Social interactions can drive emergent behavioral diversity & modular social network structure

Christopher K. Tokita

Group size, descriptor and effects

Behavioral **diversity:** descriptor and effects

Behavioral variation

Time

Behavioral variation & **Behavioral consistency**

Behavioral diversity in groups can alter

- Collective decision-making •
- Foraging patterns •
- Group-level personality •
- Offspring rearing and nest • building
- Within-group Cooperation •

Pattern of interactions: social networks as an important descriptor of social systems

Alptin et al. 2013 Ecol Lett

Adamic & Glance 2005 Proceedings of the 3rd international workshop on Link discovery How do these properties interact?

Through the lens of **division of labor (DOL)**

Behavioral diversity

Affected by group size

Intertwined with pattern of interactions

Task variation

Holbrook, Barden, & Fewell 2011 Behav. Ecol. Sociobiol.

Adapted from Mersch, Krespi, & Keller 2013 Science

A tempting parallel?: An eye to the **social sciences**

The Division of Labor in Society (1893)

Jonathan Saragosti

Corina Tarnita

Daniel Kronauer

Exploring self-organization of DOL at the onset of group living

Ooceraea biroi, the clonal raider ant

- No queen
- Clonal reproduction
- Synchronous, cyclical reproduction and behavior.

Ancestral-like state

Remove confounds

What are the benefits that emerge early in group-living?

Camera-tracking experiments

DOL increases

Fitness increases

Ulrich, et al. 2018 Nature

Response thresholds: overview

Every **task/behavior** *j* has an associated stimulus

Foraging

Nursing

Response thresholds: more detail

n individuals in the group, m tasks/behaviors

Every **task/behavior** *j* has an associated stimulus

$$s_{j,t+1} = s_{j,t} + \delta_j - m \frac{\sum_i x_{ij,t}}{n}$$
Previous Demand rate % of colony doing task

Every **individual** *i* has a **threshold** for each stimulus that determines behavior 1, $s_{j,t} > \theta_{ij}$ 0, $s_{i,t} \leq \theta_{ii}$ Threshold Variation Stimulus Threshold **Behavior** state t+1 Threshold Task Assess Inactive Active Stimulus Workers **Workers Simulation Process** 10,000 timesteps per simulation

³ Only inactive workers assess stimuli and "decide" on new tasks

Active workers quit probabilistically: au

Fixed response thresholds: explaining emergent DOL at small group sizes

Group size (i.e., no. of samples)

Yet, DOL & behavioral diversity **increase** beyond small group sizes

What about **social interactions**?: evidence for influence on behavioral diversity

Model interactions dynamically

Allow social influence

Model description: Dynamic interactions

Every individual initiates an (*undirected*) interaction with **exactly one** other individual every time step *t*

Probability individual *k* is interacted with by individual *i*:

$$\Omega_{ik,t} = \frac{\omega_{ik,t}}{\sum_{k=1}^{n-1} \omega_{ik,t}}$$

Model description: Interaction mechanics

Probability individual *k* is interacted with by individual *i*:

$$\Omega_{ik,t} = \frac{\omega_{ik,t}}{\sum \omega_{ik,t}}$$

Accounting for non-well-mixed conditions: **homophily** or **heterophily**

- $\beta > 1$: Bias towards same behavioral type
- $\beta = 1$: No bias (well-mixed)
- $0 < \beta < 1$: Bias towards *other* behavioral types

Model description: Interactions & socially-modulated thresholds

Model summary

3

Each individual initiates interaction according to weighted random sample. $\omega_{ik,t} = \beta$ if same task; $\omega_{ik,t} = 1$ otherwise

4
$$\theta_{ij,t+1} = \theta_{ij,t} + \varepsilon \left(\sum_{k \in N(i), l \neq j} x_{kl,t} - \sum_{k \in N(i)} x_{kj,t} \right)$$

Parameter	Description	Value
n	Number of individuals.	5, 10, 15, 20, 100
т	Number of tasks.	2
μ_j	Population mean for thresholds ($ heta_{ij}$) for task j	50 , $\theta_{ij} \in [0, 100]$
σ_j	Population relative standard deviation for thresholds for task j	0 (social), 0.05 (fixed)
δ_j	Rate of stimulus increase for task j	0.8
τ	Probability of quitting task once active	0.2
3	Social interaction effect	0.1 (social), 0 (fixed)
β	Bias of interactions	1.1 (homophily)

* 100 replicates per parameter combination (per group size)* Simulations run for 50,000 time steps

Results

Increasing homophily results in prominent and more rapid emergence of DOL with increasing group size

 $\varepsilon = 0.1, \beta$ varied

Positive social influence parameter generally results in same pattern of emergent DOL, but high social influence decreases DOL

 ε varied, $\beta = 1.1$

Relative interaction rate

Analyzing social networks

Aggregate simulations of group size *n*

Average social network

Analyzing social network structure: group size 80 $\varepsilon = 0.1, \beta = 1.1$

Co-emergence of DOL and polarized social networks $\varepsilon = 0.1, \beta = 1.1$

Co-emergence of DOL and polarized social networks: **network metrics**

Parallels in social systems generally? The importance of **social interactions** on divergent behavior and structure.

Parallels in social systems generally? The importance of **social interactions** on divergent behavior and structure.

Thank you!

ŃSF

Department of Ecology & Evolutionary Biology

Collaborators

Yuko Ulrich Daniel Kronauer Jonathan Saragosti

Workshop Organizers & Help

Eitan Tadmor Javier Morales Anil Zenginoglu

Backup slides

What about **social interactions**?: evidence for influence on individual traits

Parameter space for all social interaction and social influence types

Fitness

Stimulus

