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• More coming.....

• Performance guarantees for hypocoercive MCMC samplers, by
Jeremiah Birrell, Luc Rey-Bellet. (In preparation)

• Uncertainty Quantification for Markov Processes via Varia-
tional Principles and Functional Inequalities, by Jeremiah Birrell,
Luc Rey-Bellet (submitted)

•, Sensitivity Analysis for Rare Events based on Rnyi Divergence,
by Paul Dupuis, Markos A. Katsoulakis, Yannis Pantazis, Luc
Rey-Bellet (to appear in Annals of Applied Probability)

• How biased is your model? Concentration Inequalities, Infor-
mation and Model Bias, by Konstantinos Gourgoulias, Markos
A. Katsoulakis, Luc Rey-Bellet, Jie Wang (To appear in IEEE,
Transactions on Information Theory)

• Scalable Information Inequalities for Uncertainty Quantifica-
tion, by Markos A. Katsoulakis, Luc Rey-Bellet, Jie Wang (J.
Comp. Phys.)
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Basic question: Uncertainty quantification

→ Baseline model P (= probability measure on X). Think
of it as a (tractable) model you use to compute or calculate.

NOT TO BE TRUSTED!!

→ Quantities of interests (QoI) such as

• EP [f ] (Expectation)

• VarP(f) (Variance) or CovP (f,g)√
VarP (f)VarP (g)

(correlation), ....

• ΛP,f(c) = logEP [ecf ] (risk sensitive functional)

• logP (A) (probability of some rare event)

• and so on
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→ Family of alternative models Q. Think of it as describing
the true but unknowable model. Set

Qη = {Q is η ”close” to P}
Think of something like

Qη = {Q : R(Q||P ) ≤ η} R(Q||P ) = EQ

[
log

dQ

dP

]
relative entropy

It measures the allowed information loss.

Given an observable quantity f can one find uncertainty bounds
or performance guarantees

inf
Q∈Qη

EQ[f ] ≤ EP [f ] ≤ sup
Q∈Qη

EQ[f ] .

→ Robustness , Book by Hansen (Nobel 2011) and Sargent
(Nobel 2013)
→ Operation research, Finance, etc.... →

The bounds should be tight and computable (numerically or
analytically).
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Challenge: Scalable bounds for probabilities on high-dimensional
spaces

Long-time regime (T → ∞) : Typical example: two ergodic
Markov processes Xt and Yt with path space measures P0:T and
Q0:T and stationary measures µP and µQ

In this case we assume there is rate of information loss

1

T
R(Q0:T ||P0:T)→ r(Q||P )

We want steady states UQ bounds, control e.g. on

EµP [f ]− EµQ[f ]

especially if µP and/or µQ is not know explicitly

6



Seemingly unrelated: performance guarantees for sampling

Think of a MCMC where µ = µP is your target distribution
sampled using Xt and we are trying to evaluate

lim
T→∞

1

T

∫ T

0

f(Xs) =

∫
fdµ with X0 ∼ µ0

How do we evaluate the performance of the Markov process Xt

starting for the initial measure µ0 as a MCMC algorithm?

• Practical: use the sample variance

TVarPµ0

[
1

T

∫ T

0

f(Xs)

]
to build asymptotic confidence intervals using central limit the-
orem.

Drawback: how do you choose T to be in the CLT regime...
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• Mixing times: Use spectral gaps estimates to compute mix-
ing times (need explicit constants). Geometric ergodicity, L2

estimates, etc....

Explicit bounds on dist(µT , µ) where XT ∼ µT

Drawback: in practice we often do not sample µT but use ergodic
averages (empirical measure)

• Concentration inequalities (My favorite for today). Construct
explicit rigorous finite T confidence intervals using concentration
inequalities such as Bernstein type inequalities

Pµ0

(
1

T

∫ T

0

f(Xs)−
∫

fdµ > r

)
≤
∥∥∥dµ0

dµ

∥∥∥
L2(µ)

exp

(
−t

r2

2(σ2 +Mr)

)
with explicit constants σ2 and M .

YES : Obtain explicit performance guarantees if we use finite
time samples. But it may be too pessimistic.
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What’s wrong with CKP? Scalability

Czsizar-Kullback-Pinsker

|EQ[f ]− EP [f ]| ≤
√

2R(Q||P ) ‖f − EP [f ]‖∞

Take Markov measures P = P 0:T and Q = Q0:T on the time
window [0, T ] and

FT =
1

T

∫ T

0

f(Xs) ds .

Then we have

‖FT‖∞ = ‖f‖∞ = O(1) and R(Q0:T ||P 0:T) = O(T )

CKP scales terribly poorly with T , the LHS is O(1) but the RHS
diverges like

√
T .

But

VarP 0:T [FT ] = O

(
1

T

)
so one would need the variance instead of the sup norm.
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Gibbs Variational principle

• Relative entropy (a.k.a Kullback-Leibler divergence).

R(Q || P ) =

{
EQ
[
log dQ

dP

]
if Q� P

+∞ otherwise

R(Q || P ) is a divergence, that is R(Q || P ) ≥ 0 and R(Q || P ) = 0
if and only if Q = P .

• Gibbs variational principle for the relative entropy: (convex
duality).

logEP
[
ef
]

= sup
Q
{EQ[f ]−R(Q||P )}

with the supremum attained if and only if

dQ = dQf =
efdP

EP [ef ]
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Gibbs information inequality

From the Gibbs variational principle, for any Q and c ≥ 0

EQ[±cf ] ≤ logEP

[
e±cf
]

+R(Q||P ) .

Optimize over c:

Theorem (Gibbs Information inequality)

− inf
c>0

{
Λ(−c) +R(Q||P )

c

}
︸ ︷︷ ︸

=ΞP,−f(R(Q||P))

≤ EQ[f ]− EP[f ] ≤ inf
c>0

{
Λ(c) +R(Q||P )

c

}
︸ ︷︷ ︸

=ΞP,f(R(Q||P))

ΞP,f(η) ≡ inf
c>0

{
Λ(c) + η

c

}
Λ(c) = logEP

[
ec(f−EP [f ])

]
How good is it? (Long history... Dupuis; Bobkov; Boucheron,
Lugosi. Massart; Breuer,Czizsar, etc...)
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Some convex analysis: UQ vs LDP

• Given f : X → R in L1(P ) consider the centered cumulant
generating function

Λ(c) = logEP

[
ec(f−EP [f ])

]
This is a convex function which we assume to be finite in a nbd
of 0.

• Legendre-Fenchel transform

Λ∗(x) = sup
c
{xc− Λ(c)}

This is the rate function in Cramer’s theorem and Λ∗(x) ≥ 0 and
= 0 iff x = 0.

• Inverse function (two branches) ( Fenchel-Young)

(Λ∗)−1
± (η) = inf

c≥0

{
Λ(±c) + η

c

}
Key role in UQ!
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Properties of the Gibbs information inequality

• ΞP,f(R(Q||P ) is a divergence, i.e.

ΞP,f(R(Q||P )) ≥ 0 and ΞP,f(R(Q||P )) = 0 if and only if Q = P or f = const

• Tightness I: Family of alternative models

Qη = {Q ; R(Q||P ) ≤ η}

There exists a maximizing measure Qη ∈ Qη such that

sup
Q∈Qη

EQ[f ]− EP [f ] = EQη[f ]− EP [f ] = ΞP,f(η)

Moreover Qη has the form (Cramer’s tilting)

dQη

dP
=

ec(η)f

EP [ec(η)f ]
with c such that R(Qη||Q) = η
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• (Tightness II) Given P and Q assumed to be mutually abso-
lutely continuous then for

f = log
dQ

dP

we have

EQ[f ]− EP [f ] = R(Q||P ) +R(P ||Q) = ΞP,f(R(Q||P ))

(symmetrized relative entropy)

• Linearization For small η

ΞP,f(η) =
√

2VarP [f ]η +
1

3

√
VarP [f ]S(f)η +O(η3/2)

where S(f) = E[|f−EP [f ]|3]
VarP [f ]3/2 is the skewness.
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Making it computable with concentration inequalities

Some examples: (Much more in Gourgoulias, Katsoulakis, R.-
B., Wang).

• If a ≤ f ≤ b we have Hoeffding’s inequality

Λ(c) ≤
c2(b− a)2

8
≤
c2‖f − EP [f ]‖∞

2
and then

ΞP,f(η) ≤
√

2η‖f − EP [f ]‖∞ (Cziszar-Kullback Pinsker).

• If f is bounded and VarP [f ] = σ2 then we have Bernstein
inequality

Λ(c) ≤
c2σ2

2(1− c‖f − EP [f ]‖∞)
and then

ΞP,f(η) ≤
√

2VarP [f ]η + ‖f − EP [f ]‖∞η
This beats Pinsker if η is not too big (especially if σ2 is small)
and captures the exact small η asymptotics.

• Many more.....
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Scalability for ergodic Markov processes

Baseline process:

• Ergodic continuous time Markov process Xt on state space
X

• path-space measure P 0:T
µ0

and with stationary distribution
µ.

• Infinitesimal generator L (acting on L2(µ)).

Alternative process:

• Ergodic continuous time stochastic process Yt on state
space X (not necessarily Markovian!).

• path-space measure Q0:T
ν0

with Q0:T
ν0
� P 0:T

µ0
and assume that

r(Q||P ) = lim
T→∞

1

T
R(Q0:T

ν0
||P 0:T

µ0
) relative entropy rate exists
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Steady state UQ bounds for ergodic Markov processes

Consider ergodic averages 1
T

∫ T
0
f(Xs) ds then using the Gibbs

UQ bound one the steady state bias bound

ξP,−f(r(Q||P )) ≤ lim
T→∞

1

T

∫ T

0

f(Ys)ds︸ ︷︷ ︸
true process

− Eµ[f ]︸ ︷︷ ︸
baseline

≤ ξP,f(r(Q||P ))

where

ξP,f(η) = inf
c>0

{
λ(c) + η

c

}

λ(c) = lim
T→∞

1

T
logEP 0:T

µ0

[
exp

(
c

∫ T

0

(f(Xs)− Eµ[f ])ds

)]
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• (Linearization:) Under suitable assumptions one can linearize

ξP,f(r(Q||P )) =
√

2σ2(f)r(Q||P ) +O(r(Q||P ))

where σ2(f) is the asymptotic variance (CLT)

σ2(f) = 2

∫ ∞

0

〈(f − Eµ[f ]) , eLt(f − Eµ[f ])〉L2(µ) .
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• Main idea is to consider the Feynmann-Kac semi group

eT (L+V )h(x) = EP 0:T
δx

[
e

∫ T

0
V (Xs)ds

h(Xt)

]

and to use the (finite T !) bound using Lumer-Philips Theorem
Liming Wu valid also for non-symmetric generators

1

T
log ‖eT (L+V )‖L2(µ) ≤ sup

{
〈g , Lg〉L2(µ) +

∫
V |g|2dµ , ‖g‖2 = 1

}
.

to derive we use concentration inequalities for Markov process .

We relie then on results from Wu, and Cattiaux , Guillin, and
Guillin, Leonard, Wu, Yao, and Gao, Guillin, Wu, going back to
Villani and many others.
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Poincaré inequalities and bounded f

Assume a Poincaré inequality (spectral gap)

Varµ[f ] ≤ −α〈f , Lf〉L2(µ) , f ∈ D(L)

• Theorem: For bounded f and general L a functional analytic

lemma gives (f̃ = f − Eµ[f ])

λ(c) ≤
c2αVarµ[f]

1− αc‖f̃‖∞

ξP,f(η) ≤ 2
√
αVarµ[f ]η + α‖f̃‖∞η
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• Theorem: For bounded f and symmetric L we can use the
asymptotic variance

λ(c) ≤
c2σ2(f)

2(1− αc‖f̃‖∞)

and thus

ξP,f(η) ≤
√

2σ2(f)η + α‖f̃‖∞η

(This is sharp for small η).
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Log-Sobolev inequalities and unbounded f

Assume a stronger Log-Sobolev inequality

Eµ[f2 log(f2)]− Eµ[f2] logEµ[f2] ≤ −β〈f ,Lf〉 f ∈ D(L)

Then using the Gibbs variational principle get the bound

ξP,f(η) = inf
c>0

{
logEµ

[
ec(f−Eµ[f ])

]
c

+
βη

c

}
=

√
2βVarµ[f ]η +O(η)(1)

and we can work another round of concentration inequalities to
obtain explicit constants depending on the tails of µ and f . It
is all reduced to the steady state, no more dynamics!.
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Example

Langevin equation

dX = −∇V + J∇V +
√

2dWt

for any any antisymmetric J has invariant measure dµ = e−V dx
and we have

L = ∆−∇V∇︸ ︷︷ ︸
symmetric

+ J∇V∇︸ ︷︷ ︸
antisymmetric

Assume V (x) ∼ |x|β

• Spectral gap for β > 1

• Log Sobolev for β > 2 so UQ bounds for V (X) itself.

For 1 < b ≤ 2 we can use F - Sobolev inequalities to consider
unbounded f .
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Hypocoercive samplers

Goal: To sample from ν(dq) ∝ e−βV (q)dq extending the phase
space and sample from the measure

µ(dp, dq) = ν(dq)π(dp) ∝ e−β(V (q)+p2/2m)dpdq

You can use other distribution of p too.

Why?: Add extra dimensions to escape your bad karma.... Make
the dynamics irreversible to get faster (This idea has been around
for quite a while but is quite popular.)

• Ex1: Langevin equation

dqt =
pt

m
dt, dpt =

(
−∇V (qt)− γ

pt

m

)
dt+

√
2γ

β
dWt

(2) L =

(
pT

m

)
∇q −∇V T∇p︸ ︷︷ ︸
T=−T ∗

+
1

β
(∆p − γ

(
p

M

)T
∇p)︸ ︷︷ ︸

S=S∗
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• Ex2: Randomized Hamiltonian Monte-Carlo.

The particle follow Hamiltonian equation of motions

dqt =
pt

m
dt, dpt = −∇V (qt)

without noise or dissipation for a random amount of time at
which we resample the momentum according to the stationary
measure.

With the projection Πf =
∫
f(p, q)dπ(p) the generator is

(3) L =

(
pT

m

)
∇q −∇V T∇p︸ ︷︷ ︸
T=−T ∗

+λ(Π− I)︸ ︷︷ ︸
S=S∗
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• EX 3: Bouncy particle sampler.

The particle follow straight lines for a random time. At updat-
ing time one either resample the momentum according to the
stationary measure or the particle ”bounces”, i.e., it undergoes
a Newtonian elastic collision on the hyperplane tangential to the
gradient of the energy and the momentum is updated according
to the rule

(4) r(q)p = p−
pT∇V (q)

‖∇V ‖2
∇V Rf(p, q) = f(q, r(q)p)

(5) L =
(
p

m

)T
∇q︸ ︷︷ ︸

free motion

+

[(
p

m

)T
∇V (q)

]+

(R− I)︸ ︷︷ ︸
bouncing

+λ(Π− I)︸ ︷︷ ︸
noise

• Zig-zag sampler..... etc...
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Hypocoercvity

Dolbeaut-Mouhot-Schmeiser (Langevin)
Andrieu-Durmus-Nüsken-Roussel
after many other works (Villani, Hereau-Nier, Hairer-Eckmann).

Idea: The dynamics is not coercive (no Poincaré inequality in
L2(µ) for L), but there exists a scalar product equivalent to
L2(µ) where a Poincar’e inequality holds!

〈f, g〉ε = 〈f, f〉+ ε〈f, (B +B∗)g〉.

B = (1 + (TΠ)∗(TΠ))−1(−TΠ)∗

and T is the antisymmetric part of the generator

Modified Poincaré inequality:

〈−Lg, g〉ε ≥ Λ(ε)Varµ(f)(6)

and Λ(ε) is explicitly expressed in terms of the Poincaré inequality
for ν(dq) the spectral gap of the noise operator and the potential
V ....

27



Performance guarantees for hypocoercive samplers

New results (Jermiah Birell and L. R.-B.)

Theorem (Bernstein type inequalities for hypocoercive sampler)
For bounded f we have

Pµ0

(∣∣∣∣1T
∫ T

0

f(Xt)dt−
∫

fdµ

∣∣∣∣ ≥ r)
≤ a(ε)

∥∥∥dµ0

dµ

∥∥∥
L2(µ)

exp

(
−T

b(ε)Λ(ε)r2

4Varµ[f ] + 2c(ε)‖f − Eµ[f ]‖r

)
where a(ε), b(ε), c(ε) only depends on ε.

You can use this to derive non asymptotic confidence intervals
for
∫
fdµ, i.e. as well as UQ bounds for alternative process

ξP,f(η) ≤
√

2a(ε)Λ(ε)Varµ[f ]η + b(ε)Λ(ε)‖f − Eµ[f ]‖∞η

where η is the relative entropy rate.
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