An Optimal Transport Perspective on Uncertainty Quantification

Amir Sagiv
Columbia University

Two motivation slides:
initial condition

$$
\psi_{0}(x, y)
$$

nonlinear laser propagation

Two motivation slides:

Each laser shot is different

random initial condition

$$
\psi_{0}(x, y ; \alpha)
$$

α - noise parameter
[Sagiv, Ditwkoski, Fibich, Opt. Exp. 2017]

Two motivation slides:

nonlinear laser propagation

Each laser shot is different

random output

$$
\psi(z, x, y ; \alpha)
$$

α - noise parameter What kind of statistics do we want to compute?

Moment estimation
 e.g., $\mathrm{E}\left(\left|\psi\left(z_{i}, x_{i}, y_{i}\right)\right|^{2}\right)$, over many realizations (repetitions)

[e.g., Fibich, Eisenman, Ilan, Zigler, Opt. Lett. 2005]

Two motivation slides:

Each laser shot is different

random initial condition

$$
\psi_{0}(x, y ; \alpha)
$$

nonlinear laser propagation
random output

$$
\psi(z, x, y ; \alpha)
$$

α - noise parameter What kind of statistics do we want to compute?

Moment estimation e.g., $\mathrm{E}\left(\left|\psi\left(z_{i}, x_{i}, y_{i}\right)\right|^{2}\right)$, over many realizations (repetitions)

Density estimation
Probability Density Function
(PDF) of some "quantity of
interest" $f(\psi)$

Why study the PDF - Examples from optics

Beam fusion

Z

Example I: over many repetitions, what are the chances of fusion vs. repulsion?

ndom output

$\psi_{0}=R_{\kappa_{1}}(x+d) e^{i \theta x}+(1+0.1 \alpha) R_{\kappa_{1}}(x-d) e^{-i \theta x}(Z, x ; \alpha)$
Random amplitude

Example II: Distribution of polarization as a function of propagation distance
[\w Patwardhan et al, PRA 2019]

General standard nonlinear PDE settings

Initial value problem

$$
\left\{\begin{array}{l}
u_{t}(t, \boldsymbol{x})=Q(\boldsymbol{x}, u) u \\
u(t=0, \boldsymbol{x})=u_{0}(\boldsymbol{x})
\end{array}\right.
$$

- "quantity of interest" (model output) $f(u(t, \boldsymbol{x}))$
- e.g., $f=u\left(t_{i}, x_{i}\right), \mathrm{f}=\int d x|\mathrm{u}|^{2}, \ldots$
- $u \& f(u)$ are evaluated numerically

General Settings - Nonlinear PDE with randomness

Initial value problem with randomness (both i.c. u_{0} and operator Q)

$$
\left\{\begin{array}{l}
u_{t}(t, \boldsymbol{x} ; \boldsymbol{\alpha})=Q(\boldsymbol{x}, u ; \boldsymbol{\alpha}) u \\
u(t=0, \boldsymbol{x} ; \boldsymbol{\alpha})=u_{0}(\boldsymbol{x} ; \boldsymbol{\alpha})
\end{array}\right.
$$

- α distributed according to a known measure
- "quantity of interest" (model output) $f(\alpha):=f(u(t, \boldsymbol{x} ; \boldsymbol{\alpha}))$
- e.g., $f=u\left(t_{i}, x_{i}\right), \mathrm{f}=\int d x|\mathrm{u}|^{2}, \ldots$
- $u \& f(u)$ are evaluated numerically

General Settings - Nonlinear PDE with randomness

Initial value problem with randomness

$$
\begin{aligned}
& u_{t}(t, x ; \alpha)=Q(x, u ; \alpha) u \\
& u(t=0, x ; \alpha)=u_{0}(x ; \alpha)
\end{aligned}
$$

- α distributed according to a known measure
- "quantity of interest" (model output) $f(x):=f(u(t, x ; \alpha))$
- e.g., $f=u\left(t_{i}, x_{i}\right), \mathrm{f}=\int d x|\mathrm{u}|^{2}, \ldots$

How to approximate the PDF of $f(\boldsymbol{\alpha})$, a random variable, numerically?

Agenda

- PDF approximation
- Is moment-estimation sufficient?
- An algorithm \& convergence results
- Transport-theory point of view

Agenda

- PDF approximation
- Is moment-estimation sufficient?

How does standard UQ methods perform in this task

- An algorithm \& convergence results
- Transport-theory point of view

General Settings - Nonlinear PDE with randomness

Initial value problem with randomness

$$
\begin{aligned}
& u_{t}(t, x ; \alpha)=Q(x, u ; \alpha) u \\
& u(t=0, x ; \alpha)=u_{0}(x ; \alpha)
\end{aligned}
$$

- α distributed according to a known measure
- "quantity of interest" (model output) $f(\alpha):=f(u(t, x ; \alpha))$
- e.g., $f=u\left(t_{i}, x_{i}\right), \mathrm{f}=\int d x|\mathrm{u}|^{2}, \ldots$

How to approximate the PDF of $f(\boldsymbol{\alpha})$, a random variable, numerically?

Constraints:

- Can only compute $f\left(\alpha_{j}\right)$ for a given α_{j}
- Computation of $f\left(\alpha_{j}\right)$ is expensive (e.g., solving the (3+1)dimensional NLS) -Can only use a small sample $\left\{f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{N}\right)\right\}$

Standard statistical methods

Step I - draw i.i.d. samples $\alpha_{1}, \ldots, \alpha_{N}$ Step II - compute the samples $\left\{f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{N}\right)\right\}$

Moment estimation

- Monte-Carlo $\mathbf{E}_{\alpha}[f] \approx \frac{1}{N} \sum_{n=1}^{N} f_{n}$

Density (PDF) estimation

- Histogram method
- Kernel density estimators (KDE)

Standard statistical methods

Step I - draw i.i.d. samples $\alpha_{1}, \ldots, \alpha_{N}$ Step II - compute the samples $\left\{f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{N}\right)\right\}$

Moment estimation

- Monte-Carlo $\mathbf{E}_{\alpha}[f] \approx \frac{1}{N} \sum_{n=1}^{N} f_{n}$
- Poor approximations for small N ($\frac{1}{\sqrt{N}}$ error) e.g. Histogram method with $\mathrm{N}=10$ samples

Standard statistical methods

Step I - draw i.i.d. samples $\alpha_{1}, \ldots, \alpha_{N}$ Step II - compute the samples $\left\{f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{N}\right)\right\}$

Moment estimation

- Monte-Carlo E E $\alpha f] \approx \frac{1}{N} \sum_{n=1}^{N} f_{n}$

Density (PDF) estimation

- Histogram method
- Kernel density estimators (KDE)
- Poor approximations for small N e.g. Histogram method with $\mathrm{N}=10$ samples

Standard statistical methods

$$
\begin{array}{cc}
\begin{array}{c}
\text { Step I - draw i.i.d. samples } \alpha_{1}, \ldots, \alpha_{N} \\
\text { Step II - compute the samples }\left\{f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{N}\right)\right\} \\
\\
\text { Moment estimation } \\
\text { Density (PDF) estimation } \\
\text { Monte-Carlo } \mathbf{E}_{\alpha}[f] \approx \frac{1}{N} \sum_{n=1}^{N} f_{n}
\end{array} & \text { - } \\
& \text { Histogram method }
\end{array}
$$

Can we improve?

- Methods above only use $\left\{f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{N}\right)\right\}$.
- We can also use

1. The relation $f(\boldsymbol{\alpha}) \leftrightarrow \alpha$
2. Smoothness of $f(\alpha)$

These assumptions underly many studies in uncertainty quantification (UQ), specifically in uncertainty propagation

Approximation-based estimation

p is the PDF of f

Quantity of interest

Approximation-based estimation

p is the PDF of f

$$
\mathbf{E}_{\alpha}[f], p
$$

cannot take a large sample

- Unknown explicitly
- Each evaluation is computationally expensive

Approximation-based estimation

p is the PDF of f

Approximation-based estimation

p is the PDF of f

Questions

- Which approximation $g(\alpha) \approx f(\alpha)$ should be used?
- How small are $\mathrm{E}_{\alpha}[f]-\mathrm{E}_{\alpha}[g]$ and $\|p-\hat{p}\|$?

Attempt I - generalized polynomial chaos (gPC)

Standard in the field of uncertainty quantification (UQ)
Approximate f using orthogonal polynomials $\left\{q_{n}(\alpha)\right\}$

$$
f_{N}(\alpha)=\sum_{n=0}^{N-1}\left\langle q_{n}, f\right\rangle q_{n}(\alpha)
$$

- Spectral accuracy (moments and L^{2})

$$
\mathbf{E}_{\alpha}[f]-\mathbf{E}_{\alpha}\left[f_{N}\right]=O\left(e^{-\gamma N}\right), \quad N \gg 1 \quad f \text { is analytic }
$$

Attempt I - generalized polynomial chaos (gPC)

Standard in the field of uncertainty quantification (UQ)
Approximate f using orthogonal polynomials $\left\{q_{n}(\alpha)\right\}$

$$
f_{N}(\alpha)=\sum_{n=0}^{N-1}\left\langle q_{n}, f\right\rangle q_{n}(\alpha)
$$

- Spectral accuracy (moments and L^{2})

$$
\mathbf{E}_{\alpha}[f]-\mathbf{E}_{\alpha}\left[f_{N}\right]=O\left(e^{-\gamma N}\right), \quad N \gg 1 \quad f \text { is analytic }
$$

But,

PDF estimation
No theory for $\left\|p-p_{N}\right\|$
Will it work in practice?

Example - gPC fails at PDF estimation

$f=\tanh (9 \alpha)+\frac{\alpha}{2}, \quad \alpha \sim$ Uniform $[-1,1]$

Example - gPC fails at PDF estimation

$f=\tanh (9 \alpha)+\frac{\alpha}{2}, \quad \alpha \sim$ Uniform $[-1,1]$ PDF approximation, $N=12$ samples

Why does it fail?

Example - gPC fails at PDF estimation

$f=\tanh (9 \alpha)+\frac{\alpha}{2}, \quad \alpha \sim U[-1,1]$

Why does it fail? α
Lemma: Under general smoothness conditions

$$
p(y)=\sum_{f(\alpha)=y} \frac{1}{\left|f^{\prime}(\alpha)\right|}
$$

Although gPC is spectrally accurate (in L^{2}), it produces "artificial" zero derivatives.

PDF approximation, $N=12$ samples

Agenda

- PDF approximation
- Is moment-estimation sufficient?
- An algorithm \& convergence results

Approximating pushed-forward densities, provably

- Transport-theory point of view

An Alternative Approximation-based estimation

p is the PDF of f

Lessons learned

- For PDF approximation, spectral moment accuracy is not sufficient.
- It is necessary that $\mathrm{g}^{\prime} \neq 0 \leftrightarrow f^{\prime} \neq 0$

$$
|g-f|,\left|g^{\prime}-f^{\prime}\right| \ll 1
$$

- "Monotonicity preserving approximation"

Solution: use spline interpolation
(piece-wise polynomials)

The solution - Spline-based approach (1d)

Theorem 1 (Ditkowski, Fibich, AS '18):

Let p and p_{N} be the probability density functions (PDF) of $f(\alpha)$ and its m-degree spline interpolant on N equi-distributed points. Then

$$
\left\|p-p_{N}\right\|_{1} \leq K N^{-m}
$$

The solution - Spline-based approach (1d)

Theorem 1 (Ditkowski, Fibich, AS '18):
Let $f \in C_{\text {piecewise }}^{m+1}\left(\left[\alpha_{\text {min }}, \alpha_{\text {max }}\right]\right)$ with $\quad\left|\boldsymbol{f}^{\prime}\right|>\boldsymbol{a}>\mathbf{0}$, let α be distributed by $c(\alpha) d \alpha$ where $c \in C^{1}\left(\left[\alpha_{\text {min }}, \alpha_{\text {max }}\right]\right)$. and
Let p and p_{N} be the probability density functions (PDF) of $f(\alpha)$ and its m-degree spline interpolant on N equi-distributed points. Then

$$
\left\|p-p_{N}\right\|_{1} \leq K N^{-m},
$$

The solution - Spline-based approach (1d)

Theorem 1 (Ditkowski, Fibich, AS '18):

Let $f \in C_{\text {piecewise }}^{m+1}\left(\left[\alpha_{\min }, \alpha_{\max }\right]\right)$ with $\left|f^{\prime}\right|>a>0$, let α be distributed by $c(\alpha) d \alpha$ where $c \in C^{1}\left(\left[\alpha_{\text {min }}, \alpha_{\text {max }}\right]\right)$.
and
Let p and p_{N} be the probability density functions (PDF) of $f(\alpha)$ and its m -degree spline interpolant on N equi-distributed points. Then

$$
\left\|p-p_{N}\right\|_{1} \leq K N^{-m}
$$

For all

$$
N>\sqrt[m]{\frac{2 C_{m}\left\|f^{(m+1)}\right\|_{\infty}}{a}}\left(\alpha_{\max }-\alpha_{\min }\right)
$$

Proof "ingredients"

Theorem 1 (Ditkowski, Fibich, AS '18):

Let p and p_{N} be the probability density functions (PDF) of $f(\alpha)$ and its m -degree spline interpolant on N equi-distributed points. Then

$$
\left\|p-p_{N}\right\|_{1} \leq K N^{-m}
$$

Lemma: Under general smoothness conditions

$$
p(y)=\sum_{f(\alpha)=y} \frac{c(\alpha)}{\left|f^{\prime}(\alpha)\right|}
$$

Proof "ingredients"

Theorem 1 (Ditkowski, Fibich, AS '18):

Let p and p_{N} be the probability density functions (PDF) of $f(\alpha)$ and its m -degree spline interpolant on N equi-distributed points. Then

$$
\left\|p-p_{N}\right\|_{1} \leq K N^{-m}
$$

Lemma: Under general smoothness conditions

$$
p(y)=\sum_{f(\alpha)=y} \frac{c(\alpha)}{\left|f^{\prime}(\alpha)\right|}
$$

Theorem (Meyer, Hall, '76): for $f \in C^{m+1}$, Then

$$
\left\|(f-s)^{(j)}\right\|_{\infty} \leq C_{m}(f) h^{m+1-j} \quad j=0, \ldots m-1
$$ where $\mathrm{h}>0$ is the maximal spacing between interpolation points

Proof "ingredients"

Theorem 1 (Ditkowski, Fibich, AS '18):

Let p and p_{N} be the probability density functions (PDF) of $f(\alpha)$ and its m -degree spline interpolant on N equi-distributed points. Then

$$
\left\|p-p_{N}\right\|_{1} \leq K N^{-m}
$$

Lemma: Under general smoothness conditions

$$
p(y)=\sum_{f(\alpha)=y} \frac{c(\alpha)}{\left|f^{\prime}(\alpha)\right|}
$$

Theorem (Meyer, Hall, '76): for $f \in C^{m+1}$, Then

$$
\left\|(f-s)^{(j)}\right\|_{\infty} \leq C_{m}(f) h^{m+1-j} \quad j=0, \ldots m-1
$$ where $\mathrm{h}>0$ is the maximal spacing between interpolation points

Hence, if f is monotone, N is high enough, and y in f's image, $\alpha \sim U(-1,1)$
$\left|\left|p-p_{N} \|_{1}=\int d y\right| p(y)-p_{N}(y)\right|=\int d y\left|\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}-\frac{1}{s^{\prime}\left(s^{-1}(y)\right)}\right|$

PDF estimation

$$
f=\tanh (9 \alpha)+\frac{\alpha}{2}, \quad \alpha \sim \text { Uniform }[-1,1]
$$

PDF approximation, $N=12$
Statistically optimal

PDF estimation

$$
f=\tanh (9 \alpha)+\frac{\alpha}{2}, \quad \alpha \sim \text { Uniform }[-1,1]
$$

$$
\sigma(f)-\sigma\left(f_{N}\right)
$$

PDF approximation, $N=12$

Coupled NLS example

$$
i \frac{\partial}{\partial t} A_{ \pm}(t, x)+\frac{\partial^{2}}{\partial x^{2}} A_{ \pm}+\frac{2}{3}\left(\left|A_{ \pm}\right|^{2}+2\left|A_{\mp}\right|^{2}\right) A_{ \pm}=0
$$

[with Patwardhan et al, PRA, 2019]
phase: $\varphi_{ \pm}(t)=\arg \left(A_{ \pm}(t, x=0)\right) \bmod (2 \pi)$
polarization $\theta(t)=\varphi_{+}(t)-\varphi_{-}(t)$
Random elliptical beam -

$$
A_{ \pm}(t=0)=(1+\alpha) C_{ \pm} e^{-x^{2}}, \quad \alpha \sim U(-0.1,0.1)
$$

PDF, $N=64$
PDF, N=64

Coupled NLS example

$$
i \frac{\partial}{\partial t} A_{ \pm}(t, x)+\frac{\partial^{2}}{\partial x^{2}} A_{ \pm}+\frac{2}{3}\left(\left|A_{ \pm}\right|^{2}+2\left|A_{\mp}\right|^{2}\right) A_{ \pm}=0
$$

[with Patwardhan et al, PRA, 2019]
phase: $\varphi_{ \pm}(t)=\arg \left(A_{ \pm}(t, x=0)\right) \bmod (2 \pi)$
polarization $\theta(t)=\varphi_{+}(t)-\varphi_{-}(t)$
Random elliptical beam -

$$
A_{ \pm}(t=0)=(1+\alpha) C_{ \pm} e^{-x^{2}}, \quad \alpha \sim U(-0.1,0.1)
$$

Burgers equation - shock location

$$
u_{t}(t, x)+\frac{1}{2}\left(u^{2}\right)_{x}=\frac{1}{2}(\sin (x))_{x}
$$

Initial condition: $\mathrm{u}_{0}(\mathrm{x})=\alpha \sin (x)$
Shock location at $t \rightarrow \infty \quad \alpha=-\cos \left(X_{s}\right)$

Distribution of random initial amplitude -

Burgers equation - shock location

$$
u_{t}(t, x)+\frac{1}{2}\left(u^{2}\right)_{x}=\frac{1}{2}(\sin (x))_{x}
$$

Initial condition: $\mathrm{u}_{0}(\mathrm{x})=\alpha \sin (x)$
Shock location at $t \rightarrow \infty \quad \alpha=-\cos \left(X_{s}\right)$
Distribution of random initial amplitude -

[compare Chen, Gottlieb, Hesthaven, JCP 2005]

Spline-based density estimation for multidimensional noise

Can this problem be solved if the input noise is multi-dimensional?
(physically - multiple uncertain or noisy terms in the system)

Spline-based density estimation for multidimensional noise

Theorem 2 (Ditkowski, Fibich, AS '18):

Let $\Omega=[0,1]^{d}$, let $f \in C^{m+1}(\Omega)$ with $|\nabla f|>a>0$, let α be uniformly distributed in Ω,

```
and
```

Let p and p_{N} be the probability density functions (PDF) of $f(\alpha)$ and its m-degree tensor-product spline interpolant on N^{d} equi-distributed points. Then

$$
\left\|p-p_{N}\right\|_{1} \leq K N^{-\frac{m}{d}}
$$

Curse of dimensionality

Theorem 2 (Ditkowski, Fibich, AS '18):
Let $\Omega=[0,1]^{d}$, let $f \in C^{m+1}(\Omega)$ with $|\nabla f|>a>0$, let α be uniformly distributed in Ω,
and
Let p and p_{N} be the probability density functions (PDF) of $f(\alpha)$ and its m-degree tensor-product spline interpolant on N^{d} equi-distributed points. Then

$$
\left\|p-p_{N}\right\|_{1} \leq K N^{-\frac{m}{d}},
$$

For kernel density estimators [e.g., Devroye `84]

$$
\left\|p-p_{k d e, N}\right\|_{1} \sim N^{-0.4}
$$

Our method is preferable when $d \leq \frac{5 m}{2}$

From $d=1$ to $d>1$:
"Same" result, more complicated proof

Theorem 1 (Ditkowski, Fibich, AS '18):

Let p and p_{N} be the probability density functions (PDF) of $f(\alpha)$ and its m -degree spline interpolant on N equi-distributed points. Then

$$
\left\|p-p_{N}\right\|_{1} \leq K N^{-\frac{m}{d}}
$$

Theorem (Schultz, '69): for $f \in C^{m+1}$,
Then
$\left\|(f-s)^{(j)}\right\|_{\infty} \leq C_{m}(f) h^{m+1-j} \quad j=0, \ldots m-1$
where $\mathrm{h}>0$ is the maximal spacing between interpolation points

From $d=1$ to $d>1$:

"Same" result, more complicated proof

Theorem 1 (Ditkowski, Fibich, AS '18):

Let p and p_{N} be the probability density functions (PDF) of $f(\alpha)$ and its m -degree spline interpolant on N equi-distributed points. Then

$$
\left\|p-p_{N}\right\|_{1} \leq K N^{-\frac{m}{d}}
$$

Lemma: Under general smoothness conditions

$$
p(y) \sim \int_{f^{-1}(y)} \frac{1}{|\nabla f|} d \sigma
$$

Theorem (Schultz, '69): for $f \in C^{m+1}$,
Then
$\left\|(f-s)^{(j)}\right\|_{\infty} \leq C_{m}(f) h^{m+1-j} \quad j=0, \ldots m-1$ where $\mathrm{h}>0$ is the maximal spacing between interpolation points

From $d=1$ to $d>1$:

"Same" result, more complicated proof

Theorem 1 (Ditkowski, Fibich, AS '18):

Let p and p_{N} be the probability density functions (PDF) of $f(\alpha)$ and its m -degree spline interpolant on N equi-distributed points. Then

$$
\left\|p-p_{N}\right\|_{1} \leq K N^{-\frac{m}{d}}
$$

Lemma: Under general smoothness conditions

$$
p(y) \sim \int_{f^{-1}(y)} \frac{1}{|\nabla f|} d \sigma
$$

Theorem (Schultz, '69): for $f \in C^{m+1}$,
Then
$\left\|(f-s)^{(j)}\right\|_{\infty} \leq C_{m}(f) h^{m+1-j} \quad j=0, \ldots m-1$ where $h>0$ is the maximal spacing between interpolation points

Under some conditions

$$
\left\|p-p_{N}\right\|_{1}=\int d y\left|p(y)-p_{N}(y)\right|=\int d y \int_{f^{-1}(y)} \frac{1}{|\nabla f|} d \sigma-\int_{g^{-1}(y)} \frac{1}{|\nabla g|} d \sigma=\cdots
$$

From $d=1$ to $d>1$:

"Same" result, more complicated proof

Theorem 1 (Ditkowski, Fibich, AS '18):

Let p and p_{N} be the probability density functions (PDF) of $f(\alpha)$ and its m -degree spline interpolant on N equi-distributed points. Then

$$
\left\|p-p_{N}\right\|_{1} \leq K N^{-\frac{m}{d}}
$$

Lemma: Under general smoothness conditions

$$
p(y) \sim \int_{f^{-1}(y)} \frac{1}{|\nabla f|} d \sigma
$$

Theorem (Schultz, '69): for $f \in C^{m+1}$,
Then
$\left\|(f-s)^{(j)}\right\|_{\infty} \leq C_{m}(f) h^{m+1-j} \quad j=0, \ldots m-1$ where $h>0$ is the maximal spacing between interpolation points

Under some conditions

$$
\left\|p-p_{N}\right\|_{1}=\int d y\left|p(y)-p_{N}(y)\right|=\int d y \int_{f^{-1}(y)} \frac{1}{|\nabla f|} d \sigma-\int_{g^{-1}(y)} \frac{1}{|\nabla g|} d \sigma=\cdots
$$

Different manifolds - more complications

2-dimensional example

$$
f\left(\alpha_{1}, \alpha_{2}\right)=\tanh \left(6 \alpha_{1} \alpha_{2}+\frac{\alpha_{1}}{2}\right)+\frac{\alpha_{1}+\alpha_{2}}{2}, \quad \alpha_{1}, \alpha_{2} \sim \operatorname{Uni}(-1,1), \quad \text { i.i.d. }
$$

3 dimensional example

$$
\begin{gathered}
f\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\tanh \left(2 \alpha_{1}+3 \alpha_{2}+3 \alpha_{3}\right)+\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}}{3} \\
\alpha_{1}, \alpha_{2}, \alpha_{3} \sim \operatorname{Uni}(-1,1), \quad \text { i.i.d. }
\end{gathered}
$$

Conclusions (non-transport outlook)

- Convergence of moments and in L^{2} does not guarantee convergence in PDFs
- Spline perform well for PDF approximation
- Any other "local" method might do - RBFs, other splines, GMM,...
- With theoretical guarantees in all dimensions.
- With explicit "maximal dimensions" of effectiveness
A. Sagiv, A. Ditkowski, G. Fibich

Density estimation in uncertainty propagation problems using a surrogate model
arXiv 1803.10991 (under review)

Conclusions (non-transport outlook)

- Convergence of moments and in L^{2} does not guarantee convergence in PDFs
- Spline perform well for PDF approximation
- Any other "local" method might do - RBFs, other splines, GMM,...
- With theoretical guarantees in all dimensions.
- With explicit "maximal dimensions" of effectiveness

Open question:
 Can the theory of push-forwarded densities be simplified?

Agenda

- PDF approximation
- Is moment-estimation sufficient?
- An algorithm \& convergence results
- Transport-theory point of view

Simplifying the theory of measure approximation

Spline PDF Theory revisited

$$
\text { Theorem } 2 \text { (Ditkowski, Fibich, AS '18): }
$$

Let $\Omega=[0,1]^{d}$, let $f \in C^{m+1}(\Omega)$ with $|\nabla \boldsymbol{f}|>\boldsymbol{a}>\mathbf{0}$, let α be uniformly distributed in Ω,

$$
\begin{aligned}
& \text { ability density functions (PDF) of } f(\alpha) \text { and its } \\
& \text { spline interpolant on } N^{d} \text { equi-distributed }
\end{aligned}
$$

$$
\left\|p-p_{N}\right\|_{1} \leq K N^{-\frac{m}{d}}
$$

Problem I - "arbitrary" derivative condition from application standpoint Problem II - spline approximate derivatives in L^{∞}, other methods do not

Spline PDF Theory revisited

Theorem 2 (Ditkowski, Fibich, AS '18):
Let $\Omega=[0,1]^{d}$, let $f \in C^{m+1}(\Omega)$ with $|\nabla \boldsymbol{f}|>\boldsymbol{a}>\mathbf{0}$, let α be uniformly distributed in Ω,
and
Let p and p_{N} be the probability density functions (PDF) of $f(\alpha)$ and its m-degree tensor-product spline interpolant on N^{d} equi-distributed points. Then

$$
\left\|p-p_{N}\right\|_{1} \leq K N^{-\frac{m}{d}}
$$

Problem III - uniform measure (or absolutely continuous) Problem IV - Omega is a box (compact)

Approximation-based estimation

$\alpha \sim \varrho$ probability measure

density of interest

Approximation-based estimation

$$
\alpha \sim \varrho \text { probability measure }
$$

Approximation-based estimation

$$
\alpha \sim \varrho \text { probability measure }
$$

Approximation-based estimation

Is PDF the right way to measure?

A numerical example:

$$
\begin{gathered}
f(\alpha)=\alpha ; \quad g(\alpha)=\alpha+10^{-3} \sin (100 \alpha) \\
\Rightarrow\|f-g\|_{L^{q}} \sim 10^{-3}
\end{gathered}
$$

Is PDF the right way to measure?

A numerical example:

$$
\begin{aligned}
& f(\alpha)=\alpha ; \quad g(\alpha)=\alpha+10^{-3} \sin (100 \alpha) \\
& \varrho=\text { Lebesgue }, \quad \mu:=f_{*} \varrho ; \quad v:=g_{*} \varrho
\end{aligned}
$$

This difference can be made arbitrarily large

Is PDF the right way to measure?

A numerical example:

$$
\begin{gathered}
f(\alpha)=\alpha ; \quad g(\alpha)=\alpha+10^{-3} \sin (100 \alpha) \\
\varrho=\text { Lebesgue }, \quad \mu:=f_{*} \varrho ; \quad v:=g_{*} \varrho
\end{gathered}
$$

PDFs are different, but

$$
\begin{aligned}
& \mu([0.2,0.4]) \\
& \approx v([0.2,0.4])
\end{aligned}
$$

Is PDF the right way to measure?

A numerical example:

$$
\begin{aligned}
& f(\alpha)=\alpha ; \quad g(\alpha)=\alpha+10^{-3} \sin (100 \alpha) \\
& \varrho=\text { Lebesgue }, \quad \mu:=f_{*} \varrho ; \quad v:=g_{*} \varrho
\end{aligned}
$$

PDFs are different, but

$$
\begin{aligned}
& \mu([0.2,0.4]) \\
& \approx v([0.2,0.4])
\end{aligned}
$$

"transfer" mass on a local scale

Underlying Theory - Wasserstein Metrics

$$
W_{p}(\mu, v)=\left[\inf \int_{R \times R}|x-y|^{p} d \gamma(x, y)\right]^{\frac{1}{p}}
$$

Such that μ, v are marginals of γ

Underlying Theory - Wasserstein Metrics

$$
W_{p}(\mu, v)=\left[\inf \int_{R \times R}|x-y|^{p} d \gamma(x, y)\right]^{\frac{1}{p}}
$$

Such that μ, v are marginals of γ

Intuitively (for $\mathrm{p}=1$)
a transport plan: move
$\gamma(x, y)$ mass over
$|x-y|$ distance

Indeed - Wasserstein theory is simple

Theorem 3 (AS '19):
Let $\Omega \subseteq R^{d}$, let $f, g \in C(\bar{\Omega})$, and let ϱ be a Borel measure and $\mu=f_{*} \varrho, v=g_{*} \varrho$

1. $W_{p}(\mu, v) \leq\|f-g\|_{\infty}$
i.e., pointwise accuracy guarantees Wasserstein accuracy

Indeed - Wasserstein theory is simple

Theorem 3 (AS '19):
Let $\Omega \subseteq R^{d}$, let $f, g \in C(\bar{\Omega})$, and let ϱ be a Borel measure and $\mu=f_{*} \varrho, v=g_{*} \varrho$

1. $W_{p}(\mu, v) \leq\|f-g\|_{\infty}$
2. $W_{p}(\mu, v) \leq\|f-g\|_{p} \quad$ (if Ω is bounded)
i.e., L^{p} accuracy guarantess Wasserstein accuracy

Indeed - Wasserstein theory is simple

Theorem 3 (AS '19):

Let $\Omega \subseteq R^{d}$, let $f, g \in C(\bar{\Omega})$, and let ϱ be a Borel measure and $\mu=f_{*} \varrho, v=g_{*} \varrho$

1. $W_{p}(\mu, v) \leq\|f-g\|_{\infty}$
2. $W_{p}(\mu, v) \leq\|f-g\|_{p} \quad$ (if Ω is bounded)
3. $W_{p}(\mu, v) \leq C(p, q)\|f-g\|_{q}^{\frac{p}{q+p}} \cdot\|f-g\|_{\infty}^{\frac{q}{q+p}} \quad$ for all $q \geq 1$

Indeed - Wasserstein theory is simple

Theorem 3 (AS '19):

Let $\Omega \subseteq R^{d}$, let $f, g \in C(\bar{\Omega})$, let ϱ be a Borel measure and $\mu=f_{*} \varrho, v=g_{*} \varrho$

1. $W_{p}(\mu, v) \leq\|f-g\|_{\infty}$
2. $W_{p}(\mu, v) \leq\|f-g\|_{p} \quad$ (if Ω is bounded)
3. $W_{p}(\mu, v) \leq C(p, q)\|f-g\|_{q}^{\frac{p}{q+p}} \cdot\|f-g\|_{\infty}^{\frac{q}{q+p}} \quad$ for all $q \geq 1$

- No conditions on the underlying measure and domain (=many noise models)
- No derivative approximation conditions
- Every L^{q} convergence works (=many possible approximation methods)

Proof sketch

Here $-\Omega$ is a cube, ϱ is Lebesgue

Step I - push forward a small cube Q_{j} to define to measures (of same mass) on R

Proof sketch

Here $-\Omega$ is a cube, ϱ is Lebesgue

$$
\mu_{R}
$$

Step II - for $\varepsilon>0$, by continuity, if $\operatorname{diam}\left(Q_{j}\right)<\delta$ Then $|f(x)-f(y)|,|g(x)-g(y)| \leq \varepsilon$
And so for any transport, the mass ε^{d} travels a distance $\leq| | f-g \|_{L^{\infty}}+o(\epsilon)$

Proof sketch

Here $-\Omega$ is a cube, ϱ is Lebesgue

$$
\xrightarrow[R]{\mu_{j}=\left.f_{*} \varrho\right|_{Q_{j}}}
$$

Step II - for $\varepsilon>0$, by continuity, if $\operatorname{diam}\left(Q_{j}\right)<\delta$ Then $|f(x)-f(y)|,|g(x)-g(y)| \leq \varepsilon$
And so for any transport, the mass ε^{d} travels a distance $\leq| | f-g \|_{L^{\infty}}+o(\epsilon)$
Step III - this is true for all cubes, for any $\varepsilon>0$

Agenda

- PDF approximation
- Is moment-estimation sufficient?
- An algorithm \& convergence results
- Transport-theory point of view

Back to the Uncertainty-quantification problem

Pause, why Wasserstein?

- The distance between PDFs is natural and intuitive to use...
- But difficult to work with.
- Wasserstein-theory is easier to work with, better approximation results...
- But is it useful for applications?

Wasserstein and CDFs

The CDF bounds are a result of a wider theory for Wasserstein Metrics, since

$$
W_{1}(\mu, v)=\left\|F_{\mu}-F_{v}\right\|_{1}
$$

[Salvemini ‘43, Vallender ‘74]
Cumulative distribution function (CDF)

$$
F_{\mu}(y):=\mu([y, \infty))
$$

Wasserstein and CDFs

The CDF bounds are a result of a wider theory for Wasserstein Metrics, since

$$
W_{1}(\mu, v)=\left\|F_{\mu}-F_{v}\right\|_{1}
$$

[Salvemini ‘43, Vallender ‘74]
Cumulative distribution function (CDF)

$$
F_{\mu}(y):=\mu([y, \infty))
$$

Theorem 3 - for CDFs (AS '19):

Let $\Omega \subseteq R^{d}$, let $f, g \in C(\bar{\Omega})$, and let ϱ be a Borel measure

1. $\left\|F_{\mu}-F_{\nu}\right\|_{1} \leq\|f-g\|_{\infty}$
2. $\left\|F_{\mu}-F_{\nu}\right\|_{1} \leq\|f-g\|_{1} \quad$ (if Ω is bounded)
3. $\left\|F_{\mu}-F_{\nu}\right\|_{1} \leq\|f-g\|_{q}^{\frac{1}{q+1}} \cdot\|f-g\|_{\infty}^{1-\frac{1}{q+1}} \quad$ for all $q \geq 1$

Is CDF the right way to measure?

A numerical example:

$$
f(\alpha)=\alpha ; \quad g(\alpha)=\alpha+10^{-3} \sin (100 \alpha)
$$

Numerical example - revisited

$$
f=\tanh (9 \alpha)+\frac{\alpha}{2}, \quad \alpha \sim \text { Uniform }[-1,1]
$$

PDF approximation, $N=12$

Numerical methods

Theorems 4-5 (AS '19):

Under general smoothness conditions

1. For m order spline with spacing $h>0$, then

$$
\left\|F_{\mu}-F_{v}\right\|_{1} \leq K h^{m+1}
$$

CDF error - spline

Numerical methods

Theorems 4-5 (AS '19):

Under general smoothness conditions

1. For m order spline with spacing $h>0$, then

$$
\left\|F_{\mu}-F_{v}\right\|_{1} \leq K h^{m+1}
$$

2. For analytic function f and gPC of order N

$$
\left\|F_{\mu}-F_{\nu}\right\|_{1} \leq \operatorname{Cexp}(-\gamma N)
$$

gPC result - in sharp contrast to PDF approximation

Lower bounds

$\alpha \sim \varrho$ probability measure

So far
We bounded $W_{p}(\mu, v)$ by $\|f-g\|_{L^{q}}$ from above
What about lower bounds?

Lower bounds - key idea

Wasserstein metric is defined as an infimum, so any transport plan provides an upper bound Can it be restated as a supremum?

Lower bounds - key idea

Wasserstein metric is defined as an infimum, so any transport plan provides an upper bound Can it be restated as a supremum?
Monge Kantorovich-

$$
W_{1}(\mu, v)=\sup \left\{\int_{\mathrm{R}} w(d \mu-d v) \mid \operatorname{Lip}(w) \leq 1\right\}
$$

Loeper (2005) \& Peyre (2018)
Under certain smoothness assumptions

$$
W_{2}(\mu, v) \sim\|\mu-v\|_{\dot{H}^{-1}}\left(\text { supremum functional on } w \in \dot{H}^{1}\right)
$$

Lower bounds - proof sketch

Monge Kantorovich-

$$
W_{1}(\mu, v)=\sup \left\{\int_{\mathrm{R}} w(d \mu-d v) \mid \operatorname{Lip}(w) \leq 1\right\}
$$

Loeper (2005) \& Peyre (2018)
Under certain smoothness assumptions

$$
W_{2}(\mu, v) \sim\|\mu-v\|_{\dot{H}^{-1}}\left(\text { supremum functional on } w \in \dot{H}^{1}\right)
$$

Proof sketch

choose $w(z)=c_{k} y^{k}$ and recover moments by change of variables, e.g.,
$\int_{\mathrm{R}} y(d \mu-d \nu)=\int_{\Omega} f(\alpha) d \varrho(\alpha)-\int_{\Omega} g(\alpha) d \varrho(\alpha)$
And similarly for $W_{2}(\mu, v) \ldots$

Lower bounds - proof sketch

Monge Kantorovich-

$$
W_{1}(\mu, v)=\sup \left\{\int_{\mathrm{R}} w(d \mu-d v) \mid \operatorname{Lip}(w) \leq 1\right\}
$$

Loeper (2005) \& Peyre (2018)
Under certain smoothness assumptions

$$
W_{2}(\mu, v) \sim\|\mu-v\|_{\dot{H}^{-1}}\left(\text { supremum functional on } w \in \dot{H}^{1}\right)
$$

Theorems 5\&6 (AS '19):
Let $\Omega \subseteq R^{d}$ be bounded, let $f, g \in C(\bar{\Omega})$, let ϱ be a Borel measure

$$
W_{1}(\mu, v) \geq\left|E_{\varrho} f-E_{\varrho} g\right|
$$

On an interval with Lebesgue measure-

$$
W_{2}(\mu, v) \geq C(f, k)\left|E_{\varrho} f^{k}-E_{\varrho} g^{k}\right| \quad k \geq 1
$$

Conclusions

- Convergence of moments and in L^{2} does not guarantee convergence in PDFs
- Spline perform well for PDF approximation
- With theoretical guarantees in all dimensions.
- Convergence in CDF is "better-behaved" than in PDFs
- Most popular methods converge in CDF, but not always in PDF
- Underlying theory - Wasserstein metric

Thank you!

References

- A. Sagiv The Wasserstein Distances Between Pushed-Forward Measures with Applications to Uncertainty Quantification arXiv 1902:05451 (under review at Communications in Mathematical Sciences)
- A. Sagiv, A. Ditkowski, G. Fibich Density estimation in uncertainty propagation problems using a surrogate model arXiv 1803.10991 (under review)

