Mean Field Limits for Ginzburg-Landau Vortices and Coulomb Flows Sylvia Serfaty Courant Institute, NYU Workshop on localization and transport in random media, Columbia University, May 2018 ### The problem in the discrete case #### Consider $$H_N(x_1,\ldots,x_N) = \frac{1}{2} \sum_{1 \leq i \neq j \leq N} w(x_i - x_j) \quad x_i \in \mathbb{R}^d$$ $$w(x) = -\log |x| \quad d = 1,2$$ log case $w(x) = rac{1}{|x|^s} \quad \max(d-2,0) \le s < d$ Riesz case Evolution equation $$\dot{x_i} = - rac{1}{N} abla_i H_N(x_1, \dots, x_N)$$ gradient flow $\dot{x_i} = - rac{1}{N} \mathbb{J} abla_i H_N(x_1, \dots, x_N)$ conservative flow $(\mathbb{J}^T = -\mathbb{J})$ ### The problem in the discrete case #### Consider $$H_N(x_1,\ldots,x_N) = \frac{1}{2} \sum_{1 \leq i \neq j \leq N} w(x_i - x_j) \quad x_i \in \mathbb{R}^d$$ $$w(x) = -\log |x| \quad d = 1,2$$ log case $w(x) = rac{1}{|x|^s} \quad \max(d-2,0) \le s < d$ Riesz case #### Evolution equation $$\dot{x_i} = - rac{1}{N} abla_i H_N(x_1, \dots, x_N)$$ gradient flow $\dot{x_i} = - rac{1}{N} \mathbb{J} abla_i H_N(x_1, \dots, x_N)$ conservative flow $(\mathbb{J}^T = -\mathbb{J})$ #### Formal limit Consider the empirical measure $$\mu_N^t := \frac{1}{N} \sum_{i=1}^N \delta_{\mathsf{x}_i^t}$$ We formally expect $\mu_N^t \rightharpoonup \mu^t$ where μ^t solves $$\partial_t \mu = \operatorname{div} \left(\nabla (w * \mu) \mu \right)$$ (MFD) in the dissipative case or $$\partial_t \mu = \operatorname{div} \left(\mathbb{J} \nabla (w * \mu) \mu \right)$$ (MFC) in the conservative case. Such a result is equivalent to *propagation of molecular chaos*: if $f_N^0(x_1,\ldots,x_N)=\mu^0(x_1)\ldots\mu^0(x_N)$ is the density of probability of having initial positions at (x_1,\ldots,x_N) then $f_N^t\rightharpoonup \mu^t(x_1)\ldots\mu^t(x_N)$. #### Formal limit Consider the empirical measure $$\mu_N^t := \frac{1}{N} \sum_{i=1}^N \delta_{\mathsf{x}_i^t}$$ We formally expect $\mu_N^t \rightharpoonup \mu^t$ where μ^t solves $$\partial_t \mu = \operatorname{div} \left(\nabla (w * \mu) \mu \right)$$ (MFD) in the dissipative case or $$\partial_t \mu = \operatorname{div} \left(\mathbb{J} \nabla (w * \mu) \mu \right)$$ (MFC) in the conservative case. Such a result is equivalent to propagation of molecular chaos: if $f_N^0(x_1,\ldots,x_N)=\mu^0(x_1)\ldots\mu^0(x_N)$ is the density of probability of having initial positions at (x_1,\ldots,x_N) then $f_N^t\rightharpoonup \mu^t(x_1)\ldots\mu^t(x_N)$. #### Previous results - ► [Schochet '96, Goodman-Hou-Lowengrub '90] (*d* = 2 log) (point vortex system) - ▶ [Hauray' 09] (s < d-2) stability in Wasserstein W_{∞} - ▶ [Berman-Onnheim '15] (d = 1) Wasserstein gradient flow, use convexity of the interaction in 1D - ▶ [Duerinckx '15] ($d \le 2$, s < 1) modulated energy method - ▶ for convergence to Vlasov-Poisson [Hauray-Jabin '15, Jabin-Wang '17] s < d-2. Coulomb interaction (or more singular) remains open. ### The modulated energy method Idea: use Coulomb (or Riesz) based metric: $$\|\mu-\nu\|^2=\int_{\mathbb{R}^d\times\mathbb{R}^d}w(x-y)d(\mu-\nu)(x)d(\mu-\nu)(y).$$ Observe weak-strong uniqueness property of the solutions to (MFD)-(MFC) for $\|\cdot\|$: $$\|\mu_1^t - \mu_2^t\|^2 \le e^{Ct} \|\mu_1^0 - \mu_2^0\|^2$$ $C = C(\|\nabla^2(w * \mu_2)\|_{L^{\infty}})$ In the discrete case, let X_N denote (x_1, \ldots, x_N) and take for modulated energy, $$F_N(X_N^t, \mu^t) = \iint_{\mathbb{R}^d \times \mathbb{R}^d \setminus \triangle} w(x - y) d\left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i^t} - \mu^t\right)(x) d\left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i^t} - \mu^t\right)(y)$$ where \triangle denotes the diagonal in $\mathbb{R}^d \times \mathbb{R}^d$, and μ^t solves (MFD) or (MFC). ### The modulated energy method Idea: use Coulomb (or Riesz) based metric: $$\|\mu-\nu\|^2=\int_{\mathbb{R}^d\times\mathbb{R}^d}w(x-y)d(\mu-\nu)(x)d(\mu-\nu)(y).$$ Observe weak-strong uniqueness property of the solutions to (MFD)-(MFC) for $\|\cdot\|$: $$\|\mu_1^t - \mu_2^t\|^2 \le e^{Ct} \|\mu_1^0 - \mu_2^0\|^2$$ $C = C(\|\nabla^2(w * \mu_2)\|_{L^{\infty}})$ In the discrete case, let X_N denote (x_1, \ldots, x_N) and take for modulated energy, $$F_N(X_N^t, \mu^t) = \iint_{\mathbb{R}^d \times \mathbb{R}^d \setminus \triangle} w(x - y) d\left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i^t} - \mu^t\right)(x) d\left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i^t} - \mu^t\right)(y)$$ where \triangle denotes the diagonal in $\mathbb{R}^d \times \mathbb{R}^d$, and μ^t solves (MFD) or (MFC). ### The modulated energy method Idea: use Coulomb (or Riesz) based metric: $$\|\mu-\nu\|^2=\int_{\mathbb{R}^d\times\mathbb{R}^d}w(x-y)d(\mu-\nu)(x)d(\mu-\nu)(y).$$ Observe weak-strong uniqueness property of the solutions to (MFD)-(MFC) for $\|\cdot\|$: $$\|\mu_1^t - \mu_2^t\|^2 \le e^{Ct} \|\mu_1^0 - \mu_2^0\|^2$$ $C = C(\|\nabla^2(w * \mu_2)\|_{L^{\infty}})$ In the discrete case, let X_N denote (x_1, \ldots, x_N) and take for modulated energy, $$F_N(X_N^t, \mu^t) = \iint_{\mathbb{R}^d \times \mathbb{R}^d \setminus \triangle} w(x - y) d\left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i^t} - \mu^t\right)(x) d\left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i^t} - \mu^t\right)(y)$$ where \triangle denotes the diagonal in $\mathbb{R}^d \times \mathbb{R}^d$, and μ^t solves (MFD) or (MFC). Analogy with "relative entropy" and "modulated entropy" methods [Dafermos '79] [DiPerna '79] [Yau '91] [Brenier '00],... #### Theorem (S. '18) Assume (MFD) resp. (MFC) admits a solution $$\begin{cases} \mu^t \in L^{\infty}([0,T],L^{\infty}(\mathbb{R}^d)), & \text{if } s < d-1 \\ \mu^t \in L^{\infty}([0,T],C^{\sigma}(\mathbb{R}^d)) & \text{with } \sigma > s-d+1, & \text{if } s \geq d-1. \end{cases}$$ with $\nabla^2 w * \mu^t \in L^{\infty}([0, T], L^{\infty}(\mathbb{R}^d))$. There exist constants C_1, C_2 depending on the norms of μ^t and $\beta < 0$ depending on d, s, σ , s.t. $\forall t \in [0, T]$ $$F_N(X_N^t,\mu^t) \leq \left(F_N(X_N^0,\mu^0) + C_1 N^{\beta}\right) e^{C_2 t}.$$ In particular, if $\mu_N^0 \rightarrow \mu^0$ and is such that $$(*) \quad \lim_{N\to\infty} F_N(X_N^0,\mu^0) = 0,$$ then the same is true for every $t \in [0, T]$ and $$\mu_N^t \rightharpoonup \mu^t$$ #### Theorem (S. '18) Assume (MFD) resp. (MFC) admits a solution $$\begin{cases} \mu^t \in L^{\infty}([0,T],L^{\infty}(\mathbb{R}^d)), & \text{if } s < d-1 \\ \mu^t \in L^{\infty}([0,T],C^{\sigma}(\mathbb{R}^d)) \text{ with } \sigma > s-d+1, & \text{if } s \geq d-1. \end{cases}$$ with $\nabla^2 w * \mu^t \in L^{\infty}([0,T],L^{\infty}(\mathbb{R}^d))$. There exist constants C_1,C_2 depending on the norms of μ^t and $\beta < 0$ depending on d,s,σ , s.t. $\forall t \in [0,T]$ $$F_N(X_N^t, \mu^t) \leq \left(F_N(X_N^0, \mu^0) + C_1 N^{\beta}\right) e^{C_2 t}.$$ In particular, if $\mu_N^0 \rightharpoonup \mu^0$ and is such that $$(*) \quad \lim_{N\to\infty} F_N(X_N^0,\mu^0) = 0,$$ then the same is true for every $t \in [0, T]$ and $$\mu_N^t \rightharpoonup \mu^t$$. ### Comments on the assumptions ▶ well-prepared assumption (*) implied by $$\lim \frac{1}{N^2} H_N(X_N^0) = \iint w(x - y) d\mu^0(x) d\mu^0(y).$$ - regularity assumption on μ^t allow for "patches" i.e. measures which are only L^∞ , as in vortex patch solutions to Euler's eq [Chemin, Serfati] - ► Self-similar solutions of patch type are attractors in the Coulomb case (S-Vazquez). For general s, self-similar Barenblatt solutions of the form $$t^{-\frac{d}{2+s}}(a-bx^2t^{-\frac{2}{2+s}})_+^{\frac{s-d+2}{2}}$$ - ▶ limiting equation called fractional porous medium equation - ▶ required propagation of regularity ok for s < d-1 ([Lin-Zhang, Xiao-Zhou, Caffarelli-Vazquez, Caffarelli-Soria-Vazquez,] open for s > d-1 # Proof of the weak-strong uniqueness principle Set $h^{\mu} = w * \mu$. In the Coulomb case $$-\Delta h^{\mu} = c_d \mu$$ We have by IBP $$\iint_{\mathbb{R}^d \times \mathbb{R}^d} w(x-y) d\mu(x) d\mu(y) = \int_{\mathbb{R}^d} h^{\mu} d\mu = -\frac{1}{c_d} \int_{\mathbb{R}^d} h^{\mu} \Delta h^{\mu} = \frac{1}{c_d} \int_{\mathbb{R}^d} |\nabla h^{\mu}|^2.$$ Stress-energy tensor $$[\nabla h^{\mu}]_{ij} = 2\partial_i h^{\mu} \partial_j h^{\mu} - |\nabla h^{\mu}|^2 \delta_{ij}$$ For regular μ , $$\operatorname{div}\left[\nabla h^{\mu}\right] = 2\Delta h^{\mu} \nabla h^{\mu} = -\frac{2}{C_{\mu}} \mu \nabla h^{\mu}$$ # Proof of the weak-strong uniqueness principle Set $h^{\mu} = w * \mu$. In the Coulomb case $$-\Delta h^{\mu}=c_{d}\mu$$ We have by IBP $$\iint_{\mathbb{R}^d \times \mathbb{R}^d} w(x-y) d\mu(x) d\mu(y) = \int_{\mathbb{R}^d} h^{\mu} d\mu = -\frac{1}{c_d} \int_{\mathbb{R}^d} h^{\mu} \Delta h^{\mu} = \frac{1}{c_d} \int_{\mathbb{R}^d} |\nabla h^{\mu}|^2.$$ #### Stress-energy tensor $$[\nabla h^{\mu}]_{ij} = 2\partial_i h^{\mu} \partial_j h^{\mu} - |\nabla h^{\mu}|^2 \delta_{ij}.$$ For regular μ , $$\operatorname{div}\left[\nabla h^{\mu}\right] = 2\Delta h^{\mu} \nabla h^{\mu} = -\frac{2}{C} \mu \nabla h^{\mu}.$$ Let μ_1 and μ_2 be two solutions to (MFD) and $h_i = w * \mu_i$. $$\begin{split} \partial_{t} \int_{\mathbb{R}^{d}} |\nabla(h_{1} - h_{2})|^{2} &= 2c_{d} \int_{\mathbb{R}^{d}} (h_{1} - h_{2}) \partial_{t} (\mu_{1} - \mu_{2}) \\ &= 2c_{d} \int_{\mathbb{R}^{d}} (h_{1} - h_{2}) \operatorname{div} (\mu_{1} \nabla h_{1} - \mu_{2} \nabla h_{2}) \\ &= -2c_{d} \int_{\mathbb{R}^{d}} (\nabla h_{1} - \nabla h_{2}) \cdot (\mu_{1} \nabla h_{1} - \mu_{2} \nabla h_{2}) \\ &= -2c_{d} \int_{\mathbb{R}^{d}} |\nabla (h_{1} - h_{2})|^{2} \mu_{1} - 2c_{d} \int_{\mathbb{R}^{d}} \nabla h_{2} \cdot \nabla (h_{1} - h_{2}) (\mu_{1} - \mu_{2}) \\ &\leq -2c_{d} \int_{\mathbb{R}^{d}} \nabla h_{2} \cdot \operatorname{div} \left[\nabla (h_{1} - h_{2}) \right] \end{split}$$ so if $\nabla^2 h_2$ is bounded, we may IBP and bound by $$\|\nabla^2 h_2\|_{L^{\infty}} \int_{\mathbb{R}^d} |[\nabla (h_1 - h_2)]| \leq 2\|\nabla^2 h_2\|_{L^{\infty}} \int_{\mathbb{R}^d} |\nabla (h_1 - h_2)|^2,$$ → result by Gronwall's lemma. In discrete case, control instead $$\iint (\nabla h^{\mu}(x) - \nabla h^{\mu_N}(y)) \cdot \nabla w(x - y) d(\mu - \mu_N)(x) d(\mu - \mu_N)(y)$$ Let μ_1 and μ_2 be two solutions to (MFD) and $h_i = w * \mu_i$. $$\partial_{t} \int_{\mathbb{R}^{d}} |\nabla(h_{1} - h_{2})|^{2} = 2c_{d} \int_{\mathbb{R}^{d}} (h_{1} - h_{2}) \partial_{t} (\mu_{1} - \mu_{2})$$ $$= 2c_{d} \int_{\mathbb{R}^{d}} (h_{1} - h_{2}) \operatorname{div} (\mu_{1} \nabla h_{1} - \mu_{2} \nabla h_{2})$$ $$= -2c_{d} \int_{\mathbb{R}^{d}} (\nabla h_{1} - \nabla h_{2}) \cdot (\mu_{1} \nabla h_{1} - \mu_{2} \nabla h_{2})$$ $$= -2c_{d} \int_{\mathbb{R}^{d}} |\nabla (h_{1} - h_{2})|^{2} \mu_{1} - 2c_{d} \int_{\mathbb{R}^{d}} \nabla h_{2} \cdot \nabla (h_{1} - h_{2}) (\mu_{1} - \mu_{2})$$ $$\leq -2c_{d} \int_{\mathbb{R}^{d}} \nabla h_{2} \cdot \operatorname{div} \left[\nabla (h_{1} - h_{2})\right]$$ so if $\nabla^2 h_2$ is bounded, we may IBP and bound by $$\|\nabla^2 h_2\|_{L^{\infty}} \int_{\mathbb{R}^d} |[\nabla (h_1 - h_2)]| \leq 2\|\nabla^2 h_2\|_{L^{\infty}} \int_{\mathbb{R}^d} |\nabla (h_1 - h_2)|^2,$$ → result by Gronwall's lemma. In discrete case, control instead $$\iint_{\mathbb{R}^d \times \mathbb{R}^d \setminus \triangle} (\nabla h^{\mu}(x) - \nabla h^{\mu_N}(y)) \cdot \nabla w(x - y) d(\mu - \mu_N)(x) d(\mu - \mu_N)(y)$$ Use suitable truncations of the potentials $w*(\sum_{i \in X_i} - N_i \mu)_{\text{betaken}} = 0$ # The Ginzburg-Landau equations $$u:\Omega\subset\mathbb{R}^2\to\mathbb{C}$$ $$-\Delta u = rac{u}{arepsilon^2}(1-|u|^2)$$ Ginzburg-Landau equation (GL) $$\partial_t u = \Delta u + \frac{u}{\varepsilon^2} (1 - |u|^2)$$ parabolic GL equation (PGL) $$i\partial_t u = \Delta u + \frac{u}{\varepsilon^2} (1 - |u|^2)$$ Gross-Pitaevskii equation (GP) Associated energy $$E_{\varepsilon}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 + \frac{(1 - |u|^2)^2}{2\varepsilon^2}$$ Models: superconductivity, superfluidity, Bose-Einstein condensates, nonlinear optics #### Vortices - ▶ in general $|u| \le 1$, $|u| \simeq 1$ = superconducting/superfluid phase, $|u| \simeq 0$ = normal phase - ▶ u has zeroes with nonzero degrees = vortices - $u=\rho e^{i\varphi}$, characteristic length scale of $\{\rho<1\}$ is $\varepsilon=$ vortex core size - \blacktriangleright degree of the vortex at x_0 : $$\frac{1}{2\pi} \int_{\partial B(x_0,r)} \frac{\partial \varphi}{\partial \tau} = d \in \mathbb{Z}$$ ▶ In the limit $\varepsilon \to 0$ vortices become *points*, (or curves in dimension 3). # Solutions of (GL), bounded number N of vortices ▶ [Bethuel-Brezis-Hélein '94] u_{ε} minimizing E_{ε} has vortices all of degree +1 (or all -1) which converge to a minimizer of $$W((x_1, d_1), \dots, (x_N, d_N)) = -\pi \sum_{i \neq j} d_i d_j \log |x_i - x_j| + \text{boundary terms...}$$ "renormalized energy", Kirchhoff-Onsager energy (in the whole plane) minimal energy $$\min E_{\varepsilon} = \pi N |\log \varepsilon| + \min W + o(1)$$ as $\varepsilon \to 0$ - ► Some boundary condition needed to obtain nontrivial minimizers - ▶ nonminimizing solutions: u_{ε} has vortices which converge to a critical point of W: $$\nabla_i W(\{x_i\}) = 0 \quad \forall i = 1, \dots N$$ [Bethuel-Brezis-Hélein '94' > stable solutions converge to stable critical points of W [S. '05] # Solutions of (GL), bounded number N of vortices ► [Bethuel-Brezis-Hélein '94] u_{ε} minimizing E_{ε} has vortices all of degree +1 (or all -1) which converge to a minimizer of $$W((x_1, d_1), \dots, (x_N, d_N)) = -\pi \sum_{i \neq j} d_i d_j \log |x_i - x_j| + \text{boundary terms...}$$ "renormalized energy", Kirchhoff-Onsager energy (in the whole plane) minimal energy $$\min E_{\varepsilon} = \pi N |\log \varepsilon| + \min W + o(1)$$ as $\varepsilon \to 0$ - ► Some boundary condition needed to obtain nontrivial minimizers - \blacktriangleright nonminimizing solutions: u_{ε} has vortices which converge to a critical point of W: $$\nabla_i W(\{x_i\}) = 0 \quad \forall i = 1, \dots N$$ [Bethuel-Brezis-Hélein '94] ► stable solutions converge to stable critical points of W [S. '05] ### Dynamics, bounded number N of vortices ▶ For well-prepared initial data, $d_i = \pm 1$, solutions to (PGL) have vortices which converge (after some time-rescaling) to solutions to $$\frac{dx_i}{dt} = -\nabla_i W(x_1, \dots, x_N)$$ [Lin '96, Jerrard-Soner '98, Lin-Xin '99, Spirn '02, Sandier-S '04] ▶ For well-prepared initial data, $d_i = \pm 1$, solutions to (GP) $$\frac{dx_i}{dt} = -\nabla_i^{\perp} W(x_1, \dots, x_N) \qquad \nabla^{\perp} = (-\partial_2, \partial_1)$$ [Colliander-Jerrard '98, Spirn '03, Bethuel-Jerrard-Smets '08] - ► All these hold up to collision time - ► For (PGL), extensions beyond collision time and for ill-prepared data [Bethuel-Orlandi-Smets '05-07, S. '07] #### Vorticity ▶ In the case $N_{\varepsilon} \to \infty$, describe the vortices via the **vorticity** : supercurrent $$j_{\varepsilon} := \langle iu_{\varepsilon}, \nabla u_{\varepsilon} \rangle \qquad \langle a, b \rangle := \frac{1}{2} (a\bar{b} + \bar{a}b)$$ vorticity $$\mu_{\varepsilon} := \operatorname{curl} j_{\varepsilon}$$ - ightharpoonup \simeq vorticity in fluids, but quantized: $\mu_{arepsilon} \simeq 2\pi \sum_i d_i \delta_{a_i^{arepsilon}}$ - $lackbox{} rac{\mu_{arepsilon}}{2\pi N_{arepsilon}} ightarrow \mu$ signed measure, or probability measure, # Dynamics in the case $N_{arepsilon}\gg 1$ Back to $$\frac{N_{\varepsilon}}{|\log \varepsilon|} \partial_t u = \Delta u + \frac{u}{\varepsilon^2} (1 - |u|^2) \quad \text{in } \mathbb{R}^2$$ (PGL) $$iN_{\varepsilon} \partial_t u = \Delta u + \frac{u}{\varepsilon^2} (1 - |u|^2) \quad \text{in } \mathbb{R}^2$$ (GP) ► For (GP), by Madelung transform, the limit dynamics is expected to be the 2D incompressible Euler equation. Vorticity form $$\partial_t \mu - \mathrm{div} \; (\mu abla^\perp h^\mu) = 0 \qquad h^\mu = -\Delta^{-1} \mu \quad (\mathsf{EV})$$ ▶ For (PGL), formal model proposed by [Chapman-Rubinstein-Schatzman '96], [E '95]: if $\mu \ge 0$ $$\partial_t \mu - \operatorname{div} (\mu \nabla h^{\mu}) = 0 \qquad h^{\mu} = -\Delta^{-1} \mu \quad (CRSE)$$ 4 D > 4 P > 4 E > 4 E > E 9 9 P Studied by [Lin-Zhang '00, Du-Zhang '03, Masmoudi-Zhang '05 # Dynamics in the case $N_{arepsilon}\gg 1$ Back to $$\frac{N_{\varepsilon}}{|\log \varepsilon|} \partial_t u = \Delta u + \frac{u}{\varepsilon^2} (1 - |u|^2) \quad \text{in } \mathbb{R}^2$$ $$iN_{\varepsilon} \partial_t u = \Delta u + \frac{u}{\varepsilon^2} (1 - |u|^2) \quad \text{in } \mathbb{R}^2$$ (GP) ► For (GP), by Madelung transform, the limit dynamics is expected to be the 2D incompressible Euler equation. Vorticity form $$\partial_t \mu - \operatorname{div} (\mu \nabla^{\perp} h^{\mu}) = 0 \qquad h^{\mu} = -\Delta^{-1} \mu \quad (EV)$$ ▶ For (PGL), formal model proposed by [Chapman-Rubinstein-Schatzman '96], [E '95]: if $\mu \ge 0$ $$\partial_t \mu - \operatorname{div} (\mu \nabla h^{\mu}) = 0 \qquad h^{\mu} = -\Delta^{-1} \mu \quad (CRSE)$$ Studied by [Lin-Zhang '00, Du-Zhang '03, Masmoudi-Zhang '05, Ambrosio-S '08, S-Vazquez '13] # Previous rigorous convergence results - ▶ (PGL) case : [Kurzke-Spirn '14] convergence of $\mu_{\varepsilon}/(2\pi N_{\varepsilon})$ to μ solving (CRSE) under assumption $N_{\varepsilon} \leq (\log \log |\log \varepsilon|)^{1/4} +$ well-preparedness - ▶ (GP) case: [Jerrard-Spirn '15] convergence to μ solving (EV) under assumption $N_{\varepsilon} \leq (\log |\log \varepsilon|)^{1/2} + \text{well-preparedness}$ - ▶ both proofs "push" the fixed *N* proof (taking limits in the evolution of the energy density) by making it more quantitative - difficult to go beyond these dilute regimes without controlling distance between vortices, possible collisions, etc # Previous rigorous convergence results - ▶ (PGL) case : [Kurzke-Spirn '14] convergence of $\mu_{\varepsilon}/(2\pi N_{\varepsilon})$ to μ solving (CRSE) under assumption $N_{\varepsilon} \leq (\log \log |\log \varepsilon|)^{1/4} +$ well-preparedness - ▶ (GP) case: [Jerrard-Spirn '15] convergence to μ solving (EV) under assumption $N_{\varepsilon} \leq (\log |\log \varepsilon|)^{1/2} + \text{well-preparedness}$ - ▶ both proofs "push" the fixed *N* proof (taking limits in the evolution of the energy density) by making it more quantitative - difficult to go beyond these dilute regimes without controlling distance between vortices, possible collisions, etc ### Modulated energy method - Exploits the regularity and stability of the solution to the limit equation - ▶ Works for dissipative as well as conservative equations - ► Works for gauged model as well Let v(t) be the expected limiting velocity field. i.e. such that $$\frac{1}{N_{\varepsilon}} \langle \nabla u_{\varepsilon}, iu_{\varepsilon} \rangle \rightharpoonup v, \qquad \text{curl } v = 2\pi \mu.$$ Define the modulated energy $$\mathcal{E}_{\varepsilon}(u,t) = \frac{1}{2} \int_{\mathbb{R}^2} |\nabla u - iu N_{\varepsilon} v(t)|^2 + \frac{(1-|u|^2)^2}{2\varepsilon^2}$$ modelled on the Ginzburg-Landau energy ### Modulated energy method - Exploits the regularity and stability of the solution to the limit equation - ▶ Works for dissipative as well as conservative equations - ► Works for gauged model as well Let v(t) be the expected limiting velocity field. i.e. such that $$\frac{1}{N_{\varepsilon}} \langle \nabla u_{\varepsilon}, iu_{\varepsilon} \rangle \rightharpoonup v, \qquad \operatorname{curl} v = 2\pi \mu.$$ Define the modulated energy $$\mathcal{E}_{\varepsilon}(u,t) = \frac{1}{2} \int_{\mathbb{R}^2} |\nabla u - iu N_{\varepsilon} v(t)|^2 + \frac{(1-|u|^2)^2}{2\varepsilon^2},$$ modelled on the Ginzburg-Landau energy. #### Main result: Gross-Pitaevskii case #### Theorem (S. '16) Assume u_{ε} solves (GP) and let N_{ε} be such that $|\log \varepsilon| \ll N_{\varepsilon} \ll \frac{1}{\varepsilon}$. Let v be a $L^{\infty}(\mathbb{R}_+, C^{0,1})$ solution to the incompressible Euler equation $$\begin{cases} \partial_t v = 2v^\perp \mathrm{curl}\, v + \nabla p & \text{ in } \mathbb{R}^2 \\ \mathrm{div}\,\, v = 0 & \text{ in } \mathbb{R}^2, \end{cases}$$ (IE) with $\operatorname{curl} v \in L^{\infty}(L^1)$. Let $\{u_{\varepsilon}\}_{{\varepsilon}>0}$ be solutions associated to initial conditions u_{ε}^0 , with ${\mathcal E}_{\varepsilon}(u_{\varepsilon}^0,0) \le o(N_{\varepsilon}^2)$. Then, for every $t \ge 0$, we have $$\frac{1}{N_{\varepsilon}}\langle \nabla u_{\varepsilon}, iu_{\varepsilon} \rangle \to v \quad \text{in } L^{1}_{loc}(\mathbb{R}^{2}).$$ Implies of course the convergence of the vorticity $\mu_{\varepsilon}/N_{\varepsilon} \to \operatorname{curl} v$ Works in 3D # Main result: parabolic case #### Theorem (S. '16) Assume u_{ε} solves (PGL) and let N_{ε} be such that $1 \ll N_{\varepsilon} \leq O(|\log \varepsilon|)$. Let v be a $L^{\infty}([0, T], C^{1,\gamma})$ solution to • if $$N_{\varepsilon} \ll |\log \varepsilon|$$ • if $$N_{\varepsilon} \ll |\log \varepsilon|$$ $$\begin{cases} \partial_t v = -2v \mathrm{curl} \, v + \nabla p & \text{in } \mathbb{R}^2 \\ \mathrm{div } \, v = 0 & \text{in } \mathbb{R}^2, \end{cases}$$ (L1) • if $$N_{\varepsilon} \sim \lambda |\log \varepsilon|$$ • if $$N_{\varepsilon} \sim \lambda |\log \varepsilon|$$ $\partial_t v = -2v \operatorname{curl} v + \frac{1}{\lambda} \nabla \operatorname{div} v$ in \mathbb{R}^2 . (L2) Assume $\mathcal{E}_{\varepsilon}(u_{\varepsilon}^{0},0) \leq \pi N_{\varepsilon} |\log \varepsilon| + o(N_{\varepsilon}^{2})$ and $\operatorname{curl} v(0) \geq 0$. Then $\forall t \geq 0$ we have $$\frac{1}{N_{\varepsilon}}\langle \nabla u_{\varepsilon}, iu_{\varepsilon} \rangle \to v \quad \text{in } L^{1}_{loc}(\mathbb{R}^{2}).$$ Taking the curl of the equation yields back the (CRSE) equation if $N_{\varepsilon} \ll |\log \varepsilon|$, but not if $N_{\varepsilon} \propto |\log \varepsilon|!$ Long time existence proven by [Duerinckx '16]. 4D> 4A> 4B> 4B> B 990 #### Proof method - ▶ Go around the question of minimal vortex distances by using instead the modulated energy and showing a Gronwall inequality on \mathcal{E} . - ▶ the proof relies on algebraic simplifications in computing $\frac{d}{dt}\mathcal{E}_{\varepsilon}(u_{\varepsilon}(t))$ which reveal only quadratic terms - ▶ Uses the regularity of v to bound corresponding terms - ► An insight is to think of v as a spatial gauge vector and div v (resp. p) as a temporal gauge # Sketch of proof: quantities and identities $$\mathcal{E}_{\varepsilon}(u,t) = \frac{1}{2} \int_{\mathbb{R}^2} |\nabla u - iu N_{\varepsilon} v(t)|^2 + \frac{(1 - |u|^2)^2}{2\varepsilon^2} \quad \text{(modulated energy)}$$ $$j_{\varepsilon} = \langle iu_{\varepsilon}, \nabla u_{\varepsilon} \rangle \qquad \text{curl } j_{\varepsilon} = \mu_{\varepsilon} \quad \text{(supercurrent and vorticity)}$$ $$V_{\varepsilon} = 2 \langle i\partial_t u_{\varepsilon}, \nabla u_{\varepsilon} \rangle \quad \text{(vortex velocity)}$$ $$\partial_t j_{\varepsilon} = \nabla \langle iu_{\varepsilon}, \partial_t u_{\varepsilon} \rangle + V_{\varepsilon}$$ $\partial_t \operatorname{curl} j_{\varepsilon} = \partial_t \mu_{\varepsilon} = \operatorname{curl} V_{\varepsilon}$ (V_{ε}^{\perp} transports the vorticity). $$S_{\varepsilon} := \langle \partial_k u_{\varepsilon}, \partial_l u_{\varepsilon} \rangle - \frac{1}{2} \left(|\nabla u_{\varepsilon}|^2 + \frac{1}{2\varepsilon^2} (1 - |u_{\varepsilon}|^2)^2 \right) \delta_{kl}$$ (stress-energy tensor) $$\tilde{S}_{\varepsilon} = \langle \partial_k u_{\varepsilon} - i u_{\varepsilon} N_{\varepsilon} v_k, \partial_l u_{\varepsilon} - i u_{\varepsilon} N_{\varepsilon} v_l \rangle$$ $$-\frac{1}{2}\left(|\nabla u_{\varepsilon}-iu_{\varepsilon}N_{\varepsilon}\mathbf{v}|^{2}+\frac{1}{2\varepsilon^{2}}(1-|u_{\varepsilon}|^{2})^{2}\right)\delta_{kl}\quad\text{``modulated stress tensor''}\\ \quad \leftarrow \mathbf{D} + \mathbf{A}\mathbf{P} + \mathbf{A}\mathbf{F} \mathbf{A}\mathbf{F$$ # Sketch of proof: quantities and identities $$\mathcal{E}_{\varepsilon}(u,t) = \frac{1}{2} \int_{\mathbb{R}^2} |\nabla u - iuN_{\varepsilon}v(t)|^2 + \frac{(1-|u|^2)^2)}{2\varepsilon^2} \quad \text{(modulated energy)}$$ $$j_{\varepsilon} = \langle iu_{\varepsilon}, \nabla u_{\varepsilon} \rangle \qquad \text{curl} j_{\varepsilon} = \mu_{\varepsilon} \quad \text{(supercurrent and vorticity)}$$ $$V_{\varepsilon} = 2\langle i\partial_t u_{\varepsilon}, \nabla u_{\varepsilon} \rangle \quad \text{(vortex velocity)}$$ $$\partial_t j_{\varepsilon} = \nabla \langle iu_{\varepsilon}, \partial_t u_{\varepsilon} \rangle + V_{\varepsilon}$$ $$\partial_t \text{curl} j_{\varepsilon} = \partial_t \mu_{\varepsilon} = \text{curl} V_{\varepsilon} \quad (V_{\varepsilon}^{\perp} \text{ transports the vorticity)}.$$ $$S_{arepsilon} := \langle \partial_k u_{arepsilon}, \partial_l u_{arepsilon} angle - rac{1}{2} \left(| abla u_{arepsilon}|^2 + rac{1}{2arepsilon^2} (1 - |u_{arepsilon}|^2)^2 ight) \delta_{kl} \quad ext{(stress-energy tensor)}$$ $$\tilde{S}_{\varepsilon} = \langle \partial_{k} u_{\varepsilon} - i u_{\varepsilon} N_{\varepsilon} v_{k}, \partial_{l} u_{\varepsilon} - i u_{\varepsilon} N_{\varepsilon} v_{l} \rangle$$ $$-\frac{1}{2}\left(|\nabla u_{\varepsilon}-iu_{\varepsilon}N_{\varepsilon}\mathbf{v}|^{2}+\frac{1}{2\varepsilon^{2}}(1-|u_{\varepsilon}|^{2})^{2}\right)\delta_{kl}\quad\text{``modulated stress tensor''}\\ +\frac{1}{2\varepsilon^{2}}\left(1-|u_{\varepsilon}|^{2}\right)^{2}\delta_{kl}\quad\text{``modulated stress tensor''}$$ # The Gross-Pitaevskii case - $|\log \varepsilon| \ll N_{\varepsilon} \ll 1/\varepsilon$ Time-derivative of the energy (if u_{ε} solves (GP) and v solves (IE)) $$\frac{d\mathcal{E}_{\varepsilon}(u_{\varepsilon}(t),t))}{dt} = \int_{\mathbb{R}^2} N_{\varepsilon} \underbrace{\left(N_{\varepsilon} \mathbf{v} - j_{\varepsilon}\right)}_{\text{linear term}} \cdot \underbrace{\partial_t \mathbf{v}}_{2\mathbf{v}^{\perp} \operatorname{curl} \mathbf{v} + \nabla \mathbf{p}} - N_{\varepsilon} V_{\varepsilon} \cdot \mathbf{v}$$ linear term a priori controlled by $\sqrt{\mathcal{E}} \leadsto \text{unsufficient}$ $$\operatorname{div} \, \tilde{S}_{\varepsilon} = -N_{\varepsilon} (N_{\varepsilon} \mathbf{v} - j_{\varepsilon})^{\perp} \operatorname{curl} \mathbf{v} - N_{\varepsilon} \mathbf{v}^{\perp} \mu_{\varepsilon} + \frac{1}{2} N_{\varepsilon} V_{\varepsilon}$$ Multiply by 2v $$\int_{\mathbb{R}^2} 2\mathbf{v} \cdot \operatorname{div} \, \tilde{S}_{\varepsilon} = \int_{\mathbb{R}^2} -N_{\varepsilon} (N_{\varepsilon} \mathbf{v} - j_{\varepsilon}) \cdot 2\mathbf{v}^{\perp} \operatorname{curl} \mathbf{v} + N_{\varepsilon} V_{\varepsilon} \cdot \mathbf{v}$$ $$\frac{d\mathcal{E}_{\varepsilon}}{dt} = \int_{\mathbb{R}^2} 2 \underbrace{\tilde{\mathcal{S}}_{\varepsilon}}_{\text{controlled by } \mathcal{E}_{\varepsilon}} : \underbrace{\nabla \mathbf{v}}_{\text{bounded}}$$ ightharpoonupGronwall OK: if $\mathcal{E}_{\varepsilon}(u_{\varepsilon}(0)) \leq o(N_{\varepsilon}^2)$ it remains true (vortex energy is $\pi N_{\varepsilon} |\log \varepsilon| \ll N_{\varepsilon}^2$ in the regime $N_{\varepsilon} \gg |\log \varepsilon|$) # The Gross-Pitaevskii case - $|\log \varepsilon| \ll N_{\varepsilon} \ll 1/\varepsilon$ Time-derivative of the energy (if u_{ε} solves (GP) and v solves (IE)) $$\frac{d\mathcal{E}_{\varepsilon}(u_{\varepsilon}(t),t))}{dt} = \int_{\mathbb{R}^2} N_{\varepsilon} \underbrace{\left(N_{\varepsilon} \mathbf{v} - j_{\varepsilon}\right)}_{\text{linear term}} \cdot \underbrace{\partial_t \mathbf{v}}_{2\mathbf{v}^{\perp} \operatorname{curl} \mathbf{v} + \nabla \mathbf{p}} - N_{\varepsilon} V_{\varepsilon} \cdot \mathbf{v}$$ linear term a priori controlled by $\sqrt{\mathcal{E}} \leadsto$ unsufficient But $$\operatorname{div} \, \tilde{S}_{\varepsilon} = -N_{\varepsilon} (N_{\varepsilon} \mathbf{v} - j_{\varepsilon})^{\perp} \operatorname{curl} \mathbf{v} - N_{\varepsilon} \mathbf{v}^{\perp} \mu_{\varepsilon} + \frac{1}{2} N_{\varepsilon} V_{\varepsilon}$$ Multiply by 2v $$\int_{\mathbb{R}^2} 2\mathbf{v} \cdot \operatorname{div} \, \tilde{S}_{\varepsilon} = \int_{\mathbb{R}^2} -N_{\varepsilon} (N_{\varepsilon} \mathbf{v} - j_{\varepsilon}) \cdot 2\mathbf{v}^{\perp} \operatorname{curl} \mathbf{v} + N_{\varepsilon} V_{\varepsilon} \cdot \mathbf{v}$$ $$\frac{d\mathcal{E}_{\varepsilon}}{dt} = \int_{\mathbb{R}^2} 2 \underbrace{\tilde{\mathcal{S}}_{\varepsilon}}_{\text{controlled by } \mathcal{E}_{\varepsilon}} : \underbrace{\nabla \mathbf{v}}_{\text{bounded}}$$ \leadsto Gronwall OK: if $\mathcal{E}_{\varepsilon}(u_{\varepsilon}(0)) \leq o(N_{\varepsilon}^2)$ it remains true (vortex energy is $\pi N_{\varepsilon} |\log \varepsilon| \ll N_{\varepsilon}^2$ in the regime $N_{\varepsilon} \gg |\log \varepsilon|$) # The Gross-Pitaevskii case - $|\log \varepsilon| \ll N_{\varepsilon} \ll 1/\varepsilon$ Time-derivative of the energy (if u_{ε} solves (GP) and v solves (IE)) $$\frac{d\mathcal{E}_{\varepsilon}(u_{\varepsilon}(t),t))}{dt} = \int_{\mathbb{R}^{2}} N_{\varepsilon} \underbrace{\left(N_{\varepsilon} \mathbf{v} - \mathbf{j}_{\varepsilon}\right)}_{\text{linear term}} \cdot \underbrace{\partial_{t} \mathbf{v}}_{2\mathbf{v}^{\perp} \operatorname{curl} \mathbf{v} + \nabla \mathbf{p}} - N_{\varepsilon} V_{\varepsilon} \cdot \mathbf{v}$$ linear term a priori controlled by $\sqrt{\mathcal{E}} \leadsto$ unsufficient But $$\operatorname{div} \, \tilde{S}_{\varepsilon} = -N_{\varepsilon} (N_{\varepsilon} \mathbf{v} - j_{\varepsilon})^{\perp} \operatorname{curl} \mathbf{v} - N_{\varepsilon} \mathbf{v}^{\perp} \mu_{\varepsilon} + \frac{1}{2} N_{\varepsilon} V_{\varepsilon}$$ Multiply by 2v $$\int_{\mathbb{P}^2} 2\mathbf{v} \cdot \operatorname{div} \, \tilde{S}_{\varepsilon} = \int_{\mathbb{P}^2} -N_{\varepsilon} (N_{\varepsilon} \mathbf{v} - j_{\varepsilon}) \cdot 2\mathbf{v}^{\perp} \operatorname{curl} \mathbf{v} + N_{\varepsilon} V_{\varepsilon} \cdot \mathbf{v}$$ $$\frac{d\mathcal{E}_{\varepsilon}}{dt} = \int_{\mathbb{R}^2} 2 \underbrace{\tilde{\mathcal{S}}_{\varepsilon}}_{\text{controlled by } \mathcal{E}_{\varepsilon}} : \underbrace{\nabla \mathbf{v}}_{\text{bounded}}$$ ightharpoonupGronwall OK: if $\mathcal{E}_{\varepsilon}(u_{\varepsilon}(0)) \leq o(N_{\varepsilon}^2)$ it remains true (vortex energy is $\pi N_{\varepsilon} |\log \varepsilon| \ll N_{\varepsilon}^2$ in the regime $N_{\varepsilon} \gg |\log \varepsilon|$) ## The parabolic case If u_{ε} solves (PGL) and v solves (L1) or (L2) $$\frac{d\mathcal{E}_{\varepsilon}(u_{\varepsilon}(t),t))}{dt} = -\int_{\mathbb{R}^{2}} \frac{N_{\varepsilon}}{|\log \varepsilon|} |\partial_{t}u_{\varepsilon}|^{2} + \int_{\mathbb{R}^{2}} \left(N_{\varepsilon}(N_{\varepsilon}v - j_{\varepsilon}) \cdot \partial_{t}v - N_{\varepsilon}V_{\varepsilon} \cdot v\right)$$ $$\begin{split} \operatorname{div} \; \tilde{S}_{\varepsilon} &= \frac{N_{\varepsilon}}{|\log \varepsilon|} \langle \partial_{t} u_{\varepsilon} - i u_{\varepsilon} N_{\varepsilon} \phi, \nabla u_{\varepsilon} - i u_{\varepsilon} N_{\varepsilon} \mathbf{v} \rangle \\ &\quad + N_{\varepsilon} (N_{\varepsilon} \mathbf{v} - j_{\varepsilon})^{\perp} \operatorname{curl} \mathbf{v} - N_{\varepsilon} \mathbf{v}^{\perp} \mu_{\varepsilon}. \end{split}$$ $$\phi = p$$ if $N_{\varepsilon} \ll |\log \varepsilon|$ $\phi = \lambda \operatorname{div} v$ if not Multiply by v^{\perp} and insert: $$\begin{split} \frac{d\mathcal{E}_{\varepsilon}}{dt} &= \int_{\mathbb{R}^{2}} 2\tilde{S}_{\varepsilon} : \nabla \mathbf{v}^{\perp} - N_{\varepsilon} V_{\varepsilon} \cdot \mathbf{v} - 2N_{\varepsilon} |\mathbf{v}|^{2} \mu_{\varepsilon} \\ \int_{\mathbb{R}^{2}} \frac{N_{\varepsilon}}{|\log \varepsilon|} |\partial_{t} u_{\varepsilon} - i u_{\varepsilon} N_{\varepsilon} \phi|^{2} + 2 \mathbf{v}^{\perp} \cdot \frac{N_{\varepsilon}}{|\log \varepsilon|} \langle \partial_{t} u_{\varepsilon} - i u_{\varepsilon} N_{\varepsilon} \phi, \nabla u_{\varepsilon} - i u_{\varepsilon} N_{\varepsilon} \mathbf{v} \rangle. \end{split}$$ ## The parabolic case If u_{ε} solves (PGL) and v solves (L1) or (L2) $$\frac{d\mathcal{E}_{\varepsilon}(u_{\varepsilon}(t),t))}{dt} = -\int_{\mathbb{R}^{2}} \frac{N_{\varepsilon}}{|\log \varepsilon|} |\partial_{t}u_{\varepsilon}|^{2} + \int_{\mathbb{R}^{2}} \left(N_{\varepsilon}(N_{\varepsilon}v - j_{\varepsilon}) \cdot \partial_{t}v - N_{\varepsilon}V_{\varepsilon} \cdot v\right)$$ $$\begin{split} \operatorname{div} \ \tilde{S}_{\varepsilon} &= \frac{\mathcal{N}_{\varepsilon}}{|\log \varepsilon|} \langle \partial_{t} u_{\varepsilon} - i u_{\varepsilon} \mathcal{N}_{\varepsilon} \phi, \nabla u_{\varepsilon} - i u_{\varepsilon} \mathcal{N}_{\varepsilon} \mathbf{v} \rangle \\ &+ \mathcal{N}_{\varepsilon} (\mathcal{N}_{\varepsilon} \mathbf{v} - j_{\varepsilon})^{\perp} \operatorname{curl} \mathbf{v} - \mathcal{N}_{\varepsilon} \mathbf{v}^{\perp} \mu_{\varepsilon}. \end{split}$$ $$\phi = p$$ if $N_{\varepsilon} \ll |\log \varepsilon|$ $\phi = \lambda \operatorname{div} v$ if not Multiply by v^{\perp} and insert: $$\begin{split} &\frac{d\mathcal{E}_{\varepsilon}}{dt} = \int_{\mathbb{R}^{2}} 2\tilde{S}_{\varepsilon} : \nabla \mathbf{v}^{\perp} - N_{\varepsilon}V_{\varepsilon} \cdot \mathbf{v} - 2N_{\varepsilon}|\mathbf{v}|^{2}\mu_{\varepsilon} \\ &- \int_{\mathbb{R}^{2}} \frac{N_{\varepsilon}}{|\log \varepsilon|} |\partial_{t}u_{\varepsilon} - iu_{\varepsilon}N_{\varepsilon}\phi|^{2} + 2\mathbf{v}^{\perp} \cdot \frac{N_{\varepsilon}}{|\log \varepsilon|} \langle \partial_{t}u_{\varepsilon} - iu_{\varepsilon}N_{\varepsilon}\phi, \nabla u_{\varepsilon} - iu_{\varepsilon}N_{\varepsilon}\mathbf{v} \rangle. \end{split}$$ The vortex energy $\pi N_{\varepsilon} |\log \varepsilon|$ is no longer negligible with respect to N_{ε}^2 . We now need to prove $$\frac{d\mathcal{E}_{\varepsilon}}{dt} \leq C(\mathcal{E}_{\varepsilon} - \pi N_{\varepsilon} |\log \varepsilon|) + o(N_{\varepsilon}^{2}).$$ Need all the tools on vortex analysis: - ▶ vortex ball construction [Sandier '98, Jerrard '99, Sandier-S '00, S-Tice '08]: allows to bound the energy of the vortices from below in disjoint vortex balls B_i by $\pi |d_i| |\log \varepsilon|$ and deduce that the energy outside of $\bigcup_i B_i$ is controlled by the excess energy $\mathcal{E}_{\varepsilon} \pi N_{\varepsilon} |\log \varepsilon|$ - ▶ "product estimate" of [Sandier-S '04] allows to control the velocity: $$\left| \int V_{\varepsilon} \cdot \mathbf{v} \right| \leq \frac{2}{|\log \varepsilon|} \left(\int |\partial_t u_{\varepsilon} - iu_{\varepsilon} N_{\varepsilon} \phi|^2 \int |(\nabla u_{\varepsilon} - iu_{\varepsilon} N_{\varepsilon} \mathbf{v}) \cdot \mathbf{v}|^2 \right)^{\frac{1}{2}}$$ $$\leq \frac{1}{|\log \varepsilon|} \left(\frac{1}{2} \int |\partial_t u_{\varepsilon} - iu_{\varepsilon} N_{\varepsilon} \phi|^2 + 2 \int |(\nabla u_{\varepsilon} - iu_{\varepsilon} N_{\varepsilon} \mathbf{v}) \cdot \mathbf{v}|^2 \right)$$ $$\begin{split} \frac{d\mathcal{E}_{\varepsilon}}{dt} &= \int_{\mathbb{R}^{2}} 2 \underbrace{\tilde{S}_{\varepsilon}}_{\leq C(\mathcal{E}_{\varepsilon} - \pi N_{\varepsilon} | \log \varepsilon|)} : \underbrace{\nabla \mathbf{v}^{\perp}}_{\text{bounded}} - \underbrace{N_{\varepsilon} V_{\varepsilon} \cdot \mathbf{v}}_{\text{controlled by prod. estimate}} -2N_{\varepsilon} |\mathbf{v}|^{2} \mu_{\varepsilon} \\ - \int_{\mathbb{R}^{2}} \frac{N_{\varepsilon}}{|\log \varepsilon|} |\partial_{t} u_{\varepsilon} - i u_{\varepsilon} N_{\varepsilon} \phi|^{2} + 2\mathbf{v}^{\perp} \cdot \frac{N_{\varepsilon}}{|\log \varepsilon|} \langle \partial_{t} u_{\varepsilon} - i u_{\varepsilon} N_{\varepsilon} \phi, \nabla u_{\varepsilon} - i u_{\varepsilon} N_{\varepsilon} \mathbf{v} \rangle \,. \end{split}$$ bounded by Cauchy-Schwarz $$\frac{d\mathcal{E}_{\varepsilon}}{dt} \leq C(\mathcal{E}_{\varepsilon} - \pi N_{\varepsilon} |\log \varepsilon|) + \int_{\mathbb{R}^{2}} \frac{N_{\varepsilon}}{|\log \varepsilon|} (\frac{1}{2} + \frac{1}{2} - 1) |\partial_{t} u_{\varepsilon} - iu_{\varepsilon} N_{\varepsilon} \phi|^{2} \\ + \frac{2N_{\varepsilon}}{|\log \varepsilon|} \int_{\mathbb{R}^{2}} |(\nabla u_{\varepsilon} - iu_{\varepsilon} N_{\varepsilon} \mathbf{v}) \cdot \mathbf{v}^{\perp}|^{2} + |(\nabla u_{\varepsilon} - iu_{\varepsilon} N_{\varepsilon} \mathbf{v}) \cdot \mathbf{v}|^{2} - 2N_{\varepsilon} \int_{\mathbb{R}^{2}} |\mathbf{v}|^{2} \mu_{\varepsilon} \\ = C(\mathcal{E}_{\varepsilon} - \pi N_{\varepsilon} |\log \varepsilon|) + \underbrace{\frac{2N_{\varepsilon}}{|\log \varepsilon|} \int_{\mathbb{R}^{2}} |\nabla u_{\varepsilon} - iu_{\varepsilon} N_{\varepsilon} \mathbf{v}|^{2} |\mathbf{v}|^{2} - 2N_{\varepsilon} \int_{\mathbb{R}^{2}} |\mathbf{v}|^{2} \mu_{\varepsilon}}_{\text{total content to extract the extraction extraction of the second states of the second states of the extraction of the second states stat$$ → Gronwall OK $$\frac{d\mathcal{E}_{\varepsilon}}{dt} = \int_{\mathbb{R}^{2}} 2 \underbrace{\tilde{S}_{\varepsilon}}_{\leq C(\mathcal{E}_{\varepsilon} - \pi N_{\varepsilon} | \log \varepsilon|)} : \underbrace{\nabla \mathbf{v}^{\perp}}_{\text{bounded}} - \underbrace{N_{\varepsilon} V_{\varepsilon} \cdot \mathbf{v}}_{\text{controlled by prod. estimate}} -2N_{\varepsilon} |\mathbf{v}|^{2} \mu_{\varepsilon} \\ - \int_{\mathbb{R}^{2}} \frac{N_{\varepsilon}}{|\log \varepsilon|} |\partial_{t} u_{\varepsilon} - i u_{\varepsilon} N_{\varepsilon} \phi|^{2} + 2\mathbf{v}^{\perp} \cdot \frac{N_{\varepsilon}}{|\log \varepsilon|} \langle \partial_{t} u_{\varepsilon} - i u_{\varepsilon} N_{\varepsilon} \phi, \nabla u_{\varepsilon} - i u_{\varepsilon} N_{\varepsilon} \mathbf{v} \rangle.$$ bounded by Cauchy-Schwarz $$\begin{split} &\frac{d\mathcal{E}_{\varepsilon}}{dt} \leq C(\mathcal{E}_{\varepsilon} - \pi N_{\varepsilon} |\log \varepsilon|) + \int_{\mathbb{R}^{2}} \frac{N_{\varepsilon}}{|\log \varepsilon|} (\frac{1}{2} + \frac{1}{2} - 1) |\partial_{t} u_{\varepsilon} - iu_{\varepsilon} N_{\varepsilon} \phi|^{2} \\ &+ \frac{2N_{\varepsilon}}{|\log \varepsilon|} \int_{\mathbb{R}^{2}} |(\nabla u_{\varepsilon} - iu_{\varepsilon} N_{\varepsilon} \mathbf{v}) \cdot \mathbf{v}^{\perp}|^{2} + |(\nabla u_{\varepsilon} - iu_{\varepsilon} N_{\varepsilon} \mathbf{v}) \cdot \mathbf{v}|^{2} - 2N_{\varepsilon} \int_{\mathbb{R}^{2}} |\mathbf{v}|^{2} \mu_{\varepsilon} \\ &= C(\mathcal{E}_{\varepsilon} - \pi N_{\varepsilon} |\log \varepsilon|) + \underbrace{\frac{2N_{\varepsilon}}{|\log \varepsilon|} \int_{\mathbb{R}^{2}} |\nabla u_{\varepsilon} - iu_{\varepsilon} N_{\varepsilon} \mathbf{v}|^{2} |\mathbf{v}|^{2} - 2N_{\varepsilon} \int_{\mathbb{R}^{2}} |\mathbf{v}|^{2} \mu_{\varepsilon}}_{\text{bounded by } C(\mathcal{E}_{\varepsilon} - \pi N_{\varepsilon} |\log \varepsilon|) \text{ by ball construction estimates} \end{split}$$ → Gronwall OK ### The disordered case - ► In real superconductors one wants to flow currents and prevent the vortices from moving because that dissipates energy - ▶ Model pinning and applied current by pinning potential $0 < a(x) \le 1$ and force F - equation reduces to $$(\alpha+i|\log\varepsilon|\beta)\partial_t u_\varepsilon = \Delta u_\varepsilon + \frac{au_\varepsilon}{\varepsilon^2}(1-|u_\varepsilon|^2) + \frac{\nabla a}{a}\cdot\nabla u_\varepsilon + i|\log\varepsilon|F^\perp\cdot\nabla u_\varepsilon + fu_\varepsilon$$ competition between vortex interaction, pinning force $\nabla \psi := -\nabla \log a$ and applied force F ► Case of finite number of vortices treated in [Tice '10], [S-Tice '11], [Kurzke-Marzuola-Spirn '15] ### The disordered case - ► In real superconductors one wants to flow currents and prevent the vortices from moving because that dissipates energy - ► Model pinning and applied current by pinning potential $0 < a(x) \le 1$ and force F - equation reduces to $$(\alpha+i|\log\varepsilon|\beta)\partial_t u_\varepsilon = \Delta u_\varepsilon + \frac{au_\varepsilon}{\varepsilon^2}(1-|u_\varepsilon|^2) + \frac{\nabla a}{a} \cdot \nabla u_\varepsilon + i|\log\varepsilon|F^\perp \cdot \nabla u_\varepsilon + fu_\varepsilon$$ competition between vortex interaction, pinning force $\nabla \psi := -\nabla \log a$ and applied force F ► Case of finite number of vortices treated in [Tice '10], [S-Tice '11], [Kurzke-Marzuola-Spirn '15] ### The disordered case - ► In real superconductors one wants to flow currents and prevent the vortices from moving because that dissipates energy - ► Model pinning and applied current by pinning potential $0 < a(x) \le 1$ and force F - equation reduces to $$(\alpha+i|\log\varepsilon|\beta)\partial_t u_\varepsilon = \Delta u_\varepsilon + \frac{au_\varepsilon}{\varepsilon^2}(1-|u_\varepsilon|^2) + \frac{\nabla a}{a} \cdot \nabla u_\varepsilon + i|\log\varepsilon|F^\perp \cdot \nabla u_\varepsilon + fu_\varepsilon$$ competition between vortex interaction, pinning force $\nabla \psi := -\nabla \log a$ and applied force F ► Case of finite number of vortices treated in [Tice '10], [S-Tice '11], [Kurzke-Marzuola-Spirn '15] # Convergence to fluid-like equations #### Gross-Pitaevskii case ## Theorem (Duerinckx-S) In the regime $|\log \varepsilon| \ll N_\varepsilon \ll \frac{1}{\varepsilon}$, convergence of $j_\varepsilon/N_\varepsilon$ to solutions of $$\begin{cases} \partial_t v = \nabla p + (-F + 2v^{\perp}) \mathrm{curl} \, v & \text{in } \mathbb{R}^2 \\ \mathrm{div} \, (\mathsf{a} v) = 0 & \text{in } \mathbb{R}^2, \end{cases}$$ ### Theorem (Duerinckx-S) • $$N_{\varepsilon} \ll |\log \varepsilon|, \ \lambda_{\varepsilon} := \frac{N_{\varepsilon}}{|\log \varepsilon|}, \ F_{\varepsilon} = \lambda_{\varepsilon} F, a_{\varepsilon} = a^{\lambda_{\varepsilon}} (\psi_{\varepsilon} = \lambda_{\varepsilon} \psi)$$ $j_{\varepsilon}/N_{\varepsilon}$ converges to $$\begin{cases} \partial_t v = \nabla p + (-\nabla^{\perp} \psi - F^{\perp} - 2v) \mathrm{curl} \, v & \text{in } \mathbb{R}^2 \\ \mathrm{div} \, v = 0 & \text{in } \mathbb{R}^2, \end{cases}$$ • $$N_{\varepsilon} = \lambda |\log \varepsilon| \ (\lambda > 0)$$ $j_{\varepsilon}/N_{\varepsilon}$ converges to $$\partial_t \mathrm{v} = rac{1}{\lambda} abla (rac{1}{a} \mathrm{div} \; (a\mathrm{v})) + (- abla^\perp \psi - F^\perp - 2\mathrm{v}) \mathrm{curl} \, \mathrm{v} \quad \textit{in } \mathbb{R}^2.$$ → vorticity evolves by $$\partial_t \mu = \operatorname{div} (\Gamma \mu)$$ with $\Gamma = pinning + applied force + interaction$ # Homogenization questions we want to consider rapidly oscillating (possibly random) pinning force $$\eta_{\varepsilon}\psi(x,\frac{x}{\eta_{\varepsilon}})\quad \eta_{\varepsilon}\ll 1$$ and scale η_{ε} with ε - lacktriangle too difficult to take the diagonal limit $\eta_{\varepsilon} \to 0$ directly from GL eq. - ► Instead homogenize the limiting equations $$\partial_t \mu = \operatorname{div} (\Gamma \mu) \qquad \Gamma = -\nabla^{\perp} \psi - F^{\perp} - 2v$$ - \sim homogenization of nonlinear transport equations. - ▶ easier when interaction is negligible → Γ independent of μ, washboard model - ▶ Understand *depinning current* and velocity law (in $\sqrt{F F_c}$) - ► Understand thermal effects by adding noise to such systems ↔ creep, elastic effects # Homogenization questions we want to consider rapidly oscillating (possibly random) pinning force $$\eta_{\varepsilon}\psi(x,\frac{x}{\eta_{\varepsilon}})\quad \eta_{\varepsilon}\ll 1$$ and scale η_{ε} with ε - ▶ too difficult to take the diagonal limit $\eta_{\varepsilon} \to 0$ directly from GL eq. - Instead homogenize the limiting equations $$\partial_t \mu = \operatorname{div} (\Gamma \mu) \qquad \Gamma = -\nabla^{\perp} \psi - F^{\perp} - 2v$$ \sim homogenization of nonlinear transport equations. - ▶ easier when interaction is negligible → Γ independent of μ, washboard model - ▶ Understand *depinning current* and velocity law (in $\sqrt{F F_c}$) - ► Understand thermal effects by adding noise to such systems ↔ creep, elastic effects # Homogenization questions we want to consider rapidly oscillating (possibly random) pinning force $$\eta_{\varepsilon}\psi(x,\frac{x}{\eta_{\varepsilon}})\quad \eta_{\varepsilon}\ll 1$$ and scale η_{ε} with ε - ▶ too difficult to take the diagonal limit $\eta_{\varepsilon} \to 0$ directly from GL eq. - Instead homogenize the limiting equations $$\partial_t \mu = \operatorname{div} (\Gamma \mu) \qquad \Gamma = -\nabla^{\perp} \psi - F^{\perp} - 2v$$ - \sim homogenization of nonlinear transport equations. - ▶ easier when interaction is negligible $\leadsto \Gamma$ independent of μ , washboard model - ▶ Understand depinning current and velocity law (in $\sqrt{F F_c}$) - ► Understand thermal effects by adding noise to such systems *· · · creep, elastic effects* THANK YOU FOR YOUR ATTENTION!