Localization-delocalization transitions in random matrix models: a SPDE approach

Simone Warzel
Joint works with Per von Soosten (TU München)

Columbia University
New York City, May 2018

The localization-delocalization challenge

Understand the various facets of metal-insulator transitions in disordered systems, e.g. in the random matrix context:

Power-Law Random Band Matrices (PRBM)
Mirlin/Fyodorov/Dittes/Quezada/Seligman '96

Real, symmetric $N \times N$ matrix ($H_{x y}$) with Gaussian rv's as entries

$$
\begin{aligned}
& \mathbb{E}\left[H_{x y}\right]=0 \\
& \mathbb{E}\left[H_{x y}^{2}\right] \sim \begin{cases}1 & \text { if } d(x, y) \leq 1 \\
d(x, y)^{-2 \alpha} & \text { else }\end{cases}
\end{aligned}
$$

Simple limiting cases:

- Random diagonal ensemble $V=\operatorname{diag}\left(V_{x}\right)$ with iid rv's $\left(V_{x}\right)$
- Gaussian orthogonal ensemble (GOE) Real, symmetric $N \times N$ matrix ($\Phi_{x, y}$)
- $\Phi_{x, y}$ are centered Gaussian rv's with $\mathbb{E}\left[\Phi_{x, y}^{2}\right]=\frac{1+\delta_{x, y}}{N}$
- $\Phi_{x, y}$ are independent for $x \leq y$.

The localization-delocalization challenge

Predicted features - as a function of parameters in the model (α) and/or energy:

- Eigenvectors ψ undergo localization-delocalization transition

Inverse participation ratios for ℓ^{2}-normalized function: $\|\psi\|_{\infty}= \begin{cases}\mathcal{O}(1) & \text { localization } \\ \mathcal{O}\left(N^{-1 / 2}\right) & \text { delocalization }\end{cases}$

- Eigenvalue statistics changes from Poisson to Random Matrix (GOE)

Rescaled random process of eigenvalues close to some energy E:

$$
\sum_{\lambda \in \sigma(H)} \delta_{N(\lambda-E)} \xrightarrow[N \rightarrow \infty]{ } \begin{cases}\text { Poisson process } & \text { localization } \\ \text { GOE process } & \text { delocalization }\end{cases}
$$

Rosenzweig-Porter Ensemble

$$
H(t)=V+\sqrt{t} \Phi \quad t \geq 0
$$

with $N \times N$ GOE matrix Φ and initial matrix $V \quad\left(w \log V=\operatorname{diag}\left(V_{x}\right)\right)$

Possible assumptions on random initial conditions:

A1 $\quad V=\operatorname{diag}\left(\omega_{x}\right)$ with iid $\left(\omega_{x}\right)$ with density $\varrho \in L^{\infty}$, or
A2 $\quad V=A+\operatorname{diag}\left(\omega_{x}\right)$ with $A=A^{*}$ and $\left(\omega_{\chi}\right)$ as in A1.

Rosenzweig-Porter Ensemble

$$
H(t)=V+\sqrt{t} \Phi \quad t \geq 0
$$

with $N \times N$ GOE matrix Φ and initial matrix $V \quad\left(w \log V=\operatorname{diag}\left(V_{x}\right)\right)$

- Eigenvalues undergo Dyson Brownian Motion (DBM)
$\sqrt{t} \Phi_{x, y} \equiv \sqrt{\frac{1+\delta_{x y}}{N}} B_{x y}(t)$

$$
d \lambda_{j}(t)=\sqrt{\frac{2}{N}} d B_{j}(t)+\frac{1}{N} \sum_{i \neq j} \frac{d t}{\lambda_{j}(t)-\lambda_{i}(t)}
$$

Dyson '62

Rosenzweig-Porter Ensemble

$$
H(t)=V+\sqrt{t} \Phi \quad t \geq 0
$$

with $N \times N$ GOE matrix Φ and initial matrix $V \quad\left(w \log V=\operatorname{diag}\left(V_{x}\right)\right)$

Time scales		Results
$t \ll N^{-1}$	pertubative regime	Soosten/W. '17
$N^{-1} \ll t$	local equilibration regime	Erdős, Yau, ..., Landon, Sosoe \geq '12
$1 \ll t$	global equilibration regime delocalisation of eigenvectors	Erdős, Schlein, Yau, ..., Bourgade \ldots
$N^{-1} \ll t \ll 1$	Lee, Schnelli, $\ldots \geq$ '09	

Further reading: Dynamical approach to random matrix theory by Erdős and Yau.

Physics papers: Kravtsov/Khaymovich/Cuevas/Amini '15, Facoetti/Vivo/Biroli '16, Bogomolny/Sieber '18

Spectral information

Green function: $\quad G(x, z)=\left\langle\delta_{x},(H-z)^{-1} \delta_{x}\right\rangle \quad x \in\{1, \ldots, N\}, z \in \mathbb{C}^{+}$.

- Relation to normalized eigenfunctions ψ_{j} corresponding to ev λ_{j} :

$$
G(x, z)=\sum_{j} \frac{\left|\psi_{\lambda_{j}}(x)\right|^{2}}{\lambda_{j}-z}
$$

- Upper bound on normalized eigenfunction with eigenvalue in I :

$$
\left|\psi_{\lambda_{j}}(x)\right|^{2} \leq \sup _{E \in I} \sum_{k} \frac{\eta^{2}}{\left(\lambda_{k}-E\right)^{2}+\eta^{2}}\left|\psi_{\lambda_{k}}(x)\right|^{2}=\eta \sup _{E \in I} \operatorname{Im} G(x, E+i \eta)
$$

for any x and $\eta>0$.

Stieltjes trafo of empirical eigenvalue measure: $\quad S(z)=\frac{1}{N} \operatorname{Tr}(H-z)^{-1}$

- Local density of states measure μ : $\int(x-z)^{-1} \mu(d x)=\mathbb{E}[S(z)]$
- Rescaled eigenvalue processat E is captured by $S(E+z / N)=\sum_{j} \frac{1}{N\left(\lambda_{j}-E\right)-z}$.

Flow of $S_{t}(z)$ under DBM

Itô's lemma yields:
Viscous complex Burger's equation

$$
d S_{t}(z)=\left[S_{t}(z) \partial_{z} S_{t}(z)+\frac{1}{2 N} \partial_{z}^{2} S_{t}(z)\right] d t+d M_{t}(z)
$$

with an (explicit) martingal term $d M_{t}(z)$.
Lemma (Soosten/W. '17)
Assuming A2 for all $t \leq N^{-(1+\varepsilon)}$ with $\varepsilon>0$ and $z \in \mathbb{C}^{+}$ ('Perturbative regime')

$$
\mathbb{E}\left|S_{t}(z)-S_{0}(z)\right| \leq C N^{-\varepsilon / 2}\left(1+\frac{1}{N \operatorname{Im} z}+\frac{1}{(N \operatorname{Im} z)^{3}}\right)
$$

Poof idea: Use regularizing effect of the random potential on the drift, diffusion and martingale term through Wegner \& Minami-type estimates.

Thus: Rescaled eigenvalue process remains Poisson of one started with Poisson as in A1.

Flow of $S_{t}(z)$ under DBM

Itô's lemma yields:

$$
d S_{t}(z)=\left[S_{t}(z) \partial_{z} S_{t}(z)+\frac{1}{2 N} \partial_{z}^{2} S_{t}(z)\right] d t+d M_{t}(z)
$$

with an (explicit) martingal term $d M_{t}(z)$.

Inviscous case: $\quad \partial_{t} S_{t}(z)=S_{t}(z) \partial_{z} S_{t}(z)$

Method of characteristics:
Pastur flow

$$
\begin{gathered}
\dot{\xi}_{t}=-S_{t}\left(\xi_{t}\right), \xi_{0}=z \in \mathbb{C}^{+} \\
\frac{d}{d t} S_{t}\left(\xi_{t}(z)\right)=0 \quad \text { i.e. } \xi_{t}(z)=z-t S_{0}(z)
\end{gathered}
$$

Example $V=0: \quad S_{0}(z)=-z^{-1}$ and hence $t S_{t}(w)^{2}+w S_{t}(w)+1=0$, i.e. semicircular law.

Local law: $\quad S_{t}(z)$ down to scale $\operatorname{Im} z \gg N^{-1}$

$$
d S_{t}(z)=\left[S_{t}(z) \partial_{z} S_{t}(z)+\frac{1}{2 N} \partial_{z}^{2} S_{t}(z)\right] d t+d M_{t}(z)
$$

For any $z \in \mathbb{C}$ with $\operatorname{Im} z \geq \eta>0$, let $\xi_{t}(z)$ be the random characteristics given by

$$
\dot{\xi}_{s}=-S_{s}\left(\xi_{s}\right), \xi_{0}=z \in \mathbb{C}^{+}
$$

stopped at $\operatorname{Im} \xi_{t}(z)=\eta / 2$.

Theorem (Soosten/W. '17)

For any $z \in \mathbb{C}$ with $\operatorname{Im} z \geq \eta>0$:

$$
\mathbb{P}\left(\sup _{\substack{|z| \leq \eta^{-1} \\ \operatorname{lm} z \geq \eta}} \sup _{s \in[0, t]}\left|S_{s}\left(\xi_{s}(z)\right)-S_{0}(z)\right| \geq \frac{6}{\sqrt{N \eta}}\right) \leq \frac{4 N \eta}{\eta^{10}} e^{-N \eta / 2}
$$

Key idea: Integration trick \& large deviation estimate for BM.

Local law: $\quad S_{t}(z)$ down to scale $\operatorname{Im} z \gg N^{-1}$

Theorem (Soosten/W. '17)

For any $z \in \mathbb{C}$ with $\operatorname{Im} z \geq \eta>0$:

$$
\mathbb{P}\left(\sup _{\substack{| | \mid \sum^{-1} \\ \ln \geq \geq \eta}} \sup _{s \in[0, t]}\left|S_{s}\left(\xi_{s}(z)\right)-S_{0}(z)\right| \geq \frac{6}{\sqrt{N \eta}}\right) \leq \frac{4 N \eta}{\eta^{10}} e^{-N \eta / 2} .
$$

Remaining task: Control \& invert the characteristics $\xi_{s}(z)$. This is done by assuming regularity of S_{0} in some window $W \subset \mathbb{R}$, i.e. for some $K_{u}, K_{l} \in(0, \infty)$

$$
K_{l} \leq \operatorname{lm} S_{0}(z) \leq\left|S_{0}(z)\right| \leq K_{u}
$$

uniformly for $z \in W+\left[-K_{u} t, K_{u} t\right]+i\left[K_{l} t, 2\right]$.

Assumption is satisfied in case:

- if $t \gg N^{-1}$ under assumption A1 with $0<\inf _{v \in W} \varrho(v)$
- if $t \gg N^{-1 / 2}$ under assumption A2 with $0<\inf _{z \in W_{t}} \mathbb{E}\left[\operatorname{Im} S_{0}(z)\right]$

Excursion: Local laws for Schrödinger matrices

Consider $N \times N$ matrix of the form

$$
V=A+\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{N}\right)
$$

with any $\boldsymbol{A}=\boldsymbol{A}^{*}$ non-random and iid $\left(\omega_{x}\right)$ with density $\varrho \in L^{\infty}$.
Lemma (Soosten/W. '18)
Let $z=E+i \eta$. Then for any $\mu>0$

$$
\mathbb{P}\left(\left|S_{0}(z)-\mathbb{E}\left[S_{0}(z)\right]\right|>\mu\right) \leq C \exp \left(-c \mu^{2} N \eta^{2}\right)
$$

and

$$
\mathbb{P}\left(\operatorname{lm} S_{0}(z)>e \pi\|\rho\|_{\infty}+\mu\right) \leq \exp (-\mu N \eta)
$$

Proof idea: McDiarmid concentration inequality + rank-one perturbation theory \& spectral averaging.
(Blackboard)

Delocalization of eigenvectors

Green function satisfies an SDE

$$
d G_{t}(x, z)=\left(S_{t}(z) \partial_{z} G_{t}(x, z)+\frac{1}{2 N} \partial_{z}^{2} G_{t}(x, z)\right) d t+d M_{t}(x, z)
$$

with an explicit martingal $d M_{t}(x, z)$.

The method of characteristics suggests:

$$
G_{t}\left(x, \xi_{t}(z)\right) \approx G_{0}(x, z)=\left(V_{x}-z\right)^{-1}
$$

and hence:

$$
\begin{aligned}
\eta \operatorname{Im} G_{t}(x, E+i \eta) & \approx \frac{\eta \operatorname{Im} \xi_{t}^{-1}(w)}{\left(V_{x}-\operatorname{Re} \xi_{t}^{-1}(E+i \eta)\right)^{2}+\left(\operatorname{Im} \xi_{t}^{-1}(E+i \eta)\right)^{2}} \\
& \approx \begin{cases}C \frac{\eta}{t} & \text { if }\left|V_{x}-E\right| \leq C t \\
0 & \text { else. }\end{cases}
\end{aligned}
$$

Intermediate regime

Theorem (Soosten/W. '17)

Let $t=N^{-1+\delta}$ with $\delta \in(0,1)$ and set $\kappa>\delta>\theta$,

$$
X_{\lambda}=\left\{x \in\{1, \ldots, N\}:\left|\lambda-V_{x}\right|>N^{-1+\kappa}\right\},
$$

and $W \Subset \operatorname{supp} \varrho$. Then under assumption A1 there exists $\gamma>0$ such that for any $p>0$ and all sufficiently large N the ℓ^{2}-normalized eigenvectors in W carry only negligible mass inside X_{λ} :

$$
\mathbb{P}\left(\sup _{\lambda \in \sigma\left(H_{T}\right) \cap W} \sum_{x \in X_{\lambda}}\left|\psi_{\lambda}(x)\right|^{2}>N^{-\gamma}\right) \leq N^{-p}
$$

and are maximally extended outside X_{λ} :

$$
\mathbb{P}\left(\sup _{\lambda \in \sigma\left(H_{T}\right) \cap W}\left\|\psi_{\lambda}\right\|_{\infty}>N^{-\theta / 2}\right) \leq N^{-p} .
$$

Extension to deformed Wigner matrices: Begnini '17

Outlook: Ultrametric ensemble

$N \times N$ random matrices

$$
\left(N=2^{n}\right)
$$

$$
H_{n}=\frac{1}{Z_{n, c}} \sum_{r=0}^{n} 2^{-\frac{(1+c)}{2} r} \sum_{B \in \mathcal{P}_{r}} \Phi_{B}
$$

with $c \in \mathbb{R}$ and $\left(\Phi_{B}\right)$ independent $G O E$ matrices.

- Normalization $Z_{n, c}$ is chosen s.t. the variance matrix is doubly stochastic, i.e.

$$
\sum_{y} \mathbb{E}\left[\left|\left\langle\delta_{y}, H_{n} \delta_{x}\right\rangle\right|^{2}\right]=1 .
$$

- Hierarchical analogue of PRBM $\alpha=1$ corresponds to

$$
c=0 .
$$

Results:

partially confirming predictions by Fyodorov/Ossipov/Rodriguez '09

- $c>0$: Localization regime and Poisson statistics
- $c<-1 / 2$: Delocalization regime $\|\psi\|_{\infty}=\mathcal{O}\left(N^{-1 / 2}\right)$ and GOE statistics
- $c \in(-1,-1 / 2)$: Infinite-volume operator has continuous spectrum.

Thank You!

P. von Soosten, S.W

- Non-Ergodic Delocalization in the Rosenzweig-Porter Model, arXiv:1709.10313.
- The Phase Transition in the Ultrametric Ensemble and Local Stability of Dyson Brownian Motion, arXive:1705.00923.
- Singular Spectrum and Recent Results on Hierarchical Operators, arXive:1705.04884 (to appear in Contemp. Math.)
- Delocalization in Ultrametric Ensembles, in preparation.

