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e More coming.....

e Performance guarantees for hypocoercive MCMC samplers, by
Jeremiah Birrell, Luc Rey-Bellet. (In preparation)

e Uncertainty Quantification for Markov Processes via Varia-
tional Principles and Functional Inequalities, by Jeremiah Birrell,
Luc Rey-Bellet (submitted)

e, Sensitivity Analysis for Rare Events based on Rnyi Divergence,
by Paul Dupuis, Markos A. Katsoulakis, Yannis Pantazis, Luc
Rey-Bellet (to appear in Annals of Applied Probability)

e How biased is your model? Concentration Inequalities, Infor-
mation and Model Bias, by Konstantinos Gourgoulias, Markos
A. Katsoulakis, Luc Rey-Bellet, Jie Wang (To appear in IEEE,
Transactions on Information Theory)

e Scalable Information Inequalities for Uncertainty Quantifica-
tion, by Markos A. Katsoulakis, Luc Rey-Bellet, Jie Wang (J.
Comp. Phys.)



Basic question: Uncertainty quantification

— Baseline model P (= probability measure on X). Think
of it as a (tractable) model you use to compute or calculate.

NOT TO BE TRUSTED!!

— Quantities of interests (Qol) such as

e Fp[f] (Expectation)

Var Variance) or Covr(f.g) correlation), ....
* p(f) ( ) V/Varp(f)Varp(g) ( )

e Aps(c) =log Eple/] (risk sensitive functional)
e log P(A) (probability of some rare event)

e and SO on



— Family of alternative models ). Think of it as describing
the true but unknowable model. Set

Q, = {Qisn"close"” to P}
Think of something like

Q, ={Q : R(Q||P) <n} R(Q||P) = Eq [Iog %} relative entropy

It measures the allowed information loss.

Given an observable quantity f can one find uncertainty bounds
or performance guarantees

inf Eq[f] < Ep[f] < sup Eg[f].
Qe9, QeQ,

— Robustness , Book by Hansen (Nobel 2011) and Sargent
(Nobel 2013)
— Operation research, Finance, etc.... —

The bounds should be tight and computable (numerically or
analytically).



Challenge: Scalable bounds for probabilities on high-dimensional
spaces

Long-time regime (T' — oo) : Typical example: two ergodic
Markov processes X; and Y; with path space measures Py and
Qo:7 and stationary measures pp and g

In this case we assume there is rate of information loss

%R(QO:THPO:T) — r(QI[P)

We want steady states UQ bounds, control e.g. on

EMP [f] o EMQ [f]

especially if up and/or pg is not know explicitly



Seemingly unrelated: performance guarantees for sampling

Think of a MCMC where pu = pp is your target distribution
sampled using X; and we are trying to evaluate

T
lim l/ f(XS) = /fd,u with Xo ~ uo
T 0

T—o00

How do we evaluate the performance of the Markov process X;
starting for the initial measure pug as a MCMC algorithm?

e Practical: use the sample variance

1 T

to build asymptotic confidence intervals using central limit the-
orem.

TVarp

KO

Drawback: how do you choose T to be in the CLT regime...
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e Mixing times: Use spectral gaps estimates to compute mix-
ing times (need explicit constants). Geometric ergodicity, L?
estimates, etc....

Explicit bounds on dist(ur, ) where Xp ~ urp

Drawback: in practice we often do not sample pr but use ergodic
averages (empirical measure)

e Concentration inequalities (My favorite for today). Construct
explicit rigorous finite T confidence intervals using concentration
inequalities such as Bernstein type inequalities

1 g duo r2
Py T i f(Xs)— [ fdup>r) < HE LQ(M)GXD _t2(02—|—Mr)

with explicit constants o2 and M.

YES : Obtain explicit performance guarantees if we use finite
time samples. But it may be too pessimistic.



What’s wrong with CKP? Scalability

Czsizar-Kullback-Pinsker

|EQlf] = Erlfll < /2R(Q[|P) [If — Er[flll«

Take Markov measures P = P%T and Q = Q%7 on the time

window [0,T] and
1 T
FT:—/ f(XS)dS
T Jq

Then we have

1Frlleo = [|flle = O(1) and R(Q°"||P%") = O(T)
CKP scales terribly poorly with T', the LHS is O(1) but the RHS
diverges like v/T.

But

varprtril =0 (1)

so one would need the variance instead of the sup norm.
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Gibbs Variational principle
e Relative entropy (a.k.a Kullback-Leibler divergence).
Eo |log ﬁ] if Q< P
R P) = Q[ apP
@11 P) { o0 otherwise

R(Q || P) is a divergence, thatis R(Q || P) > 0and R(Q || P) =0
if and only if Q = P.

e Gibbs variational principle for the relative entropy: (convex
duality).

log Ep [ef] = Sgp {Eqlf] — R(Q||P)}

with the supremum attained if and only if

fap
— anf — €
e =de ~ Ep[e/]
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Gibbs information inequality
From the Gibbs variational principle, for any @ and ¢ >0

Eq[*cf] <logEp [ei"f} + R(Q||P).

Optimize over c:
Theorem (Gibbs Information inequality)

—inf
c>0
A\

{/\(—C) + R(Q||P)

C

A(c) +R(QHP)}

C

} < Eolt] - Eelf] < inf {

g \ . >4

—=p_+(R(Q[IP)) —=p (R(Q|P))

Epyf(n) = inf {W} A(c) = 1ogEp [ec(f_EP[f])]

c>0

How good is it? (Long history... Dupuis; Bobkov; Boucheron,
Lugosi. Massart; Breuer,Czizsar, etc...)
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Some convex analysis: UQ vs LDP

e Given f : X — R in L'(P) consider the centered cumulant
generating function

A(c) = 1og Ep [ec(f_EP[f])}
This is a convex function which we assume to be finite in a nbd
of 0.

e Legendre-Fenchel transform
N (x) = sup{xzc— A(c)}
This is the rate function in Cramer’s theorem and A*(z) > 0 and
=0 iff z = 0.
e Inverse function (two branches) ( Fenchel-Young)
A(£c) + 77}

C

(A () = inf{
c>0
Key role in UQ!
12



Properties of the Gibbs information inequality

o =p(R(Q||IP) is a divergence, i.e.

=p(R(Q||P)) > 0 and =p(R(Q||P)) = 0 if and only if Q = P or f = const

e Tightness I: Family of alternative models

Qy =A{Q; R(Q||P) <n}

There exists a maximizing measure @, € 9, such that
sup Eglf] — Eplf] = Eq,[f] — Eplf]l = =ps(n)
Qe
Moreover @, has the form (Cramer’s tilting)
dQ, ec(mf
dP Ep[ec(n)f]

with ¢ such that R(Q@Q,||Q) =n
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e (Tightness II) Given P and @ assumed to be mutually abso-
lutely continuous then for

I
f=log—>

we have

Eqlf] — Ep[f] = R(Q||P) + R(P||Q) = =ps(R(QI|P))
(symmetrized relative entropy)

e Linearization For small n

=5 (1) = \/2Varp[fln + % Varp[f1S(f)n + O(n*'?)

where S(f) = %ﬁ;{f}ﬁ is the skewness.
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Making it computable with concentration inequalities

Some examples: (Much more in Gourgoulias, Katsoulakis, R.-
B., Wang).

o If o« < f < b we have Hoeffding's inequality

b —a) _ Alf —Erlflll

A(e) < 5 < 5

and then
=pr(m) < \/2n|lf —Ep[flllo (Cziszar-Kullback Pinsker).

e If f is bounded and Varp[f] = ¢ then we have Bernstein
inequality

c?o?

Ne) < 53— cllf — Eplf]]ls)

=pr(n) < v/2Varp[fln + ||f — Ep[f]llen

This beats Pinsker if n is not too big (especially if ¢2 is small)
and captures the exact small n asymptotics.

and then

e Many more.....
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Scalability for ergodic Markov processes

Baseline process:

e Ergodic continuous time Markov process X; on state space
X

e path-space measure PJ” and with stationary distribution
L.

e Infinitesimal generator £ (acting on L?(u)).

Alternative process:

e Ergodic continuous time stochastic process Y; on state
space X (not necessarily Markovian!).

e path-space measure QY;" with Q7 < P2T and assume that

1 : :
r(Q[IP) = lim —R(Q)"||PY")  relative entropy rate exists
T—oo 1’
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Steady state UQ bounds for ergodic Markov processes

Consider ergodic averages %fOTf(XS) ds then using the Gibbs
UQ bound one the steady state bias bound

N——

\ 7 i
~~ baseline

true process

& 1(r(@IIP)) < Jim = / FORds = Bulf] < €nr(r(QIIPY)
—00 0

where

C

Eps(n) = inf {M}

T
exp <c/ (f(Xs) — Eu[f])ds)]
0

17

, 1
A(c) = lim - log EP%T

T—00




e (Linearization:) Under suitable assumptions one can linearize

p s (r(QIIP)) = /262(H)r(Q[|P) 4+ O(r(Q||P))

where o?(f) is the asymptotic variance (CLT)

a?(f) = 2/ ((f = Bulf1), " (f = EulfD) 12 -
0
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e Main idea is to consider the Feynmann-Kac semi group

TE () = By |e)s ”X‘*”‘Sh(xt)]

and to use the (finite T'!) bound using Lumer-Philips Theorem
Liming Wu valid also for non-symmetric generators

1
7109 1" L2y < sup {(9, Lg) 2y + /V\Q\Qdu, lgll* = 1} :

to derive we use concentration inequalities for Markov process .

We relie then on results from Wu, and Cattiaux , Guillin, and
Guillin, Leonard, Wu, Yao, and Gao, Guillin, Wu, going back to
Villani and many others.
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Poincaré inequalities and bounded f

Assume a Poincaré inequality (spectral gap)

Varﬂ[f] < —Oé(f, 'Cf>L2(,u)a f € D('C)

e Theorem: For bounded f and general £ a functional analytic
lemma gives (f = f — EL[f])

e < c?aVar,[f]
~1-adflle

epr(n) < 2+/aVar,[fln 4 al| flleon
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e Theorem: For bounded f and symmetric £ we can use the
asymptotic variance

Ae) < o> (f)
2(1 — ac||f]le)

and thus

¢p.r(n) < \/202(FIn + al| flleon

(This is sharp for small n).
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Log-Sobolev inequalities and unbounded f

Assume a stronger Log-Sobolev inequality
Eu[f2109(f?)] = Eulf?110g EL[f?] < =B(f,Lf) fe€ D(L)

Then using the Gibbs variational principle get the bound

|Og E,u [ec(f*Ep[f])} + @

Epf(m) = inf
c>0 C C
(1) = /28Var.lfln+O0)

and we can work another round of concentration inequalities to
obtain explicit constants depending on the tails of © and f. It
is all reduced to the steady state, no more dynamics!.
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Example

Langevin equation
dX = —VV + JVV +V2dW,

for any any antisymmetric J has invariant measure dy = e Vdx
and we have

L=A-VVV+ JVVYV

symmetric antisymmetric
Assume V(z) ~ |z|’
e Spectral gap for 8 > 1
e Log Sobolev for 8 > 2 so UQ bounds for V(X) itself.

For 1 < b < 2 we can use F- Sobolev inequalities to consider
unbounded f.
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Hypocoercive samplers

Goal: To sample from v(dg) < e ?V(@dq extending the phase
space and sample from the measure

u(dp, dg) = v(dg)m(dp) o< e PV DFP/2m) gpqq
You can use other distribution of p too.

Why?7: Add extra dimensions to escape your bad karma.... Make
the dynamics irreversible to get faster (This idea has been around
for quite a while but is quite popular.)

e Ex1: Langevin equation

2
dgs = 2at, dpy = (—VV(qt) - yﬁ) dt + | =Law,
m m I}

T 1 T
2 r= (19—) Vo= YV 428, =7 (%) V)

T=-T*

7
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e Ex2: Randomized Hamiltonian Monte-Carlo.

The particle follow Hamiltonian equation of motions
Dt
dqt = —dt, dpt == —VV(qt)
m
without noise or dissipation for a random amount of time at
which we resample the momentum according to the stationary

measure.

With the projection IMNf = ff(p, q)dm(p) the generator is

T
p T
3 L=|—]|V,—VV'V AN —1
3) (m> : p A = 1)
(. ~ _/ S=9*
T=-T*
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e EX 3: Bouncy particle sampler.

The particle follow straight lines for a random time. At updat-
ing time one either resample the momentum according to the
stationary measure or the particle "bounces”, i.e., it undergoes
a Newtonian elastic collision on the hyperplane tangential to the
gradient of the energy and the momentum is updated according
to the rule

p'VV(q)

(4) r(¢)p=p— NGE

VvV Rf(p,q) = f(q,7(q)p)

(5) L= (%)Tvq‘F [(%)vaqm] "R Dm0y

N—_——— / noise
free motion bou?lrcing
e Zig-zag sampler..... etc...
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Hypocoercvity

Dolbeaut-Mouhot-Schmeiser (Langevin)
Andrieu-Durmus-Nusken-Roussel
after many other works (Villani, Hereau-Nier, Hairer-Eckmann).

Idea: The dynamics is not coercive (no Poincaré inequality in
L?(p) for L), but there exists a scalar product equivalent to
L?(p) where a Poincar’e inequality holds!

(f,9)e = (f, f) + (f, (B + B*)g).
B = (14 (Tm)*(rn)) "t (-Tn)*

and T is the antisymmetric part of the generator

Modified Poincaré inequality:

(6) (—=Lg,9)e = Ne)Varu(f)

and A(e) is explicitly expressed in terms of the Poincaré inequality
for v(dq) the spectral gap of the noise operator and the potential
V...
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Performance guarantees for hypocoercive samplers
New results (Jermiah Birell and L. R.-B.)

Theorem (Bernstein type inequalities for hypocoercive sampler)
For bounded f we have
> )

T
Py ( = / FOX)dt / fu
0

exp [ —T b(e)A(e)r?
L2(1) avar,[f] + 2c(e)||f — Eulf]llr

where a(e),b(e), c(e) only depends on e.

i

You can use this to derive non asymptotic confidence intervals
for ffdu, i.e. as well as UQ bounds for alternative process

eps(n) < \/2a(A)Varu[f1n + bEAE)f — Eulf]]loon

where n is the relative entropy rate.
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