
Overview: Eigenvalue statistics for Random Schrödinger operators
Introduction: Random Schrödinger operators with δ-interactions

Estimates for finite-volume operators
Local eigenvalue statistics

Idea of the proof of the main theorem
References

Appendix: Rank one perturbations

Random Schrödinger operators with point
interactions on Rd : Localization and eigenvalue

statistics

Peter D. Hislop, Werner Kirsch, M. Krishna

Mathematics Department
University of Kentucky

Lexington, KY USA

FernUniversität in Hagen Ashoka University
Hagen, Germany Haryana, India

Transport and localization in random media
Columbia University

2 May 2018Peter D. Hislop, Werner Kirsch, M. Krishna
Random Schrödinger operators with point interactions on Rd : Localization and eigenvalue statistics



Overview: Eigenvalue statistics for Random Schrödinger operators
Introduction: Random Schrödinger operators with δ-interactions

Estimates for finite-volume operators
Local eigenvalue statistics

Idea of the proof of the main theorem
References

Appendix: Rank one perturbations

LES overview

Main problem: Characterize the local eigenvalue statistics for random
Schrödinger operators on L2(Rd) or `2(Zd), d ≥ 2.

Basic Schrödinger operator:

Hω = H0 + λVω

Hilbert space: lattice `2(Zd) or continuum L2(Rd)

H0 deterministic (fixed) self-adjoint operator: H0 = −∆, Laplacian

Vω random potential:

(Vωf )(k) = ωk f (k), on `2(Zd)
(Vωf )(x) =

∑
k∈Zd ωku(x − k)f (x), L2(Rd)
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LES overview

Randomness: The coupling constants {ωj | j ∈ Zd}
family of independent, identically distributed random variables

absolutely continuous probability measure having a density
h0 ∈ L∞0 (R).

Deterministic spectrum: Σ ⊂ R (fixed) equals σ(Hω) almost surely

Finite-volume operators: ΛL cube of side-length L > 0
HΛ
ω := Hω|ΛL plus boundary conditions

Spectrum of HΛ
ω is discrete: {EΛ

j (ω)}Nj=1,

N = |Λ| for lattice Zd

N =∞ for continuum Rd
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LES overview

Local eigenvalue statistics Fix E0 ∈ Σ define:

dξΛ
ω(s) =

N∑
j=1

δ(|ΛL|(EΛ
j (ω)− E0)− s) ds

Questions:

1 Does ξΛ
ω converge to a point process as |Λ| → ∞ ?

2 How does one characterize the limiting process?

Answers:

1 Does ξΛ
ω converge to a point process as |Λ| → ∞ ? YES

2 How does one characterize the limiting process? Depends on E0

and the dimension d
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LES overview

CONJECTURES: 1. If E0 ∈ Σ lies in a region for which the localization
length γL of eigenfunctions for HΛL

ω is small compared to L,

γL
L
→ 0, L→∞,

then the limiting point process ξω is a Poisson point process.
2. If E0 ∈ Σ lies in a region for which the localization length γL of
eigenfunctions for HΛL

ω is large compared to L,

γL
L
> 0, L→∞,

then the limiting point process ξω is the same as random matrix theory
GOE .
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LES overview

A Toy Model: Scaled disorder

Scaled disorder random Anderson model:

H(n)
ω = H

(n)
0 +

n∑
j=−n

σωj

〈n〉α
Πj , H = `2([−n, n]).

H
(n)
0 : Finite difference Laplacian on [−n, n] with simple boundary

conditions

(Πj f )(k) = f (j)δjk and σ > 0

Localization length: γn ∼ n2α

σ2

Scaling ratio: γn
n = n2α−1

σ2
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LES overview

A Toy Model: Scaled disorder

Transition in LES depending on α ≥ 0.
Scaling regimes:

0 ≤ α < 1

2
γn
n → 0 LES = Poisson

α =
1

2
γn
n = 1 critical

1

2
< α 1 ≤ γn

n →∞ LES = Clock

Clock is the LES of the Laplacian H0 on `2(Z).
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LES overview

Another tool: LSD, the level spacing distribution

Order eigenvalues of HΛ
ω: EΛ

1 (ω) ≤ EΛ
2 (ω) ≤ · · · ≤ EΛ

N(ω)

For E0 ∈ Σ, set IΛ = [E0 − 1
|Λ|1−ε ,E0 + 1

|Λ|1−ε ]; n(E0) Density of states.

LSDΛ
ω(x ; IΛ) =

#{j | EΛ
j (ω) ∈ IΛ, |Λ|n(E0)(EΛ

j+1(ω)− EΛ
j (ω)) ≥ x}

#{j | EΛ
j (ω) ∈ IΛ}

LSD(x) = lim
|Λ|→∞

LSDΛ
ω(x ; IΛ).

Behavior of LSD(x) depends on E0 in localized or delocalized regime.
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LES overview

Poisson: Density of the LSD(s) is exponential: P(s) = e−s .

GOE: Density of LSD(s) follows the Wigner surmise: P(s) = Ase−Bs
2

,
A,B > 0.
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LES Results

Random Schrödinger operators on Zd

Minami: E0 ∈ ΣCL, LES ξω is a Poisson point process.

Germinet-Klopp: LES for unfolded eigenvalues and LSD with
exponential density.

Random Schrödinger operators on Rd

Hislop-Krishna: LES always have limit points ξω that are compound
Poisson processes and LSD has exponential density.

Hislop, Kirsch, Krishna: random Schrödinger operators with
δ-interactions, LES is Poisson and exponential LSD density.

Deitlein-Elgard: Anderson-type random Schrödinger operators has
LES Poisson at the bottom of the spectrum.
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Random δ-interactions: Model and results

The formal Hamiltonian for random δ-interactions:

Hω = −∆ +
∑
j∈Zd

ωjδ(x − j),

on L2(Rd), for d = 1, 2, 3.

[H1] The coupling constants {ωj | j ∈ Zd} form a family of
independent, identically distributed random variables with
an absolutely continuous probability measure having a
density h0 ∈ L∞0 (R).

[H2] The support of h0 is the interval [−b,−a] for some finite
constants 0 < a < b <∞.

Rigorous description of Hω is given via the Green’s function.
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Localization for the random δ-interaction model

Hω is an ergodic, random Schrödinger operator.
Deterministic spectrum of Hω: Σ.

Σ = ∪λ∈supp h0Hλ

for the periodic Schrödinger operator Hλ = −∆ +
∑

j∈Zd λδ(x − j).

E0(k;λ): first band function for periodic Hλ

Deterministic spectrum:

E0(0;−1a) < 0, [E0(0;−1/a),E0(k0;−1/b)] ∪ [0,∞) ⊂ Σ,

where k0 ∈ B is the point where E0 has its minimum.
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Localization for the random δ-interaction model

Localization at negative energies:

Theorem

There exists an finite energy Ẽ0 < 0 so that Σpp ∩ (−∞, Ẽ0] ⊂ Σ is
almost surely nonempty. Furthermore, for any φ ∈ L2

0(Rd), any integer
q ∈ N, and any interval I ⊂ (−∞, Ẽ0], we have

E[sup
t>0
{‖‖x‖q/2e−itHωEω(I )φ‖HS}] <∞,
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Main result: Eigenvalue statistics in the localization regime

Localization regime: ΣCL: energy regime with pure point spectrum and
dynamical localization.

Local Eigenvalue Statistics

ΛL = [0, L]d and local Schrödinger operators HL
ω := Hω|ΛL.

Eigenvalues: {EL
j (ω)}.

Rescaled local eigenvalue point process at E0 ∈ ΣCL:

dξLω(s) :=
∑
j

δ(|ΛL|(EL
j (ω)− E0)− s) ds
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Main result: Eigenvalue statistics in the localization regime

Theorem

Consider a fixed energy E0 ∈ (−∞, Ẽ0] ⊂ ΣCL for which the density of
states is nonpositive: n(E0) > 0. The local eigenvalue statistics ξLω for
the random point interaction model on Rd , for d = 1, 2, 3, converges
weakly to a Poisson point process with intensity measure n(E0)ds.

This means that for f ∈ C+
0 (R):

lim
L→∞

E{e−tξ
L
ω(f )} = E

{
e−tξ

P
ω(f )
}
,

where
E{e−tξ

P
ω(f )} = en(E0)

∫
R(e−tf (x)−1) dx .
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Green’s function definition of the Hamiltonian

Remark: Consider d = 3 when explicit formulae are used.

The Green’s function for a cube ΛL ⊂ R3 with Dirichlet boundary
conditions is

GL
0 (x , y ; z) =

e−i
√
z‖x−y‖

4π‖x − y‖
− cLz,y (x), x , y ∈ ΛL.

Corrector: cLz,y (x) for the boundary condition

Let Λ̃L := ΛL ∩ Z3 and put a δ-interaction at each point with coefficient
ωj .

The Green’s function GL
ω(x , y ; z) for HL

ω and d = 1, 2, 3 is related to the
Green’s function GL

0 (x , y ; z) for the unperturbed operator HL
0 = −∆L by

GL
ω(x , y ; z) = GL

0 (x , y ; z) +

|Λ̃L|∑
j,k=1

GL
0 (x , j ; z)[KL

ω(z)−1]jkG
L
0 (k, y ; z).
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Green’s function definition of the Hamiltonian

Matrix Schrödinger operator:

Let N := |ΛL| = Ld . KL
ω(z) : CN → CN

[KL
ω(z)]jk := tL(z) + vω

where:

Kinetic energy tL(z):

tLjk(z) := cLz,k(j)δjk − GL
0 (j , k ; z)(1− δjk),

Random diagonal potential vω:

[vω]jk :=
1

αd,k
δjk .

The off-diagonal part of tL(z) decays exponentially.

e3(z) =
i
√
z

4π
, and α3,j = ωj .
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Estimates for finite-volume operators: Local operators and
spectral averaging

Local operators: HL
ω := Hω|ΛL, with Dirichlet boundary conditions.

Spectral averaging of the trace.

Consider Eωj{TrEHL
ω

(I )} := Eωj{X L
ωj ,ω⊥j

(I )}, parameters ω⊥j fixed.

Stone’s formula for the spectral projection EHL
ω

(I ):

EHL
ω

(I ) =
1

π
lim
ε→0

∫
I

=RL
ω(E + iε) dE .

RL
0 (z) is analytic away from R+. For E < 0, the resolvent formula yields

EHL
ω

(I ) =
1

π
lim
ε→0

∑
`,m∈Λ̃L

∫
I

=[RL
0 (·, `;E )[KL

ω⊥j
(E + iε;ωj)

−1]`mR
L
0 (m, ·;E )].

Peter D. Hislop, Werner Kirsch, M. Krishna
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Estimates for finite-volume operators: Spectral averaging

The trace is expressible as the integral over the diagonal of the
corresponding Green’s functions:

X L
ωj ,ω⊥j

(I )

=
1

π
lim
ε→0

∫
I

∑
`,m∈Λ̃L

∫
ΛL

GL
0 (x , `;E )=[KL

ω⊥j
(E + iε;ωj)

−1]`mG
L
0 (m, x ;E )dEddx .

Differential inequality method: For any ξ ∈ `2(Λ̃L), there is a constant
C1 > 0 so that

sup
ε→0

∣∣∣∣∫ h0(ωj)〈ξ, [KL
ω⊥j

(E + iε;ωj)]−1ξ〉 dωj

∣∣∣∣ ≤ C1‖ξ‖2.
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Estimates for finite-volume operators: Wegner estimate

The above formulas immediately yield:

Theorem

Let E0 < 0 and consider η > 0 so that

Iη := [E0 − η,E0 + η] ⊂ (−∞, 0).

There exists a finite positive constant CW > 0, depending on the
dimension d and |E |−1

0 , so that

P{dist(σ(HL
ω),E0) < η} = P{TrEHL

ω
(Iη) ≥ 1}

≤ E{TrEHL
ω

(Iη)}
≤ CW |ΛL|η.

Peter D. Hislop, Werner Kirsch, M. Krishna
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Estimates for finite-volume operators: Wegner estimate

Proof of the Wegner estimate: Apply spectral averaging with
ξm = GL

0 (m, x ;E ) and obtain:

Eωj{X
(L)

ωj ,ω⊥j
(I )} ≤ C1

∑
m∈Λ̃L

1

π

∫
I

∫
ΛL

GL
0 (x ,m;E )2 dE ddx .

Exponential decay of GL
0 (x ,m;E ) implies x-integral is O(1).

After the trivial E -integration, we obtain

Eωj{X
(L)

ωj ,ω⊥j
(I )} ≤ C1|ΛL||I |.

Constant C1 > 0 is uniform in ω⊥j and depends on E0.
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Estimates for finite-volume operators: Minami estimate

Theorem

Let E0 < 0 and consider η > 0 so that Iη := [E0 − η,E0 + η] ⊂ (−∞, 0).
There exists a finite positive constant CM > 0, depending on the
dimension d and |E |−1

0 , so that

E{X L
ω(I )(X L

ω(I )− 1)} ≤ CM |ΛL|2η2.

Step One: One-parameter perturbation. The variation of parameter,
say ωj , results in a rank one perturbation:

KL
ω⊥j

(z ;ωj)
−1 − KL

ω⊥j
(z ; τj)

−1

is a rank-one matrix so:

RL
ωj

(z)− RL
τj (z)

=
∑

k,m∈Λ̃L

RL
0 (·, k; z)[KL

ω⊥j
(z ;ωj)

−1 − KL
ω⊥j

(z ; τj)
−1]kmR

L
0 (m, ·; z)
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Estimates for finite-volume operators: Minami estimate

Step Two: Estimate on the eigenvalue counting function.
For such z = −E << Σ0 = inf Σ, the resolvent RL

ω(z) is a self-adjoint
operator.

Let I = (a, b). HL
ω has an eigenvalue in I if and only if RL

ω(z) has an
eigenvalue in Iz := ((b − z)−1, (a− z)−1).

The eigenvalue counting function for HL
ω and RL

ω(z) satisfy:

X L
ω(I ) := TrEHL

ω
(I ) = TrERL

ω(z)(Iz).

Variation of configurations (ωj , ω
⊥
j ) and (τj , ω

⊥
j ) results in:

X L
ωj

(I )− X L
τj (I ) = TrERL

ωj
(z)(Iz)− TrERL

τj
(z)(Iz).
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Estimates for finite-volume operators: Minami estimate

The difference of the resolvents RL
ωj

(z)− RL
τj (z) is a rank one operator.

It follows that

|X L
ωj

(I )− X L
τj (I )| = |TrERL

ωj
(z)(Iz)− TrERL

τj
(z)(Iz)|

≤ 1.

If, for example, X L
ωj

(I ) ≥ 1, then

0 ≤ X L
ωj

(I )− 1 ≤ X L
τj (I ).
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Estimates for finite-volume operators: Minami estimate

Step three: Conclusion of the proof.
Take τj ∈ [c , d ], an interval disjoint from [a, b] and with the same
distribution as ωj :

E{X L
ω(I )(X L

ω(I )− 1)} ≤ EτjE{X L
ωj ,ω⊥j

(I )(X L
τj ,ω⊥j

(I ))}

≤ C1|ΛL||I |
(
EτjEω⊥j {X

L
τj ,ω⊥j

(I )}
)

≤ CM(|ΛL||I |)2, (1)

using the above result for (τj , ω
⊥
j ).
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Estimates for finite-volume operators: Localization bounds

Fractional moment bound for KΛ
ω (E ), E < 0.

Proposition

For any s ∈ (0, 1), there are finite, positive constants Cs > 0 and
αs,d > 0, uniform in L > 0, so that for any E < 0, we have

E{|[KΛ
ω (−E )−1]ij |s} ≤ Cse

−sαs,d‖i−j‖,

for any i , j ∈ Λ̃L.

The proof of this uses the fractional moment method of Aizenman and
Molchanov.
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A uniformly asymptotically negligible array: uana

Decomposition:
ΛL = ∪NL

p=1Λ`,p

Side length: ` = Lα, 0 < α < 1.

Number of subcubes
NL = (L/`)d

H`,p
ω the local point interaction Hamiltonian restricted to Λ`,p with

Dirichlet boundary conditions.

1 The local operators: σ(HL
ω) and σ(H`,p

ω ) discrete.

2 The spectra of the local Laplacians and lower semibounded and lie
in the half-axis [Σ0,∞), for Σ0 := inf Σ < 0 finite.

3 The Wegner, Miniami, and localization estimates are valid for these
local random operators at negative energies.
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A uniformly asymptotically negligible array: uana

LES for each local Hamiltonian H`,p
ω : η`,pω :

dη`,pω (s) :=
∑
j

δ(|ΛL|(E `,pj (ω)− E0)− s) ds

The collection {η`,pω }
NL
p=1 forms a uniformly asymptotically negligible

array (uana) of independent random point processes:

lim
L→∞

sup
1≤p≤NL

P{η`,pω (I ) > 0} = 0

This follows from the Wegner estimate for the local Hamiltonians.
Define the point process

ζLω =

NL∑
p=1

η`,pω

.
Properties of the process ζΛ

ω.
Peter D. Hislop, Werner Kirsch, M. Krishna
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LES for a uniformly asymptotically negligible array

The density of states n(E ) exists, belongs to L1
loc(R).

These results follow from the Lipschitz continuity of the IDS

Condition 1: Intensity of the limiting process

Proposition

For the uana {η`,pω }, and any E0 ∈ ΣCL for which n(E0) 6= 0, we have

lim
L→∞

NL∑
p=1

P{η`,pω (I ) = 1} = n(E0)|I |.
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LES for a uniformly asymptotically negligible array

Condition 2: Multiple eigenvalues are rare

Proposition

For the uana {η`,pω }, we have

lim
L→∞

NL∑
p=1

P{η`,pω (I ) ≥ 2} = 0.

Conclusion:

Theorem

For E0 ∈ ΣCL ∩ (−∞, 0), and n(E0) > 0, the process ζLω constructed
from the uana {η`,pω } converges weakly to a Poisson point process with
intensity measure n(E0)ds.
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Approximation by a uana

Theorem

For E0 ∈ ΣCL ∩ (−∞, 0), the local eigenvalue point processes ξLω
associated with HL

ω, and the local point process ζLω, associated with the
uana have the same weak limit point. This is the Poisson point process
with intensity measure n(E0)ds.

Localization estimates are used to prove

ξLω(f )− ζLω(f )→ 0, L→∞

Reduce to showing:
For z := E0 + ζ

|ΛL| with ζ = σ + iτ , with τ > 0 and σ ∈ R:

lim
|Λ|→∞

E

{∣∣∣∣∣ 1

|ΛL|
Tr=RL

ω(z)− 1

|ΛL|

NL∑
p=1

Tr=R`,pω (z)

∣∣∣∣∣
}

= 0.
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Appendix: Estimates for finite-volume operators: Rank-one
perturbations

Let A and B be to self-adjoint operators with B rank one.
General result:

Proposition

Let A and B be self-adjoint operators with B = Πϕ rank one, ‖ϕ‖ = 1.
Let I := [a, b] ⊂ R be an interval so that σ(A) ∩ [a, b] is discrete.

1

|Tr[EA(I )]− Tr[EA+B(I )]| ≤ 1.

2 If Tr[EA(I )] ≥ 1, we have

0 ≤ Tr[EA(I )]− 1 ≤ Tr[EA+B(I )].
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Appendix: Estimates for finite-volume operators: Rank-one
perturbations

Assumption: The vector ϕ is cyclic for A, and hence for A + B.

We define two measures

µϕA(·) := 〈ϕ,EA(·)ϕ〉, and µϕA+B(·) := 〈ϕ,EA+B(·)ϕ〉.

Lemma

Under the hypotheses of the proposition, for any x ∈ σ(A) ∩ [a, b], we
have

µϕA({x}) 6= 0,

and similarly, for any y ∈ σ(A + B) ∩ [a, b], we have

µϕA+B({y}) 6= 0.
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Appendix: Estimates for finite-volume operators: Rank-one
perturbations

Let {x1 ≤ x2 ≤ . . . ≤ xj} be the eigenvalues of A in [a, b]. Similarly, let
{y1 ≤ y2 ≤ . . . ≤ yt} be the eigenvalues of B in [a, b].

Lemma

The map
FA(E ) := 〈ϕ,RA(E )ϕ〉

restricted to each interval FA : (xi , xi+1)→ R is bijective for all
i = 1, . . . , k − 1. Similarly, the map

FA+B(E ) := 〈ϕ,RA+B(E )ϕ〉

restricted to each interval FA+B : (yj , yj+1)→ R is bijective for all
j = 1, . . . , `− 1.
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Appendix: Estimates for finite-volume operators: Rank-one
perturbations

Lemma

The poles of FA and FA+B in [a, b] are intertwined. In each interval
(xi , xi+1), there is exactly one pole yj of FA+B and in each interval
(yj , yj+1), there is exactly one xi .

This shows that the effect of the rank one perturbation B is to change
the number of eigenvlaues in [a, b] by at most one.
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