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Two motivation slides:

nonlinear laser propagation

Each laser shot e | . :
is different LASER
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Kerr medium
z=0

random initial condition PDE model random output

Po(x, ;@) -) W(z,x,y; Q)

(X - noise parameter

[Sagiv, Ditwkoski, Fibich, Opt. Exp. 2017]



Two motivation slides:

nonlinear laser propagation

A r=(xy)

Each laser shot
is different A ¥

gzi' Xi» yl)

Kerr medium
z=0

random initial condition PDE model random output

Po(x, ;@) -) W(z,x,y; Q)

(X - noise parameter
What kind of statistics do we want to compute?

Moment estimation
e.g., E(Y(z;, x;, )1,
over many realizations
(repetitions)

[e.g., Fibich, Eisenman, Ilan, Zigler, Opt. Lett.
2005]
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Two motivation slides:

nonlinear laser propagation

A r=(xy)

Each laser shot gue | . 5
is different A ¥

Kerr medium
z=0

random initial condition PDE model random output

Po(x, ;@) -) W(z,x,y; Q)

(X - noise parameter
What kind of statistics do we want to compute?

Moment estimation Density estimation
e.g., E(u(z;, x5, v)I?), Probability Density Function

over many realizations (PDF) of some “quantity of
(repetitions) interest” f(y)




Why study the PDF — Examples from optics

Beam fusion

N
N

Beam repulsion Example I: over many

repetitions, what are the
chances of fusion vs.
repulsion?

Z

o = R, (x + d)e'? + (1 + 0.1a)R,, (x — d)e ™%
1 f 1

100

PDF

50

L

0.1

e

Random amplitude

[Sagiv, Ditwkoski, Fibich, Opt. Exp. 2017]

Example II: Distribution of
polarization as a function of
propagation distance

1 2
[\w Patwardhan et al, PRA 2019]



General standard nonlinear PDE settings

Initial value problem

u:(t,x) = Q(x, wWu
u(t =0,x) = uy(x)
= “quantity of interest” (model output)  f(u(t, x))
= e.g., f=ult,x), f=[dx|ul? ..
» u & f(u) are evaluated numerically




General Settings — Nonlinear PDE with randomness

Initial value problem with randomness (both i.c. u, and operator Q)

{ u(t, x; ) = Q(x, u; @)u

u(t =0,x;a) = uy(x; a)
= « distributed according to a known measure
= “quantity of interest” (model output) f(a) = f(u(t, x; a))
= e.g., f=ult,x), f=[dx|ul? ..
» u & f(u) are evaluated numerically




General Settings — Nonlinear PDE with randomness

How to approximate the PDF of f(«) ,
a random variable, numerically?




Agenda

= PDF approximation
= |s moment-estimation sufficient?

= An algorithm & convergence results

* Transport-theory point of view
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Agenda

= PDF approximation

* |s moment-estimation sufficient?
How does standard UQ methods perform in this task

11



General Settings — Nonlinear PDE with randomness

How to approximate the PDF of f(«) ,
a random variable, numerically?

Constraints:

- Can only compute f(«;) for a given «;

« Computation of f(a]-) is expensive (e.g., solving the (3+1)dimensional NLS)
«Can only use a small sample {f(a,), ..., f(ay)}

12



Standard statistical methods

Step I — draw i.i.d. samples aq, ..., ay
Step II — compute the samples {f (a;), ..., f(an)}

/ \

Moment estimation Density (PDF) estimation

Monte-Carlo E_[f] = %Zﬁ: o - Histogram method
« Kernel density estimators (KDE)

13



Standard statistical methods

Step I — draw i.i.d. samples aq, ..., ay
Step II — compute the samples {f (a;), ..., f(an)}

/ \

Moment estimation Density (PDF) estimation

+ Monte-Carlo E_[f] ~ %Zrl\ll:lfn  Histogram method
« Kernel density estimators (KDE)

. . 1
® Poor approximations for small N (\/_N error)
e.g. Histogram method with N=10 samples

PDF

2n 14



Standard statistical methods

Step I — draw i.i.d. samples aq, ..., ay
Step II — compute the samples {f(a,), ..., f (ay)}

/ \

Moment estimation Density (PDF) estimation

. Monte-Carlo E_[f] ~ %Zg=1fn » Histogram method
« Kernel density estimators (KDE)

® Poor approximations for small N
e.g. Histogram method with|N=10 samples

Exact PDF

Can we improve? | :

PDF

0 B 2m e mod(2m) 15




Standard statistical methods

Can we improve?
» Methods above only use {f(a;), ..., f(ay)}.
« We can also use

1. The relation f(a) < a

2. Smoothness of f(«a)

These assumptions underly many studies in uncertainty
quantification (UQ), specifically in uncertainty propagation
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Approximation-based estimation

f(a)

moment, PDF

p is the PDF of f

ity

Quantity of interest

E.[fl.p
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Approximation-based estimation

f(a)

ity

Unknown explicitly

moment, PDF

p is the PDF of f

><

cannot take a large sample

Each evaluation is computationally expensive

E.[fl.p
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Approximation-based estimation

f(a)
Approximation
using few
samples
g(a)

moment, PDF

known function,
“cheap” evaluation

E,lgl,p are known exactly

v

p is the PDF of f

E.lfl.p

E,lgl.p

pis the PDF of g

19



Approximation-based estimation

p is the PDF of f

f(a) > Ea[f] Y
Approximation N —> o
using few
samples X
g(a) Eqlgl D
pis the PDF of g
Questions

= Which approximation g(a) = f(a) should be used?
= Howsmallare E [f] —E_lg] and ||p — P]|| ?

20




Attempt | - generalized polynomial chaos (gPC)

Standard in the field of uncertainty quantification (UQ)
Approximate f using orthogonal polynomlals {gn, ()}

(@) = Zmn £ 4n(@

= Spectral accuracy (moments and LZ)
E [f]—E,[fy]l = 0(™"N), N > 1 fisanalytic

[see e.qg., D. Xiu, 2010]
21



Attempt | - generalized polynomial chaos (gPC)

Standard in the field of uncertainty quantification (UQ)
Approximate f using orthogonal polynomlals {gn, ()}

(@) = Z<qn £ 4n(@

= Spectral accuracy (moments and LZ)
E [f]—E,[fy]l = 0(™"N), N > 1 fisanalytic

But,

PDF estimation
No theory for |[p — pyll

Will it work in practice?

22



Example — gPC falls at PDF estimation

f = tanh(9a) + %, a ~ Uniform [—1,1]

2

1

0 |
1

2

1

0 1
a



Example — gPC falls at PDF estimation

f = tanh(9a) + % a ~ Uniform [—1,1] PDF approximation, N = 12 samples

1

b 1 -1 0 1
Why does it fail?
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Example — gPC falls at PDF estimation
f = tanh(9a) + % a~U[-1,1] PDF approximation, N = 12 samples

2

1 1

0

I
i
I
I
i
i
|

-1

-2

’ 0
Why does it failx

Lemma: Under general

smoothness conditions
1

p(y) = ,
f(az)::y I (a)|

Although gPC is spectrally
accurate (in L?), it produces

“artificial” zero derivatives. B : :
1 0 a 1

Artificial extremal points




Agenda

= An algorithm & convergence results
Approximating pushed-forward densities, provably
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An Alternative Approximation-based estimation

p is the PDF of f

f(a) > Ea[f] P
approximation N — o
g(a) | Eqlglp

pis the PDF of g

Lessons learned

= For PDF approximation, spectral
moment accuracy is not sufficient.

Solution: use spline interpolation

(piece-wise polynomials)

= |tisnecessarythatg' #0 < f'+0

lg—fllg"—f'1 K1,
=  “Monotonicity preserving approximation”

27




The solution - Spline-based approach (1d)

Theorem 1 (Ditkowski, Fibich, AS ’18):

Let p and py be the probability density functions (PDFE) of f(a) and its
m-deqgree spline interpolant on N equi-distributed points. Then

lp —pylls < KNT™,

28



The solution - Spline-based approach (1d)

Theorem 1 (Ditkowski, Fibich, AS ’18):

Let f € Ciocewise ([@min, @max)) With  |f'| > a > 0, let a be distributed
by c(a)da where ¢ € C([amin, Xmax])-

and
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The solution - Spline-based approach (1d)

Theorem 1 (Ditkowski, Fibich, AS ’18):

Let f € CJt S ewise ([@min, @max]) With  |f'| > a > 0, let a be distributed
by c(a)da where ¢ € C([amin, Xmax])-
and

Let p and py be the probability density functions (PDF) of f(a) and its
m-degree spline interpolant on N equi-distributed points. Then

lp —pylls < KNT™,

For all

M 2C || f ™MD
N > \/ = a (amax o amin)

30



Proof “ingredients”

Theorem 1 (Ditkowski, Fibich, AS ’18):

Let p and py be the probability density functions (PDF) of f(a) and its
m-degree spline interpolant on N equi-distributed points. Then
lp — oyl = KNT™

Lemma: Under general
smoothness conditions

3 c(a)
PO = ), o
fla)=y

31



Proof “ingredients”

Theorem 1 (Ditkowski, Fibich, AS ’18):

Let p and py be the probability density functions (PDF) of f(a) and its
m-degree spline interpolant on N equi-distributed points. Then
lp —pnlli = KNT™

Lemma: Under general Theorem (Meyer, Hall, ‘76): for f € c™*1,
smoothness conditions Then |
c(a) N = 9)P]eo < Cu(HR™T j=0,..m—1
p(y) = Z , . . .
If' ()] where h>0 is the maximal spacing between
fl@)=y interpolation points

32



Proof “ingredients”

Theorem 1 (Ditkowski, Fibich, AS ’18):

Let p and py be the probability density functions (PDF) of f(a) and its
m-degree spline interpolant on N equi-distributed points. Then

b —pnlli S KNT™
Lemma: Under general Theorem (Meyer, Hall, ‘76): for f € c™*1,
smoothness conditions Then | |
c(a) I = $)D]eo < Cu(HR™T j=0,..m -
p(y) = z ; : : :
|f'(a)] where h>0 is the maximal spacing between
fl@)=y interpolation points

1

Hence, if f is monotone, N is high enough, and y in f's image, a~U(-1,1)
1

lp —palls = J dy Ip() —pn ()| = | dy|

33
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PDF estimation

f = tanh(9a) + % a ~ Uniform [—1,1]

2

1

0

-1

-2 L
-1 0 1

PDF approximation, N = 12
Statistically optimal

—exact g

i 1B/ =

34



PDF estimation

f =tanh(9a) + %

a ~ Uniform [—1, 1]

2

1

0

1

PDF approximation, N = 12

—exact

—exact
-=-gpline
-1 0 1
fla) 35




Coupled NLS example

PDF, N=64 PDF, N=64
102 102
—exact —exact
s |2 ---spline
10° 10°
1072 1072
0 2T 0 27

[with Patwardhan
et al, PRA, 2019]



Coupled NLS example

102

10°

1072

PDF, N=64

—exact
e 8| % ¥

102

10°

1072

PDF, N=64

—exact
---spline

[with Patwardhan
et al, PRA, 2019]

lp — onll1
10"
: ~N_37
° gpline|
it Ty
10" 102 103



Burgers equation — shock location

PDF, N=11 PDF, N=11

0.5

38
[compare Chen, Gottlieb, Hesthaven, JCP 2005]



Burgers equation — shock location

PDF, N=11 PDF, N=11 lp — Pl
1 1 10°
0.5 '
° spline
G - | =
.- 3.1
" 10677
5 E 10" 10

39
[compare Chen, Gottlieb, Hesthaven, JCP 2005]



Spline-based density estimation for
multidimensional noise

Can this problem be solved if the input noise
IS multi-dimensional?

(physically — multiple uncertain or noisy
terms in the system)

41



Spline-based density estimation for
multidimensional noise

Theorem 2 (Ditkowski, Fibich, AS ’18):

Let Q =[0,1]¢,let f € C™*! (Q) with |[Vf| > a > 0, let « be uniformly
distributed in (,

and

Let p and py be the probability density functions (PDF) of f(a) and its

m-degree tensor-product spline interpolant on N?¢ equi-distributed
points. Then

_m
lp —pylli < KN 4,

42




Curse of dimensionality

Theorem 2 (Ditkowski, Fibich, AS ’18):

_m
lp —pylli < KN 4,

For kernel density estimators [e.g., Devroye *84]
1P — Praenlls ~ N7°%
. 5
Our method is preferable when d < ==

43



From d=1 to d>1:
“Same” result, more complicated proof

Theorem 1 (Ditkowski, Fibich, AS ’18):

Let p and py be the probability density functions (PDF) of f(a) and its
m-degree spline interpolant on N equi-distributed points. Then

_m
Ip —pnlli KN d

Theorem (Schultz, '69): for f € c™**,

Then

1 = 9)D|oo < Cu(HR™T j=0,..m—1
where h>0 is the maximal spacing between
interpolation points

44



From d=1 to d>1:
“Same” result, more complicated proof

Theorem 1 (Ditkowski, Fibich, AS ’18):

Let p and py be the probability density functions (PDF) of f(a) and its
m-degree spline interpolant on N equi-distributed points. Then

_m
Ip —pnlli KN d

Lemma: Under general Theorem (Schultz, ‘69): for f € c™*1,
smoothness conditions Then | |

1 VS where h>0 is the maximal spacing between
interpolation points
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From d=1 to d>1:
“Same” result, more complicated proof

Theorem 1 (Ditkowski, Fibich, AS ’18):

Let p and py be the probability density functions (PDF) of f(a) and its
m-degree spline interpolant on N equi-distributed points. Then

_m
Ip —pnlli KN d

Lemma: Under general Theorem (Schultz, ‘69): for f € c™*1,
smoothness conditions Then | |

1 VS where h>0 is the maximal spacing between
interpolation points

Under some conditions

1 1
lp =yl = [ dy Ip() =y )| = [ dy R N2

46



From d=1 to d>1:
“Same” result, more complicated proof

Theorem 1 (Ditkowski, Fibich, AS ’18):

Let p and py be the probability density functions (PDF) of f(a) and its
m-degree spline interpolant on N equi-distributed points. Then

_m
Ip —pnlli KN d

Lemma: Under general Theorem (Schultz, ‘69): for f € c™*1,
smoothness conditions Then | |

1 VS where h>0 is the maximal spacing between
interpolation points

Under some conditions

1 1
— =) dy [p(y) — ()=dj —da—f va 4o =
lp = ol = J dy () —pv ] = [ dy A N

Different manifolds — more complications
47



2-dimensional example

a a, +a
(a;,ay) = tanh | 6a,a, + —)+2 = a,a, ~ Uni(—1,1), i.i.d.
2 2
1 14
—exact
- - -gpline

PDF

1
109
1 i PRI s
L- error
1071 ¢ =KDE
[ |-ome gPC

o spline

102 | |—fit

10"




3 dimensional example

0.7

PDF

f(aq, ay, a3) = tanh(2ay + 3a, + 3a3) +

aq,d, X3 ~ Unl(_l;l);

—exact

~ —-gpline

a1+a2+a3

)

3
i.i.d.
LY error
0 :
10
O
5 N . <. ame N
--+-KDE
21| o spline
107} __g \
10’ N 10° \




Conclusions (non-transport outlook)

= Convergence of moments and in L? does not guarantee
convergence in PDFs

» Spline perform well for PDF approximation

= Any other “local” method might do — RBFs, other splines,
GMM,...

= With theoretical guarantees in all dimensions.
= With explicit “maximal dimensions” of effectiveness

A. Sagiv, A. Ditkowski, G. Fibich

Density estimation in uncertainty propagation problems using a
surrogate model

arXiv 1803.10991 (under review)
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Conclusions (non-transport outlook)

= Convergence of moments and in L? does not guarantee
convergence in PDFs

» Spline perform well for PDF approximation

= Any other “local” method might do — RBFs, other splines,
GMM,...

= With theoretical guarantees in all dimensions.
= With explicit “maximal dimensions” of effectiveness

Open guestion:
Can the theory of push-forwarded densities be
simplified?

51



Agenda

* Transport-theory point of view
Simplifying the theory of measure approximation

52



Spline PDF Theory revisited

Theorem 2 (Ditkowski, Fibich, AS ’18):
\Vf| > a > 0, let « be uniformly

T

Problem I —“arbitrary” derivative condition from application standpoint
Problem II — spline approximate derivatives in L*, other methods do not

53



Spline PDF Theory revisited

Theorem 2 (Ditkowski, Fibich, AS ’18):

distributed in Q,

Let Q = [0,1]¢, let f € C™*1 (Q) with |[Vf]| > a > 0, let a be uniformly

T

Problem III — uniform measure (or absolutely continuous)
Problem IV — Omega is a box (compact)

54




Approximation-based estimation

a ~ o probability measure

f(a)

push-forward

density of interest

55



Approximation-based estimation

a ~ o probability measure

f(a)

push-forward

approximation

g(a)

push-forward

<

1~ N SRR

56



Approximation-based estimation

a ~ o probability measure

f(a)

approximation

g(a)

push-forward

U= f.o

R ——

push-forward

V=00

Generally — these are
measures, not densities

57



Approximation-based estimation

~ [Gibbs and Su, Int.
a Q p”l"Ot Stats. Rev. 2002]
S I log(1 + z) \(2 e
3 Vali g %
f(@) NN IE fo
: i
approximation i
I
/= on :
' o o - :
g(a) H | g0
K | T, o R

How should the difference between u and v be measured?

58



Is PDF the right way to measure?

A numerical example:
fla)=a; g(a) =a+1073sin(100a)
= 1f = gllLa ~ 1073

0.8

0.6

0.4

0.2




Is PDF the right way to measure?

A numerical example:
fla)=a; g(a) =a+1073sin(100a)
o = Lebesgue, U= f.o; v:=g.0

10 3error 10" error o
. - This difference can
= 7 B N be made arbitrarily
08 111 pﬂ'“““li!li large
..... q ;-.-.-py il ;I il il i' ;; i |' I ,l
2 - . |I ! || il ,| 1 || || ll |I
0.6 Ny 1057 ,!, |' ,I ,| ,| ,l ,| ,l ,, || ,| |I || ,|
Q i‘.'l'.ll' |||I|||I'|II|III|H|I
A i'l'I'Jllhlllllllll,nl|||l|l|1
04 ~ NHHTHna
HHE |||‘|l|'|'|l|',||||ul|l||
lI H N l | | | TR
. s
VVVH?V%F!'v&vEV
0 ' : ' ' 0.9
0 02 04 06 08 1 0 02 04 06 08 1

Q I

60



Is PDF the right way to measure?

A numerical example:
fl@=a gla)=a+107°
o = Lebesgue, U= f.o;

NTRE
1 : - : , 115
- —Dy l
* s SERRERARY
""" g |-----p,/ fii i il ,l
r IS 0 |' ! Il il ! || ll || || ll ||
06 Ny 105 ,‘| |I i! |l i! ll il |' ,| |I n || |l .l
Q i‘.'l'l.ll' |||I|||I'|II|III|H|I
1! HHOHHHIHN
A |[|J||J|Il]l1I|I|II|l
= N T
!'l'l |‘|'|'|'l'|||',|l||||I|l||
02 0‘955'|'| ,H'nll'l' l|',||l|||lll,
M RRER ALY
BEERRARRARAREL
0 : ; ' : 09
0 02 04 06 08 1 0 |0.2 0.4 Ios 08 1

a I

sin(100«)
V= g0

PDFs are
different, but

1(10.2,0.4])
~ v(]0.2,0.4])
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Is PDF the right way to measure?

A numerical example:
fla)=a; g(a) =a+1073sin(100a)
o = Lebesgue, U= f.o; v:=g.0

PDFs are
e | ' different, but

e A N A 1([0.2,0.4])
S TN N = v(02,04])

1T \ T T ] ! 1
i \ l ! \ l ] \ l ;
095, ‘\ 'l \‘ '; “ ', ] \\ 144
| \ / v/ transfer” mass
\.,' L
0.9 . . -
-, onalocal scale
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Underlying Theory — Wasserstein Metrics

1
Wy (u,v) = [inf [, |x — y[Pdy(x, y)]?
Such that u, v are marginals of y

Intuitively (for p=1)
a transport plan: move

| |x — y| distance

63



Underlying Theory — Wasserstein Metrics

1
Wy (u,v) = [inf [, |x — y[Pdy(x, y)]?
Such that u, v are marginals of y

Intuitively (for p=1)
a transport plan: move

_.’.'_'.i '5*,— ., p Y (x,y) mass over
' W |x — y| distance

— Then take infimum over

/‘\/\_L all such plans
VAT

64



Indeed — Wasserstein theory is simple

Theorem 3 (AS ’19):

LetQ S R, let f,g € C (R), and let o be a Borel measure
and u = f.o, v=g.0

1. Wo(uv) = |If = 9lle

l.e., pointwise accuracy guarantees Wasserstein accuracy

65




Indeed — Wasserstein theory is simple

Theorem 3 (AS ’19):

LetQ S R, let f,g € C (R), and let o be a Borel measure
and u = f.o, v=g.0

1. Wo(wv) = |If — glle

2. Wo(uwv) <||f —gllp (if 2 is bounded)

l.e., LP accuracy guarantess Wasserstein accuracy

66




Indeed — Wasserstein theory is simple

Theorem 3 (AS ’19):

LetQ € R, let f,g € C (Q), and let ¢ be a Borel measure
and u = f.0, v = g.0

1. Wo@wv) < If = glle
2. Wo(uwv) <|If —gll, (if 2is bounded)

p q

3 Wowv) < Cllf —gllg™ - IIf —gll&?  forallg =1

67




Indeed — Wasserstein theory is simple

Theorem 3 (AS ’19):

LetQ S R, letf,g € C (Q), let o be a Borel measure
and u = f.o, v=g.0

1. Wy(wv) < [If = glles
2. Wo(wv) =< |If —gll, (if 2is bounded)

p _4
3 W) < CQIf —gllg™ - lIf —glli?  forallg=1

* No conditions on the underlying measure and domain (=many noise models)
* No derivative approximation conditions

» Every L1 convergence works (=many possible approximation methods)

68



Proof sketch

Here — Q) is a cube, ¢ is Lebesgue

Step I — push forward a small cube Q; to define to
measures (of same mass) on R

69



Proof sketch

Here — Q) is a cube, ¢ is Lebesgue

Q; u; = f.0 Vi = 9.0
Qj
\ >
R

Step II — for £ > 0, by continuity, if diam(Q;) < 6

Then [f(x) = f)I, lg(x) =g <€
And so for any transport,

the mass ¢ travels a distance < ||f — gl + o(e)

70



Proof sketch

Here — Q) is a cube, ¢ is Lebesgue

Q; u; = f.0 Vi = 9.0
Qj
\ >
R

Step II — for £ > 0, by continuity, if diam(Q;) < 6

Then [f(x) = fWI, lgix) —g)| < €
And so for any transport,
the mass ¢ travels a distance < ||f — gl + o(e)

Step III — this is true for a/f cubes, for any e > 0

/1



Agenda

* Transport-theory point of view
Back to the Uncertainty-quantification problem

72



Pause, why Wasserstein?

= The distance between PDFs Is natural and
Intuitive to use...

= But difficult to work with.

» Wasserstein-theory Is easier to work with,
better approximation results...

= But is it useful for applications?

73



Wasserstein and CDFs

The CDF bounds are a result of a wider theory for
Wasserstein Metrics, since

Wi(u,v) = ”Fu — Bl
[Salvemini ‘43, Vallender ‘74]

Cumulative distribution function (CDF)
F.() = u(ly, o))

74



Wasserstein and CDFs

The CDF bounds are a result of a wider theory for
Wasserstein Metrics, since

Wi(u,v) = ”Fu — Bl
[Salvemini ‘43, Vallender ‘74]

Cumulative distribution function (CDF)
F.() = u(ly, o))

Theorem 3 — for CDFs (AS ’19):

LetQ € R, let f,g € C (R), and let ¢ be a Borel measure
1. [IE, =Kl <|lf — 9lle
2. ||, =FKllL = I1lf —glh (if 2 is bounded)

1

1
- 1__
3 B =Bl <If =gllg™ -lIf —gll, ™" forallg>1




Is CDF the right way to measure?

A numerical example:
fla)=a; g(a) =a+1073sin(100a)

1 y 1.15
08 f & pﬂ'HﬁlHH‘i“i
.......... i i i i
g : E . Dy :u :| 1 :l ! :I il u |l n :I
0.6 Ny 1057 ;I Ii il i' ;| in i ,| ,, .| ,| |I || ,|
Q i‘.'|'.l|'|l|||'|l|',||l|n|n.|
A HHHHHHHERERIRHIH
04 ~ 1i‘;'i E.ilflililslil;inlilihl.l
HHE |llh!I!'!l!l'l”'""""
THIEHIH IRIRINY |I|lll'l|
e 0'95“: I :ll :l: I l: | ': I H || 'l ‘ll
'thHHvHH
0 : : : ; 09
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Numerical example - revisited

f =tanh(9a) + % a ~ Uniform [—1,1]

-1 0 1

PDF approximation, N = 12




Numerical methods

Theorems 4-5 (AS ’19):
Under general smoothness conditions
1. For m order spline with spacing h>0 , then

I, = B ||, < K™

CDF error - spline

10°

o spline
102} |__gt[v—459
104
109 10" 102

N

/8



Numerical methods

Theorems 4-5 (AS ’19):

Under general smoothness conditions

1. For m order spline with spacing h>0 , then
|, — Elly < Kh™*

2. For analytic function f and gPC of order N
”Fu _ Fv”l < Cexp(—yN)

gPC result — in sharp contrast to PDF approximation

CDF error - gPC PDF error - gPC
10% g3 10" g
102 10 Tobg g

4 o]
10° 107 o
-2 -6

10 10— 2PC
10 > 108

0 40 80 120 0 40 80 120

N N
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Lower bounds

a ~ o probability measure

push-forward

f(a)

approximation

push-forward

=
|l

~h
o

°o

i R ——

g(a)

Vi=gog

So far
We bounded W, (1, v) by |If — gl|, , from above

What about lower bounds?
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Lower bounds — key idea

Wasserstein metric is defined as an infimum, so any
transport plan provides an upper bound
Can it be restated as a supremum?
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Lower bounds — key idea

Wasserstein metric is defined as an infimum, so any
transport plan provides an upper bound

Can it be restated as a supremum?

Monge Kantorovich—

W;(u,v) = sup {f w(du — dv) | Lip (w) < 1}
R

Loeper (2005) & Peyre (2018)
Under certain smoothness assumptions

W, (u,v) ~ || — v||g-1 (supremum functional on w € H?)
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Lower bounds — proof sketch

Monge Kantorovich—
Wi (u,v) = sup U w(du — dv) | Lip (w) < 1}
R

Loeper (2005) & Peyre (2018)
Under certain smoothness assumptions .
W, (u,v) ~ ||l — v||z-1 (supremum functional on w € H')

Proof sketch
choose w(z) = c,y* and recover moments by change of
variables, e.q.,

foy(du —av) = [ f(a)de(a) — [, g(a@)de(a)

And similarly for W, (u,v) ...
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Lower bounds — proof sketch

Monge Kantorovich—

W;(u,v) = sup {f w(du — dv) | Lip (w) < 1}
R

Loeper (2005) & Peyre (2018)
Under certain smoothness assumptions .
W, (u,v) ~ ||l — v||z-1 (supremum functional on w € H')

Theorems 5&6 (AS ’19):
Let Q € R% be bounded, let f,g € C (Q) , let o be a Borel measure
Wi(uv) 2 |Eof — Eog |,

On an interval with Lebesgue measure-
Wo(uv) = C(f, ) |E,f* — E,g%| k=1
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Conclusions

= Convergence of moments and in L? does not guarantee
convergence in PDFs

= Spline perform well for PDF approximation
= With theoretical guarantees in all dimensions.

= Convergence in CDF is “better-behaved” than in PDFs
= Most popular methods converge in CDF, but not always in PDF
= Underlying theory — Wasserstein metric
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Thank you!
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