mathcal{B}_{R}:=\left\{u \in W^{1, k p_{1}, k p_{2}}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right):\|u\|_{W^{1, k p_{1}, k p_{2}}} \leq R\right\}
$$

and assume that $\rho^{0} \in W^{k, p_{1}, p_{2}}\left(\mathbb{R}^{N}\right)$ is small enough. Then,

$$
\text { - } \Phi\left(\mathcal{B}_{R}\right) \subseteq \mathcal{B}_{R}
$$

Singular macro system: the fixed point argument

(6) For any $R>\|\nabla \psi\|_{L^{1}\left(0, T ; W^{\left.1, k p_{1}, k p_{2}\right)}\right.}$, set

$$
\mathcal{B}_{R}:=\left\{u \in W^{1, k p_{1}, k p_{2}}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right):\|u\|_{W^{1, k p_{1}, k p_{2}}} \leq R\right\}
$$

and assume that $\rho^{0} \in W^{k, p_{1}, p_{2}}\left(\mathbb{R}^{N}\right)$ is small enough. Then,

- $\Phi\left(\mathcal{B}_{R}\right) \subseteq \mathcal{B}_{R}$,
- Φ becomes a contractive mapping.

Singular macro system: the fixed point argument

(6) For any $R>\|\nabla \psi\|_{L^{1}\left(0, T ; W^{\left.1, k p_{1}, k p_{2}\right)}\right.}$, set

$$
\mathcal{B}_{R}:=\left\{u \in W^{1, k p_{1}, k p_{2}}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right):\|u\|_{W^{1, k p_{1}, k p_{2}}} \leq R\right\}
$$

and assume that $\rho^{0} \in W^{k, p_{1}, p_{2}}\left(\mathbb{R}^{N}\right)$ is small enough. Then,

- $\Phi\left(\mathcal{B}_{R}\right) \subseteq \mathcal{B}_{R}$,
- Φ becomes a contractive mapping.
\rightsquigarrow Banach' contraction principle.

Singular macro system: well-posedness in Sobolev spaces

Theorem

Let λ be any exponent in ($0, N / 2$) and $1 \leq p_{1}<p_{2} \leq \infty$ such that

$$
\frac{1}{p_{2}}<1-\frac{2 \lambda}{N}<\frac{1}{p_{1}}
$$

Consider any (large enough) positive integer k so that

$$
k>\max \left\{\frac{N}{2 \lambda}-1, \frac{N}{2 \lambda p_{1}}\right\}
$$

Then, for any positive radius R there exists some positive constant δ_{R} depending on R such that the macroscopic system admits one, and only one solution

$$
u \in L^{1}\left(0, T ; W^{1, k p_{1}, k p_{2}}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)\right), \rho \in L^{\infty}\left(0, T ; L^{p_{1}}\left(\mathbb{R}^{N}\right) \cap L^{p_{2}}\left(\mathbb{R}^{N}\right)\right)
$$

with $\|u\|_{L^{1}\left(0, T ; W^{\left.1, k p_{1}, k p_{2}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)\right)}\right.} \leq R$, as long as the external force $F=-\nabla \psi$ and the initial datum ρ^{0} are taken so that they fulfil the next conditions

$$
\|\nabla \psi\|_{L^{1}\left(0, T ; W^{\left.1, k p_{1}, k p_{2}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)\right)}\right.}<R \quad \text { and }\left\|\rho^{0}\right\|_{W^{k, p_{1}, p_{2}\left(\mathbb{R}^{N}\right)}}<\delta_{R}
$$

Singular macro system: applications

Figure: Flock of vultures soaring in a thermal. (Click here to Youtube)

Conclusions

(1) From microscopic description to mesoscopic.
(2) Singular hyperbolic scaling (there are others) of the kinetic equation.
(3) First order hydrodynamic and singular limit for $0<\lambda \leq \frac{1}{2}$.
(9) Regularity estimates of the commutator of mildly singular integrals.
(6) Well-posedness of the macroscopic system for $0<\lambda<\frac{N}{2}$.

Conclusions

(1) From microscopic description to mesoscopic.
(2) Singular hyperbolic scaling (there are others) of the kinetic equation.
(3) First order hydrodynamic and singular limit for $0<\lambda \leq \frac{1}{2}$.
(9) Regularity estimates of the commutator of mildly singular integrals.
(5) Well-posedness of the macroscopic system for $0<\lambda<\frac{N}{2}$.

围
D. Poyato, J. Soler, Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models, Math. Mod. Meth. Appl. Sci, 27(6) (2017), 1089-1152.

THANK YOU!!

