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Outline:

• Review of dynamics and localization for Random Schrödinger
H on `2(Zd)

H = −∆ + λV (j); j ∈ Zd , V (j) iid .

• Motion of Classical particle on Manhattan lattice deflected by
random obstructions. Quantum Network Model

• Edge Reinforced Random Walk - P. Diaconis
SUSY Statistical mechanics M. Zirnbauer

• Classical dynamics: Kesten, Papanicolaou, Komorowski and
Ryzhik

H = ẋ2 + λV (x), x ∈ Rd



Localization and Dynamics for Random Schrödinger

H = −∆ + λV (j); j ∈ Zd , V (j) iid .

E(V (j)) = 0; E(V (j)2) = 1

−∆e i j ·p =
d∑

α=1

(2− 2cos pα)e i j ·p ≈ p2 e i j ·p

i
∂

∂t
ψ = H ψ; ψ = ψ(t, j); ψ(t = 0, j) = δ0(j)

R2(t) ≡ E
∑
j

|ψ(t, j)|2|j |2 ;
∑
j

|ψ(t, j)|2 = 1;

R2(t) ≈ Ct2 ; Ballistic ; if λ = 0 or V periodic



Localization

R2(t) ≤ Const; Uniform Localization

All eigenfunctions of H decay rapidly about some point c(α) ∈ Zd :

|ψα(j)| ≤ C e−|j−c(α)|/`(E ,λ); `(E , λ) = localization length

Theorem In one dimension, Z1, all eigenstates are uniformly
localized `(E , λ) ≈ λ−2, all λ > 0

Furstenberg, Goldsheid, Molchanov, Pastur, Ledrappier, Margulis

Conjecture A : In Z2, Localization for all λ > 0; `(E , λ) ≤ eλ
−2

Conjecture A’ : In a 1D strip of width W, `(E , λ) ≤Wλ−2



Localization on Zd for d ≥ 2

If λ� 1 then

1) All eigenstates of H are exponentially localized.

2) R(t)2 ≤ Const for all d. Note this is false in the continuum!

If |λ| � 1, there is localization for E ≤ −λ2cd

In 3D expect extended states for E above −λ2c ′d - Anderson
transition.

Anderson, Thouless, Fröhlich, Sp, Martinelli, Scoppola, Simon,
Wolff, Aizenman, Molchanov ...



Localization via Green’s function

GE+iε(x , y) ≡ [H − E − iε]−1(x , y), x , y ∈ Zd , ε > 0

Fractional moment method:

E |GE+i 0(x , y)|1/2 ≤ e−|x−y |/`(E) ⇒ Localization near E

Aizenman, Molchanov, Hundertmark, Friedrich, Schenker.



Conjecture - 3D quantum diffusion:∑
x

e ix ·p E|GE+iε(x , 0)|2 ≈ C [D(E , ε)p2 + ε]−1

Diffusion constant = D(E , ε) = D(E ); ε ↓ 0 , time scale = ε−1

E|GE+iε(x , x)|2 ≤ Const;⇒ Absolutely Continuous spectrum



Quantum Dynamics in 3D

H = −∆ + λV (j); j ∈ Zd , V (j) iid .

Conjecture - 3D quantum diffusion:

R2(t) ≈ Dt, for small λ

The wave spread ballistically until time scale λ−2. After this time
we expect quantum diffusion.

Erdős-Salmhofer-Yau get control for times ≤ λ−2−δ, δ small .



Manhattan Pinball
Quantum Network Model with random scatterers

Motivation: Chalker’s network model Integer Quantum Hall.

Particle moves on Z2 with alternating orientations for the
streets.

Independently with Prob 0 < p < 1, an obstruction is
randomly placed at a vertex. Particle moves in the direction of
orientation until it meets an obstruction. Then it turns in the
direction of orientation.

(Beamond, Cardy, Owczarek; Gruzberg, Ludwig, Read)



obstruction

Figure: Manhattan Lattice

Figure: Orbits of Manhattan Pinball



Theorem If p > 1/2 then all orbits are closed with probability 1

Localization. Proof by percolation.

Conjecture: All loops are closed for any p > 0

Average loop length ` ≈ ec p
−2 � 1.

At intermediate distances paths should look like random walk:
diffusion at scales p−m,m ≥ 2 .

Problems: Prove localization for some p < 1/2

Show that on a 1D cylinder of width W, `(W ) ≤ Const p−2W .

Note easy to prove: `(W ) ≤ eC W



Linearly Edge Reinforced Random Walk

History dependent walk Wn ∈ Zd , n ∈ Z+:

Walk takes nearest neighbor steps and favors edges
j , k ,∈ Zd , |j − k | = 1, it has visited in the past.

Introduced by P. Diaconis in 1986 while wandering the streets
of Paris. He liked to return to streets he had visited in the
past.



Why Linearly Edge Reinforced?

Related to Polya’s Urn.

Partially exchangeable process - generalization of de Finetti

Not Markovian but is a superposition of Markov Processes

Equivalent to a random walk in a random environment - must
average over environment: E



Definition of Reinforced Random Walk

Let Cjk(n) = number of times the walk has crossed edge jk up to
time n and let β > 0.

Prob{Wn+1 = k |Wn = j} =
1 + Cjk(n)/β

Nβ
, |j − k | = 1.

N is the normalization: Nβ =
∑

k ′(1 + Cjk ′(n)/β), |j − k ′| = 1

0 < β � 1, strong reinforcement, (high temperature)
β � 1, weak reinforcement, (low temperature)



Long time behavior of Wn , n, large?

Is ERRW recurrent? Localized?

Localization:

Probβ{|Wn −W0| ≥ R} ≤ Ce−R/` , `(β) = localization length

Is ERRW Transient? Diffusive?

Is there a Phase Transition as we vary the reinforcement β ?



P. Diaconis and D. Coppersmith (1986):

ERRW ≈ random walk in a random environment.

Environment: The rate at which an edge j , j ′ is crossed
wj ,j ′ > 0 are correlated random variables. (conductances)

Explicit Joint Distribution of wj ,j ′ > 0 first appeared in an
unpublished paper Diaconis and Coppersmith. It given by
statistical mechanics.



The generator for the RW is a weighted Laplacian L

v t · L v =
∑
|j−j ′|=1

wj ,j ′(vj − vj ′)
2

However, L is NOT uniformly elliptic.

Important: The distribution of wj ,j ′ depends on the starting
point of the Walk.



Relation to Random Schrödinger

Spectral properties of Random Schrödinger Equivalent dual model
in statistical mechanics with Supersymmetric Hyperbolic symmetry
- 1982 Efetov: U(1, 1|2) SUSY - Rigorous equivalence but very
complicated.

In 1991 Martin Zirnbauer defined a simplified version of Efetov’s
dual model: SUSY Hyperbolic sigma model H 2|2

In any dimension, spin correlations of H 2|2 can be expressed as a
random walk in a random environment.

wj ,j ′ = etj+tj′ , joint distribution ≡ e−ESUSY (β,{tj}).

The expectation is denoted by E .



The SUSY Hyperbolic Model - H (2|2)

ESUSY ({tj}) =

β
∑
j ∼j ′

cosh(tj − tj ′)−1/2 log det Lβ,ε(t) + ε
∑

cosh tj

where L is weighted Laplacian:

[v ; Lβ,ε(t) v ] = β
∑

(j ′∼j)
etj+tj′ (vj − vj ′)

2 + ε
∑

k∈Λ
etkv2

k

Spin-Spin correlation:

< et0+txLβ,ε(t)−1(0, x) >SUSY (β, ε)



Some results in 1 and 2D

R. Pemantle analyzed ERRW on the Regular tree. Showed that it
has sharp transition in β from recurrent to transient.

Merkl and Rolles studied one dimensional strips of Width W and
show the ERRW is localized with `(W ) ≤ βW

In 2D Merkl and Rolles prove the conductance E w1/4
jj ′ has a power

law decay away from the origin - via a deformation argument.

Sabot and Zeng: In 2D ERRW is recurrent for all β.

Conjecture: In 2D the walk is exponentially localized for all β.



Theorem (Disertori-S-Zirnbauer ’10) Phase transition:

For β � 1 and d ≥ 3 the conductances wjj′ in the H 2|2 model are
bounded above and below with high probability - Transient,
quasi-diffusion

For 0 < β � 1, Conductance goes 0, Recurrent, Localization

Kozma and later Sznitman pointed out similarities of H2|2 to the
formulas for ERRW.

Sabot and Tarres (’12) Showed how to modify H 2|2 model to get the law
for ERRW.



Phase Transition for ERRW in 3D

Theorem (Sabot-Tarres, Angel-Crawford-Kozma) For strong
reinforcement, 0 < β � 1 ,
ERRW is recurrent and we have Localization:

Prob{|W (t)−W (0)| ≥ R} ≤ Ce−R/`(β), EW 2(t) ≤ Const

and `(β) is the localization length.

Theorem (Disertori-Sabot-Tarres) For weak reinforcement, β � 1, and
d ≥ 3, W (t) is Transient, quasi-diffusion.



Outlook and Problems

A) For Random Schrödinger show that R2(t) ≤ t2−δ

strictly sub-ballistic.

B) For Manhattan model show that for long time scales t ≤ p−m

typical trajectories behave like a random walk for p is small. (For
ESY, m = 1.1)

C) Is there a sharp transition in 3D?: Localization for 0 < β < βc
and Diffusion for β > βc

D)Multi-fractal transition is expected in 3D at βc for both Random
Schrödinger and ERRW. Is MF present on Bethe lattice for ERRW?

E) In 2D, is ERRW is localized for weak reinforcement? For all

β > 0, `(β) ≈ eCβ, Ew1/4
j ,j ′ ≈ e−|j |/`(β).

Note analogy to Aizenman-Molchanov fractional moment


