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The problem in the discrete case

Consider
1
Hy(x1, .-y xn) = 5 Z w(xi —xj) xi € R
1<i#j<N
w(x)=—log|x| d=1,2 log case
w(x) = max(d —2,0) <s < d Riesz case

[x[*



The problem in the discrete case

Consider

w(x)=—log|x| d=1,2 log case
1

[x[*

w(x) = max(d —2,0) <s < d Riesz case

Evolution equation

1
X = 7NV,-HN(X1, Ce XN gradient flow
1

Xj = —NJIV,-HN(xl, cey XN) conservative flow (J7 = —J)



Formal limit

Consider the empirical measure

t 1 ¢
Iy =y Zéxl_r
i=1

We formally expect pf, — u* where ut solves

| Do = div (V(w o)) |

in the dissipative case or

’&,u =div (JV(w * p)p) ‘

in the conservative case.

(MFD)

(MFC)



Formal limit

Consider the empirical measure

t 1 ¢
Iy =y Zéxl_r
i=1

We formally expect pf, — u* where ut solves

|Oep = div (V(w )| (MFD)

in the dissipative case or

’&,u:div (JV(W*M),U,)‘ (MFC)

in the conservative case.

Such a result is equivalent to propagation of molecular chaos: if

fO(x1, .-, xn) = pu0(x1) ... u%(xn) is the density of probability of having
initial positions at (x1,...,xy) then £y = pf(x1) ... u*(xn).



Previous results

[Schochet '96, Goodman-Hou-Lowengrub '90] (d = 2 log) (point

vortex system)

» [Hauray' 09] (s < d — 2) stability in Wasserstein W

» [Berman-Onnheim '15] (d = 1) Wasserstein gradient flow, use
convexity of the interaction in 1D

» [Duerinckx '15] (d < 2, s < 1) modulated energy method

» for convergence to Vlasov-Poisson [Hauray-Jabin '15,
Jabin-Wang '17] s < d — 2. Coulomb interaction (or more singular)

remains open.

v



The modulated energy method

Idea: use Coulomb (or Riesz) based metric:
=l = [ wlx= )= )x)d(n = 1)),
R9 xRd

Observe weak-strong uniqueness property of the solutions to
(MFD)-(MFC) for || - ||:

i = pl* < ellu = pdll> €= CIVA(w* p2)lli)



The modulated energy method

Idea: use Coulomb (or Riesz) based metric:

=l = [ wlx =y = 2)()dln = )00
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The modulated energy method

Idea: use Coulomb (or Riesz) based metric:
=l = [ wlx= )= )x)d(n = 1)),
R9 xRd

Observe weak-strong uniqueness property of the solutions to
(MFD)-(MFC) for || - ||:
Ipf = psl® < e“llp —p3* €= C(IV3(w * p2)lle=)

In the discrete case, let Xy denote (xi,...,xy) and take for modulated
energy,

. N
Fu(Xy, 1" //Rded\A X— y)d(,i,ZfY ut)(X)d(,b;éxgut)(y)

where A denotes the diagonal in RY x R?, and u* solves (MFD) or
(MFQC).

Analogy with “relative entropy" and “modulated entropy" methods
[Dafermos '79] [DiPerna '79] [Yau '91] [Brenier '00]....



Theorem (S. '18)
Assume (MFD) resp. (MFC) admits a solution

ut € 1([0, T], L=(RY)), if s<d—1
pt e L°([0, T],C°(RY)) witho >s—d+1, if s>d—1.

with V2w x pt € L°°([0, T], L>(RY)).



Theorem (S. '18)
Assume (MFD) resp. (MFC) admits a solution

ut € 1([0, T], L=(RY)), if s<d—1
pt e L°([0, T],C°(RY)) witho >s—d+1, if s>d—1.

with V2w x pt € L°°([0, T], L>=°(RY)). There exist constants Cy, G
depending on the norms of u* and 8 < 0 depending on d, s, o, s.t.
vVt e [0, T]

Fn(Xg, 1t) < (Fn(XN, 1°) + GNP) et

In particular, if 19, — p° and is such that
(x)  lim Fy(Xg,1°) =0,
N— oo
then the same is true for every t € [0, T| and

iy — i



Comments on the assumptions
» well-prepared assumption (x) implied by

lim %HN(X/(\)I) - // w(x — y)du(x)dp’(y).

» regularity assumption on p* allow for “patches" i.e. measures which
are only L®°, as in vortex patch solutions to Euler's eq [Chemin,
Serfati]

» Self-similar solutions of patch type are attractors in the Coulomb
case (S-Vazquez). For general s, self-similar Barenblatt solutions of
the form

d s—d+2
t7Es (a— b3t 7)) ®

» limiting equation called fractional porous medium equation

» required propagation of regularity ok for s < d — 1 ([Lin-Zhang,
Xiao-Zhou, Caffarelli-Vazquez, Caffarelli-Soria-Vazquez,]
open fors >d —1



Proof of the weak-strong uniqueness principle

Set h* = w * u. In the Coulomb case
—Ah = ¢y
We have by IBP

: 1 1
// w(x—y)du(x)du(y) = / hidpy=—— [ hAR* == [ |Vh*J
R xR RY Cd JRrd Cd JRrd



Proof of the weak-strong uniqueness principle

Set h* = w * u. In the Coulomb case

—Ah = cqp
We have by IBP
' 1 1 5
w(x—y)du(x)duly) = | h'dp=—— [ HW'AW' =— | |[Vh'"
R xR RY Cd JRrd Cd JRrd

Stress-energy tensor
[Vh"]; = 20;h"0;h* — |V h*[25;;.

For regular p,

2
div [VH] = 28V b = — =V,
d



Let p1 and po be two solutions to (MFD) and h; = w * p;.

o, |vwr4mﬁ=2@/km—waaw4—m>
R4 R4

= 2Cd /d(hl — hg)div (thl — Mthg)
R
= —2Cd /d(Vhl — th) . (,U,1Vhl — Mthz)

R

= —2Cd |V(h1 — h2)|2,u1 — 2Cd th . V(hl — hg)(,ul — ,UQ)

R R4
S 72Cd th - div [V(hl - hz)]
R
so if V2h, is bounded, we may IBP and bound by

nWmmg/uwmfmmgmw%ﬂm/|wmfmw,
R9 R

~ result by Gronwall's lemma.



Let p1 and po be two solutions to (MFD) and h; = w * p;.

o [ 1V(h — )2 = 2¢4 / (hy — ha)e(p1 — 1)
Rd Rd
= 2Cd /d(hl — hg)div (thl — Mthg)
R
= —2Cd /d(Vhl — th) . (,U,1Vhl — Mthz)
R
= —2Cd |V(h1 — h2)|2u1 — 2Cd th . V(hl — hg)(,ul — ,UQ)
R Rd
S 72Cd th - div [V(hl - hz)]
]Rd
so if V2h, is bounded, we may IBP and bound by
IV2halis [ IV~ b))l < 219hallw [ [0 = m)P,
RY R
~~ result by Gronwall's lemma. In discrete case, control instead

//RdXRd\A(Vh“(x) — VA" (y)) - Vw(x — y)d(u — pn)(x)d(1 — pn)(y)

Use suitable truncations of the potentials w * (3. 6y, —Npu).



The Ginzburg-Landau equations

u:QcR2 > C

—Au = E%(l —|ul*)| Ginzburg-Landau equation (GL)

Oru = Au —|— (1 — |u|?)| parabolic GL equation (PGL)

i0ru = Au + (1 — |u[?)| Gross-Pitaevskii equation (GP)

L rup s G5

Models: superconductivity, superfluidity, Bose-Einstein condensates,
nonlinear optics

Associated energy



Vortices

v

in general |u| <1, |u| ~ 1 = superconducting/superfluid phase,
|u| ~ 0 = normal phase

v

u has zeroes with nonzero degrees = vortices

v

u = pe'#, characteristic length scale of {p < 1} is & = vortex core
size

v

degree of the vortex at xp:

1 0
= % _dez
2w 8B(xo,r) or

v

In the limit € — 0 vortices become points, (or curves in dimension
3).



Solutions of (GL), bounded number N of vortices

» [Bethuel-Brezis-Hélein '94]
ue. minimizing E. has vortices all of degree +1 (or all —1) which
converge to a minimizer of

W((x1,d1),...,(xn,dn)) = -7 Z d;d; log | xj—x;j|+boundary terms...
i#)
“renormalized energy"”, Kirchhoff-Onsager energy (in the whole

plane)
minimal energy

min E. = whN|loge| + min W +0(1) as € =0

» Some boundary condition needed to obtain nontrivial minimizers



Solutions of (GL), bounded number N of vortices

» [Bethuel-Brezis-Hélein '94]
ue. minimizing E. has vortices all of degree +1 (or all —1) which
converge to a minimizer of

W((x1,d1),...,(xn,dn)) = -7 Z d;d; log | xj—x;j|+boundary terms...
i#)
“renormalized energy"”, Kirchhoff-Onsager energy (in the whole

plane)
minimal energy

min E. = whN|loge| + min W +0(1) as € =0

» Some boundary condition needed to obtain nontrivial minimizers
» nonminimizing solutions: wu. has vortices which converge to a critical
point of W:
VW({x})=0 Vi=1,--N
[Bethuel-Brezis-Hélein '94]
» stable solutions converge to stable critical points of W [S. '05]



Dynamics, bounded number N of vortices

v

For well-prepared initial data, d; = +1, solutions to (PGL) have
vortices which converge (after some time-rescaling) to solutions to

dX,'
E = —V,-W(xl, e ,XN)

[Lin "96, Jerrard-Soner '98, Lin-Xin '99, Spirn '02, Sandier-S '04]

» For well-prepared initial data, d; = £1, solutions to (GP)
dxi L 1
E = 7V,~ W(Xl,...,XN) V = (*82,31)

[Colliander-Jerrard '98, Spirn '03, Bethuel-Jerrard-Smets '08]

All these hold up to collision time

v

v

For (PGL), extensions beyond collision time and for ill-prepared data
[Bethuel-Orlandi-Smets '05-07, S. '07]



Vorticity

» In the case N. — oo, describe the vortices via the vorticity :
supercurrent

J- = (iu, Vu.) (a, b) := %(31_3+ ab)

vorticity
le = curl jo

> = vorticity in fluids, but quantized: jic >~ 27}, didae

7 . .
> ST T signed measure, or probability measure,



Dynamics in the case N. > 1

Back to

gel

N
° _du Au+

[lo

(1= [u?)

in R?

iN.Oyu = Aqu

(1= |u?)

in R?




Dynamics in the case N. > 1

Back to

Ne

e _ L2
||og5|a Au+ (1 lul?) in R (PGL)

iN:Oru = Au+ (1 — |uf?) in R?| (GP)

» For (GP), by Madelung transform, the limit dynamics is expected to
be the 2D incompressible Euler equation. Vorticity form

O — div (uVERY) =0  h* = —-A"1y (EV)

» For (PGL), formal model proposed by
[Chapman-Rubinstein-Schatzman '96], [E '95]: if 4 >0

Orp — div (uVh*) =0 h* = —~A~'y  (CRSE)

Studied by [Lin-Zhang '00, Du-Zhang '03, Masmoudi-Zhang '05,
Ambrosio-S '08, S-Vazquez '13]



Previous rigorous convergence results

» (PGL) case : [Kurzke-Spirn '14] convergence of p./(2mwN.) to u
solving (CRSE) under assumption N, < (loglog |loge[)'/* +
well-preparedness

» (GP) case: [Jerrard-Spirn '15] convergence to u solving (EV) under
assumption N, < (log |loge|)'/? 4 well-preparedness



Previous rigorous convergence results

v

(PGL) case : [Kurzke-Spirn '14] convergence of u./(2mN;) to p
solving (CRSE) under assumption N, < (loglog |loge[)'/* +
well-preparedness

(GP) case: [Jerrard-Spirn '15] convergence to u solving (EV) under
assumption N, < (log |loge|)'/? 4 well-preparedness

both proofs “push" the fixed N proof (taking limits in the evolution
of the energy density) by making it more quantitative

difficult to go beyond these dilute regimes without controlling
distance between vortices, possible collisions, etc



Modulated energy method

» Exploits the regularity and stability of the solution to the limit
equation
» Works for dissipative as well as conservative equations

» Works for gauged model as well



Modulated energy method

» Exploits the regularity and stability of the solution to the limit
equation
» Works for dissipative as well as conservative equations

» Works for gauged model as well

Let v(t) be the expected limiting velocity field. i.e. such that

1
—(Vug,ius) — v, curl v =27pu.

€

Define the modulated energy

1 1— |ul?)?
EE(U, t) = 5 /RZ ‘VU — /’Ul\lgv(t)‘2 + %,

modelled on the Ginzburg-Landau energy.



Main result: Gross-Pitaevskii case

Theorem (S. '16)

Assume u. solves (GP) and let N be such that |loge| < N. < L. Letv
be a L>(R, C%) solution to the incompressible Euler equation

0;v = 2vtcurlv + Vp in R?
(IE)

divv =0 in R?,

with curlv € L>=(L1).
Let {u.}.~0 be solutions associated to initial conditions u?, with
E-(u2,0) < o(N?). Then, for every t > 0, we have

1
W(VUE, iu) = v in LL(R?).
El

Implies of course the convergence of the vorticity u./N. — curlv
Works in 3D



Main result: parabolic case

Theorem (S. '16)

Assume u. solves (PGL) and let N be such that 1 < N. < O(|logel).
Let v be a L>([0, T], C*7) solution to

o if N. < |loge| (L1)

divv=0 in R?,

{ O0yv = —2vcurlv + Vp in R?

1
o if N. ~ )\ loge| Oyv = —2vcurlv + ~Vdivv inR?.| (L2)

A
Assume E.(u2,0) < wN.|loge| + o(N2) and curlv(0) > 0. Then Vt >0
we have q
W<Vu5, i) = v in L (R?).

Taking the curl of the equation yields back the (CRSE) equation if
N: < |logel, but not if N;  |loge]!
Long time existence proven by [Duerinckx '16].



Proof method

» Go around the question of minimal vortex distances by using instead
the modulated energy and showing a Gronwall inequality on £.

> the proof relies on algebraic simplifications in computing <& (u.(t))
which reveal only quadratic terms

» Uses the regularity of v to bound corresponding terms

» An insight is to think of v as a spatial gauge vector and div v (resp.
p) as a temporal gauge



Sketch of proof: quantities and identities

E(u,t) == /Rz |Vu — iuN-v(t)> + % (modulated energy)
Je = (iug, V) curlj. = pe  (supercurrent and vorticity)
V. = 2(idsus, Vue) (vortex velocity)
Otje = V{iug, Orue) + Ve

Orcurl j. = O = curl V, (VEl transports the vorticity).



Sketch of proof: quantities and identities

1 1— |uf?)?
= f/ |Vu— iuNv(t)]> + ( 2|€u2| Y) (modulated energy)
Rz

Je = (iug, V) curlj. = pe  (supercurrent and vorticity)
V. = 2(idsus, Vue) (vortex velocity)

Opje = V<iuaa6tua> + Ve

Orcurl j. = O = curl V, (Vl transports the vorticity)

1
S == (Okue, Orug)— (|Vu€|2 + —(1 - |u€2)2) Ok (stress-energy tensor)

= (Okue — iug Nevg, Opue — iugNevy)

1
<|VuE iuNov|? + e 51— u5|2)2) dk “modulated stress tensor

I\)\I—l U')l



The Gross-Pitaevskii case - |loge| < N. < 1/¢
Time-derivative of the energy (if u. solves (GP) and v solves (IE))

d&:(uc(t), t))

:/ N (Nov — o) - OV NV, -v
dt R2 N——— ~—~

linear term  2v-+tcurlv+Vp

linear term a priori controlled by v/& ~» unsufficient
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Time-derivative of the energy (if u. solves (GP) and v solves (IE))

d&:(uc(t), t))

:/ Nz (Nov — Jjo) - OV NV, -v
dt R2 N——— ~—~

linear term  2v-+tcurlv+Vp

linear term a priori controlled by v/& ~» unsufficient
But

N 1
div S, = —N.(N.v — j.) curlv — Novt e + SNV



The Gross-Pitaevskii case - |loge| < N. < 1/¢
Time-derivative of the energy (if u. solves (GP) and v solves (IE))

d&:(uc(t), t))

:/ Nz (Nov — Jjo) - OV NV, -v
dt R2 N——— ~—~

linear term  2v-+tcurlv+Vp

linear term a priori controlled by v/& ~» unsufficient
But

N 1
div S, = —N.(N.v — j.) curlv — Novt e + SNV

Multiply by 2v

/ 2v -div S, :/ —No(N-v —j.) - 2vteurlv + NV, - v
Rz ]RZ

d¢ .
= = 2 Se . Vv
dt R2 ~—~ ~—~
controlled by £,  bounded

~ Gronwall OK: if £.(u-(0)) < o(N?) it remains true (vortex energy is
7N |loge| < N2 in the regime N. > |loge|)



The parabolic case

If u. solves (PGL) and v solves (L1) or (L2)

M__ - Vo— ) Oyv — -V
dt - /]Rz ||Og |‘ tu E‘ +/ (NE(N- _/-) at Nevs )

- N
div S, = ——— (0. — iu-N-, Vu, — iuoN.v)
|log e

+ N.(Nov — ) teurlv — Novt e

p=p if N <|loge| ¢ = Adiv v if not



The parabolic case

If u. solves (PGL) and v solves (L1) or (L2)

M__ - Vo— ) Oyv — -V
dt - /]Rz ||Og |‘ tu E‘ +/ (NE(N- _/-) at Nevs )

- N
div S, = ——— (0. — iu-N-, Vu, — iuoN.v)
|log e

+ N.(Nov — ) teurlv — Novt e

p=p if N <|loge| ¢ = Adiv v if not
Multiply by v* and insert:

dé.
dt

= / 25, Vvt - N.V. v — 2N, || e
RZ

N,
—/ |Or e —iu N.¢|?+2v+- (Oruc—iu-N.p, Vu.—iusNv).
R

€
2 |loge] log €|



The vortex energy N, |loge| is no longer negligible with respect to N2.
We now need to prove

dé&.
dt —

C(E. — mN-|logel|) 4+ o( N?).

Need all the tools on vortex analysis:

» vortex ball construction [Sandier '98, Jerrard '99, Sandier-S '00,
S-Tice '08]: allows to bound the energy of the vortices from below
in disjoint vortex balls B; by 7|d;|| loge| and deduce that the energy
outside of U;B; is controlled by the excess energy & — wN_|log ¢|

» “product estimate" of [Sandier-S '04] allows to control the velocity:

’/V v| < ||og5| </|8tu5 iu: N ¢|? /| Vue — iuNov) - V|2>
1
< ||og€| ( /|('9tu6 i, 5¢\2+2/| Vue — iugNev) - V|2>




d€&. =
= 2 e
dt /Rz >

D Vvt —
~—~ ~~—
< C(E: — N logel)
. s
R

NEVE -V _2N€|V|2M€
———
bounded controlled by prod. estimate
N,
|at"-’s_"Ua/\la¢|2+2vL : -
2 |loge| | log |

(Orue — iucNep, Vue — iuzNov) .

bounded by Cauchy-Schwarz




—2N5|V|2/L5

d& =
“=/ 2 S D Vvt — N. V.- v
dt R2 ~~ S~~~ ——
< C(€&: 7N | loge|) bounded  controlled by prod. estimate

N, N, : .
—/ |Or e —iu E¢|2+ vt = (Ot — iu-N.p, Vu. — iu-N-v) .
r2 | loge| loge

bounded by Cauchy-Schwarz

dE. N 11 _ ,
| S5 = Do — i
> (Ss 7T s| 0og 5|) +/]R I |0g€| (2 + )|atus ug 6¢|

dt
||ogs| / (Ve —iugNev)- VL|2+|(VU5—IUSN v)-v|? — 2N, / V|2 e
= C(E&—mN,|logel) — iuN_v|?|v|]? — 2N, / V|2 e

bounded by C(€. — mwN.|loge|) by ball construction estimates

~ Gronwall OK



The disordered case

» In real superconductors one wants to flow currents and prevent the
vortices from moving because that dissipates energy



The disordered case

» In real superconductors one wants to flow currents and prevent the
vortices from moving because that dissipates energy

» Model pinning and applied current by pinning potential
0 < a(x) <1 and force F

» equation reduces to

. \% .
(a+i|loge|B)0rus = Aug+%(lf|u5|2)+§~v%+/| log e| F*-Vu.+fu.

competition between vortex interaction, pinning force
Vi) .= —Vlog a and applied force F



The disordered case

» In real superconductors one wants to flow currents and prevent the
vortices from moving because that dissipates energy

» Model pinning and applied current by pinning potential
0 < a(x) <1 and force F

» equation reduces to

. \% .
(a+i|loge|B)0rus = Aug+%(lf|u5|2)+§~v%+/| log e| F*-Vu.+fu.

competition between vortex interaction, pinning force
Vi) .= —Vlog a and applied force F

» Case of finite number of vortices treated in [Tice '10], [S-Tice '11],
[Kurzke-Marzuola-Spirn '15]



Convergence to fluid-like equations

Gross-Pitaevskii case
Theorem (Duerinckx-S)

In the regime |loge| < N < % convergence of j. /N, to solutions of

v = Vp+ (—F + 2vi)curlv in R?
div (av) =0 in R?,




Parabolic case

Theorem (Duerinckx-S)

N F — AF,a = 2 (% = At)

.N5<<||Og£‘:|7 )\5 = m, c

Je/ N converges to

0rv = Vp+ (=V+y — FL — 2v)curlv in R?
divv=20 in R?,

o N. = Alloge| (A >0)

Je/ N converges to

1_.1
v = XV(gdiv (av)) + (—Vle — F+ - 2v)curlv in R?.

~~ vorticity evolves by
Orpe = div (Tw)
with I = pinning + applied force + interaction



Homogenization questions

» we want to consider rapidly oscillating (possibly random) pinning
force

X
ne(x, —) ne <1

€
and scale 7. with ¢
» too difficult to take the diagonal limit . — 0 directly from GL eq.
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» too difficult to take the diagonal limit . — 0 directly from GL eq.

» Instead homogenize the limiting equations
Orpe = div (Tp) Fr=—-Viy—Ft—2v

~ homogenization of nonlinear transport equations.



Homogenization questions

» we want to consider rapidly oscillating (possibly random) pinning
force

X
ne(x, —) ne <1

€
and scale 7. with ¢
» too difficult to take the diagonal limit . — 0 directly from GL eq.

» Instead homogenize the limiting equations
Orpe = div (Tp) Fr=—-Viy—Ft—2v

~ homogenization of nonlinear transport equations.

» easier when interaction is negligible ~» I independent of ,
washboard model

» Understand depinning current and velocity law (in v/F — F.)

» Understand thermal effects by adding noise to such systems ~~
creep, elastic effects



THANK YOU FOR YOUR ATTENTION!
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