Inference based model reduction for complex dynamical systems

Fei Lu
Department of Mathematics, Johns Hopkins
Joint work with: Alexandre J. Chorin (UC Berkeley)
Kevin K. Lin (U. of Arizona)
Xuemin Tu (U. of Kansas)

April 3, 2019
KI-Net: Dimension reduction in physical and data sciences
Department of Mathematics, Duke University

Inference based stochastic model reduction
(1) Motivation and objective
(2) An inference approach
(3) Data assimilation with reduced models
(4) Model reduction for PDEs

- Kuramoto-Sivashinsky
- Stochastic Burger equation

Motivation: data assimilation in weather/climate prediction

- HighD multiscale full chaotic/ergodic systems:
- can only afford to resolve $x^{\prime}=f(x)$ online
- y : unresolved variables (subgrid-scales)
- Discrete noisy observations: missing i.c.
- Ensemble prediction: need many simulations

$$
\begin{aligned}
& x^{\prime}=f(x)+U(x, y), y^{\prime}=g(x, y) \\
& \text { Data }\{x(n h)\}_{n=1}^{N}
\end{aligned}
$$

Goal: Develop a closed reduced model of x that

- captures key statistical + dynamical properties
- use it for online state estimation and prediction
reduce spatial dimension + increase time step-size

Various efforts in closure model reduction:

- Direct constructions:
- Mori-Zwanzig formalism
- relaxiation approximations
- Galerkin methods: non-linear Galerkin, Petrov - Galerkin
- linear response (Fluctuation-dissipation theory) (filtering / feedback control /)
- Inference
- hypoellitpic SDEs, GLE and SDDEs
- manifold learning
- neural network learning
- discrete-time (time series) models
(system identification / parametrization / error quantification)

Inference-based model reduction

SDEs and time series - dynamical models

Differential system or discrete-time system?

$$
X^{\prime}=f(X)+Z(t, \omega) \quad X_{n+1}=X_{n}+R_{h}\left(X_{n}\right)+Z_{n}
$$

informative, neat
Inference ${ }^{1}$
Discretization ${ }^{2}$
messy but non-intrusive
likelihood
error correction by data
${ }^{1}$ Brockwell, Sørensen, Pokern, Wiberg, Samson,...
${ }^{2}$ Milstein, Tretyakov, Talay, Mattingly, Stuart, Higham, ...

Discrete-time stochastic parametrization

$\operatorname{NARMA}(p, q)$

$$
\begin{aligned}
& X_{n}=X_{n-1}+R_{h}\left(X_{n-1}\right)+Z_{n}, \\
& Z_{n}=\Phi_{n}+\xi_{n}, \\
& \Phi_{n}=\underbrace{\sum_{j=1}^{p} a_{j} X_{n-j}+\sum_{j=1}^{r} \sum_{i=1}^{s} b_{i, j} P_{i}\left(X_{n-j}\right)}_{\text {Auto-Regression }}+\underbrace{\sum_{j=1}^{q} c_{j} \xi_{n-j}}_{\text {Moving Average }}
\end{aligned}
$$

- $R_{h}\left(X_{n-1}\right)$ from a numerical scheme for $x^{\prime} \approx f(x)$
- Φ_{n} depends on the past
- NARMAX in system identification $Z_{n}=\Phi(Z, X)+\xi_{n}$,

Tasks:
Structure derivation: terms and orders (p, r, s, q) in Φ_{n};
Parameter estimation: $a_{j}, b_{i, j}, c_{j}$, and σ.

Structure derivation: derive the terms in Φ_{n}

$$
\begin{aligned}
& X_{n}=X_{n-1}+R_{h}\left(X_{n-1}\right)+Z_{n} \\
& Z_{n}=\Phi_{n}+\xi_{n} \\
& \Phi_{n}=\sum_{j=1}^{p} a_{j} X_{n-j}+\sum_{j=1}^{r} \sum_{i=1}^{s} b_{i, j} P_{i}\left(X_{n-j}\right)+\sum_{j=1}^{q} c_{j} \xi_{n-j}
\end{aligned}
$$

The nonlinear structure is problem dependent.
Techniques: drive terms from

- the reduced differential systems (IDEs/SDEs)
- numerical schemes
- inertial manifolds
and estimate their coefficients from data.

Parameter estimation: conditional maximum likelihood ${ }^{1}$

$$
\begin{aligned}
& X_{n}=X_{n-1}+R_{h}\left(X_{n-1}\right)+Z_{n} \\
& Z_{n}=\Phi_{n}+\xi_{n} \\
& \Phi_{n}=\sum_{j=1}^{p} a_{j} X_{n-j}+\sum_{j=1}^{r} \sum_{i=1}^{s} b_{i, j} P_{i}\left(X_{n-j}\right)+\sum_{j=1}^{q} c_{j} \xi_{n-j}
\end{aligned}
$$

Conditioned on ξ_{1}, \ldots, ξ_{q}, the log-likelihood of $X_{q+1: N}$ is

$$
I\left(\theta \mid \xi_{1}, \ldots, \xi_{q}\right)=-\sum_{n=q+1}^{N} \frac{\left|z_{n}-\Phi_{n}\right|^{2}}{2 \sigma^{2}}-\frac{N-q}{2} \ln \sigma^{2}
$$

- compute Φ_{n} and ξ_{n} recursively for $n>q$
- maximum likelihood estimator (MLE) by optimization
- $\left\{\xi_{n}\right\}$ can be non-Gaussian to get other lost fucntions
- when $q=0$: a least squares regression

Overview:

$$
\begin{aligned}
& x^{\prime}=f(x)+U(x, y), y^{\prime}=g(x, y) \\
& \text { Data }\{x(n h)\}_{n=1}^{N}
\end{aligned}
$$

Discrete-time stochastic parametrization

NARMA

$$
\begin{aligned}
X_{n}= & X_{n-1}+R_{h}\left(X_{n-1}\right)+Z_{n} \\
Z_{n}= & \Phi_{n}+\xi_{n} \\
\Phi_{n}= & \sum_{j=1}^{p} a_{j} X_{n-j}+\sum_{j=1}^{q} c_{j} \xi_{n-j} \\
& +\sum_{j=1}^{r} \sum_{i=1}^{s} b_{i, j} P_{i}\left(X_{n-j}\right)
\end{aligned}
$$

(1) compute $R_{h}(x)$
(2) derive structure
(3) estimate parameters

Data assimilation with model reduction

$$
\begin{aligned}
& x^{\prime}=f(x)+U(x, y), y^{\prime}=g(x, y) . \\
& \text { Noisy data: } x(n h)+W(n), \quad n=1,2, \ldots
\end{aligned}
$$

Data assimilation:

- estimate the state of a forward model (FM):
- (x, y) for the full model
- x for a reduced model of x
- predict x (by ensembles of solutions of FM)
- Widely used method: Ensemble Kalman filters (EnKF)

The Lorenz 96 system

Wilks 2005

Estimate and predict x based on
$>$ Noisy Data $z(n)=x(n h)+\mathbf{W}(\mathbf{n})$
$>$ Forward models

- L96x: the truncated model $\frac{d}{d t} x_{k} \approx x_{k-1}\left(x_{k+1}-x_{k-2}\right)-x_{k}+10$ (account for the model error by IL in EnKF)
- NARMA (account for the model error by parametrization in the forward model)

Relative error of state estimation

Relative error for different observation noises.
(ensemble size: $=1000$ for L96x and NARMA; $=10$ for the full model)

RMSE of state prediction

RMSE of 10^{4} ensemble forecasts.
(ensemble size: $=1000$ for L96x and NARMA; $=10$ for the full model)

Summary: NARMA improves performance of DA.

Model reduction for PDEs
 (chaotic/stochastic PDEs)

The Kuramoto-Sivashinsky equation

$$
v_{t}+v_{x x}+v_{x x x x}+v v_{x}=0, t>0, x \in[0,2 \pi \nu], \text { periodic. }
$$

Spatio-temporally chaotic

solved with 128 Fourier modes

Problem setting: $\nu=3.43$

- Observing only 5 Fourier modes every 10 time steps
- to predict their evolution
- 100-fold reduction

The Kuramoto-Sivashinsky equation

$$
v_{t}+v_{x x}+v_{x x x x}+v v_{x}=0, t>0, x \in[0,2 \pi \nu], \text { periodic. }
$$

Spatio-temporally chaotic

solved with 128 Fourier modes

Problem setting: $\nu=3.43$

- Observing only 5 Fourier modes every 10 time steps
- to predict their evolution
- 100-fold reduction

Reduced models:

- the truncated system not accurate
- Mori-Zwanzig reductiona: complicated
- Discrete-time sto. paramtrization ${ }^{b}$: derive structure from inertial manifold
\rightarrow an effective NARMA model

[^0]
Key point 1: long-term statistics \leftrightarrow Large time behavior of PDE 2

Inertial manifolds \mathcal{M} : - finite-dimensional, positively invariant manifolds

- exponentially attracts all trajectories

Let $v=u+w$. Rewrite the KSE:

$$
\begin{aligned}
& \frac{d u}{d t}=A u+P B(u+w) \\
& \frac{d w}{d t}=A w+Q B(u+w)
\end{aligned}
$$

$$
\begin{aligned}
& \text { On } \mathcal{M}, w=\psi(u) \\
& \qquad \frac{d u}{d t}=P A u+P B(u+\psi(u)) .
\end{aligned}
$$

Approximate inertial manifolds (AIMs): approximate $w=\psi(u)$

- $\frac{d w}{d t} \approx 0 \Rightarrow w \approx A^{-1} Q B(u+w)$,
- Fixed point: $\psi_{0}=0 ; \psi_{n+1}=A^{-1} Q B\left(u+\psi_{n}\right)$.

Key point 1: long-term statistics \leftrightarrow Large time behavior of PDE 2
Inertial manifolds \mathcal{M} : - finite-dimensional, positively invariant manifolds

- exponentially attracts all trajectories

Let $v=u+w$. Rewrite the KSE:

$$
\begin{aligned}
\frac{d u}{d t} & =A u+P B(u+w) \\
\frac{d w}{d t} & =A w+Q B(u+w)
\end{aligned}
$$

$$
\begin{aligned}
& \text { On } \mathcal{M}, w=\psi(u) \\
& \qquad \frac{d u}{d t}=P A u+P B(u+\psi(u)) .
\end{aligned}
$$

Approximate inertial manifolds (AIMs): approximate $w=\psi(u)$

- $\frac{d w}{d t} \approx 0 \Rightarrow w \approx A^{-1} Q B(u+w)$,
- Fixed point: $\psi_{0}=0 ; \psi_{n+1}=A^{-1} Q B\left(u+\psi_{n}\right)$.

Key point 2: parametrize the AIM

- AIM with 5 modes: unstable (An accurate AIM requires $m=\operatorname{dim}(u)$ to be large!)
- use the terms; estimate their coefficients from data \rightarrow an effective NARMA model

[^1]
Long-term statistics:

probability density function

auto-correlation function

Prediction

A typical forecast:
RMSE of many forecasts:

Forecast time:
the truncated system: $T \approx 5$ the NARMA system: $T \approx 50$

Stochastic Burgers equation:

$$
v_{t}=\nu v_{x x}-v v_{x}+f(x, t), \quad x \in[0,2 \pi], \text { periodic }
$$

where $f(x, t)=\sum_{k=1}^{K_{0}} \sin (k x) d W(t)$.

- $N \gtrsim 5 / \nu$ Fourier modes are needed to resolve the Eq.

Goal: a closed model for $\left(\widehat{v}_{1: K}\right), K=2 K_{0} \leq 1 / \nu$.

- to capture energy spectrum and correlations (>PDF, ACF)
- Test setting:
- Full model: $\nu=0.05, K_{0}=4 \rightarrow$ random shocks

$$
N=128, d t \rightarrow \mathrm{CFL} \approx 0.2
$$

- Reduced model: $K=8, \delta=20 d t \rightarrow \mathrm{CFL} \approx 4$;

Let $v=u+w$. In operator form:

$$
\begin{aligned}
\frac{d u}{d t} & =P A u+P B(u)+P f+[P B(u+w)-P B(u)] \\
\frac{d w}{d t} & =Q A w+Q B(u+w)
\end{aligned}
$$

- No spectral gap \rightarrow no inertial manifold (IM) No Approximate IM: $\frac{d w}{d t} \approx 0 \Rightarrow w \approx A^{-1} Q B(u+w)$.

Let $v=u+w$. In operator form:

$$
\begin{aligned}
\frac{d u}{d t} & =P A u+P B(u)+P f+[P B(u+w)-P B(u)] \\
\frac{d w}{d t} & =Q A w+Q B(u+w)
\end{aligned}
$$

- No spectral gap \rightarrow no inertial manifold (IM)

No Approximate IM: $\frac{d w}{d t} \approx 0 \Rightarrow w \approx A^{-1} Q B(u+w)$. Integration instead:

$$
\begin{aligned}
w(t) & =e^{-Q A t} w(0)+\int_{0}^{t} e^{-Q A(t-s)}[Q B(u(s)+w(s))] d s \\
w^{n} & \approx c_{0} Q B\left(u^{n}\right)+c_{1} Q B\left(u^{n-1}\right)+\cdots+c_{p} Q B\left(u^{n-p}\right)
\end{aligned}
$$

Linear in parameter approximation:

$$
\begin{aligned}
P B(u+w)-P B(u) & =P\left[(u w)_{x}+\left(w^{2}\right)_{x}\right] / 2 \approx P\left[(u w)_{x}\right] / 2+\text { noise } \\
& \approx \sum_{j=0}^{p} c_{j} P\left[\left(u^{n} Q B\left(u^{n-j}\right)\right)_{x}\right]+\text { noise }
\end{aligned}
$$

The NAR model has the form

$$
u_{k}^{n}=R^{\delta}\left(u_{k}^{n-1}\right)+f_{k}^{n}+g_{k}^{n}+\Phi_{k}^{n},
$$

with $\Phi_{k}^{n}:=\Phi_{k}^{n}\left(u^{n-p: n-1}, f^{n-p: n-1}\right)$ in form of

$$
\begin{aligned}
& \Phi_{k}^{n}= \sum_{j=1}^{p} c_{k, j}^{v} u_{k}^{n-j}+c_{k, j}^{R} R^{\delta}\left(u_{k}^{n-j}\right) \\
&+c_{k, j}^{w} \sum_{\substack{|k-I| \leq K, K<| | \leq 2 K \\
\text { or }|I| \leq K, K<|k-l| \leq 2 K}} \widetilde{u}_{l}^{n-1} \widetilde{u}_{k-l}^{n-j} \\
&
\end{aligned}
$$

Energy spectrum

Cross-ACF of ernergy

probability density function

auto-correlation function

Prediction in response to force

Several questions:

- How to determine Lag length? ($e^{-Q A(t-s)}$ not good)

$$
\begin{aligned}
w(t) & =e^{-Q A t} w(0)+\int_{0}^{t} e^{-Q A(t-s)}[Q B(u(s)+w(s))] d s \\
w^{n} & \approx c_{0} Q B\left(u^{n}\right)+c_{1} Q B\left(u^{n-1}\right)+\cdots+c_{p} Q B\left(u^{n-p}\right)
\end{aligned}
$$

- Larger observation gap?
- Smaller ν ?
- The role of $\left(w^{2}\right)_{x}$?
- Memory kernel? Correlated noise?
- Generalization to other dissipative systems?

When observe gap = 80 time steps:

Energy spectrum

When viscosity becomes smaller $\nu=0.02$ (more Burgulent)

Energy spectrum

Summary and ongoing work

```
\mp@subsup{x}{}{\prime}=f(x)+U(x,y), y'=g(x,y).
Data {x(nh)} } N=1
```

- Stochastic model reduction by

Discrete-time stochastic parametrization

- simplifies the inference from data
- incorporates memory flexibly
- effective reduced model (NARMA)
- capture key statistical-dynamical features
- make medium-range forecasting
- Improves performance of Data assimilation

Open problems:

- model reduction
- model selection
- scaling of the discrete system? (With A. Chorin)
- 2D N-S equation?
- noisy data: state estimation and model inference
- data assimilation with non-Markovian models
- inference for hidden non-Markovian models
- theoretical understanding of the approximation
- distance between the two stochastic processes?
- discrete-time Mori-Zwanzig formalism (With K. Lin)

A Winer filter implementation (instead of the likelihood)

References

- Data-driven stochastic model reduction
- Chorin-Lu: Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics. PNAS 112 (2015), no. 32, 9804-9809.
- Lu-Lin-Chorin: Comparison of continuous and discrete-time data-based modeling for hypoelliptic systems. CAMCoS, 11 (2016), no. 8, 4227-4246.
- Lu-Lin-Chorin: Data-based stochastic model reduction for the Kuramoto Sivashinsky equation. Physica D, 340 (2017), 46-57.
- Lin-Lu: Data-driven model reduction, Wiener projections, and the Mori-Zwanzig formalism. preprint (2019)
- Data assimilation
- Lu-Tu-Chorin: Accounting for model error from unresolved scales in EnKFs: improving the forecast model. MWR, 340 (2017).

Thank you!

FL acknowledges supported from LBL, NSF

[^0]: ${ }^{a}$ Stinis 12
 ${ }^{b}$ Lu-Lin-Chorin17

[^1]: ${ }^{2}$ Foias, Constantin, Temam, Sell, Jolly, Kevrekidis, Titi et al (88-94)

