An Optimal Transport Perspective on Uncertainty Quantification

Amir Sagiv Columbia University

 α - noise parameter

[Sagiv, Ditwkoski, Fibich, Opt. Exp. 2017]

 α - noise parameter

What kind of statistics do we want to compute?

Moment estimation e.g., $E(|\psi(z_i, x_i, y_i)|^2)$, over many realizations (repetitions)

[e.g., Fibich, Eisenman, Ilan, Zigler, Opt. Lett. 2005]

 α - noise parameter

What kind of statistics do we want to compute?

Moment estimation e.g., $E(|\psi(z_i, x_i, y_i)|^2)$, over many realizations (repetitions) Density estimation Probability Density Function

(PDF) of some "quantity of interest" $f(\psi)$

Example II: Distribution of *polarization* as a function of propagation distance

[\w Patwardhan et al, PRA 2019]

General standard nonlinear PDE settings

Initial value problem

$$\begin{cases} u_t(t, \mathbf{x}) = Q(\mathbf{x}, u)u\\ u(t = 0, \mathbf{x}) = u_0(\mathbf{x}) \end{cases}$$

• "quantity of interest" (model output) f(u(t, x))

• e.g.,
$$f = u(t_i, x_i)$$
, $f = \int dx |u|^2$,...

• u & f(u) are evaluated <u>numerically</u>

General Settings – Nonlinear PDE with randomness

Initial value problem with randomness (both i.c. u_0 and operator Q)

 $\begin{cases} u_t(t, \mathbf{x}; \boldsymbol{\alpha}) = Q(\mathbf{x}, u; \boldsymbol{\alpha})u\\ u(t = 0, \mathbf{x}; \boldsymbol{\alpha}) = u_0(\mathbf{x}; \boldsymbol{\alpha}) \end{cases}$

- α distributed according to a known measure
- "quantity of interest" (model output) $f(\alpha) \coloneqq f(u(t, x; \alpha))$

• e.g.,
$$f = u(t_i, x_i)$$
, $f = \int dx |u|^2$, ...

• u & f(u) are evaluated <u>numerically</u>

General Settings – Nonlinear PDE with randomness

Initial value problem with randomness

 $\begin{cases} u_t(t, \mathbf{x}; \boldsymbol{\alpha}) = Q(\mathbf{x}, u; \boldsymbol{\alpha})u \\ u(t = 0, \mathbf{x}; \boldsymbol{\alpha}) = u_0(\mathbf{x}; \boldsymbol{\alpha}) \end{cases}$

- α distributed according to a known measure
- "quantity of interest" (model output) $f(\alpha) \coloneqq f(u(t, x; \alpha))$

• e.g.,
$$f = u(t_i, x_i)$$
, $f = \int dx |u|^2$,...

How to approximate the PDF of $f(\alpha)$, a random variable, numerically?

Agenda

- PDF approximation
 - Is moment-estimation sufficient?
 - An algorithm & convergence results
- Transport-theory point of view

Agenda

PDF approximation

- Is moment-estimation sufficient?
 How does standard UQ methods perform in this task
 An algorithm & convergence results
- Transport-theory point of view

General Settings – Nonlinear PDE with randomness

Initial value problem with randomness

 $\begin{cases} u_t(t, \mathbf{x}; \boldsymbol{\alpha}) = Q(\mathbf{x}, u; \boldsymbol{\alpha})u\\ u(t = 0, \mathbf{x}; \boldsymbol{\alpha}) = u_0(\mathbf{x}; \boldsymbol{\alpha}) \end{cases}$

- α distributed according to a known measure
- "quantity of interest" (model output) $f(\alpha) \coloneqq f(u(t, x; \alpha))$

• e.g.,
$$f = u(t_i, x_i)$$
, $f = \int dx |u|^2$,...

How to approximate the PDF of $f(\alpha)$, a random variable, numerically?

Constraints:

- Can only compute $f(\alpha_j)$ for a given α_j
- Computation of f(α_j) is expensive (e.g., solving the (3+1)dimensional NLS)
 Can only use a small sample {f(α₁), ..., f(α_N)}

Step I – draw i.i.d. samples $\alpha_1, ..., \alpha_N$ **Step II** – compute the samples { $f(\alpha_1), ..., f(\alpha_N)$ }

Moment estimation

• Monte-Carlo $\mathbf{E}_{\alpha}[f] \approx \frac{1}{N} \sum_{n=1}^{N} f_n$

Density (PDF) estimation

- Histogram method
- Kernel density estimators (KDE)

Step I – draw i.i.d. samples $\alpha_1, ..., \alpha_N$ **Step II** – compute the samples { $f(\alpha_1), ..., f(\alpha_N)$ }

Moment estimation

• Monte-Carlo $\mathbf{E}_{\alpha}[f] \approx \frac{1}{N} \sum_{n=1}^{N} f_n$

Density (PDF) estimation

- Histogram method
- Kernel density estimators (KDE)

• Poor approximations for small N $\left(\frac{1}{\sqrt{N}} \text{ error}\right)$ e.g. Histogram method with N=10 samples

Step I – draw i.i.d. samples $\alpha_1, ..., \alpha_N$ **Step II** – compute the samples $\{f(\alpha_1), ..., f(\alpha_N)\}$

Moment estimation

• Monte-Carlo
$$\mathbf{E}_{\alpha}[f] \approx \frac{1}{N} \sum_{n=1}^{N} f_n$$

Density (PDF) estimation

- Histogram method
- Kernel density estimators (KDE)

Step I – draw i.i.d. samples $\alpha_1, ..., \alpha_N$ **Step II** – compute the samples { $f(\alpha_1), ..., f(\alpha_N)$ }

Moment estimation

• Monte-Carlo $\mathbf{E}_{\alpha}[f] \approx \frac{1}{N} \sum_{n=1}^{N} f_n$

Density (PDF) estimation

• Histogram method

. . .

• Kernel density estimators (KDE)

Can we improve?

- Methods above only use $\{f(\alpha_1), \dots, f(\alpha_N)\}$.
- We can also use
 - 1. The relation $f(\alpha) \leftrightarrow \alpha$
 - 2. Smoothness of $f(\alpha)$

These assumptions underly many studies in uncertainty quantification (UQ), specifically in uncertainty propagation

p is the PDF of f

p is the PDF of f

- Unknown explicitly
- Each evaluation is computationally expensive

p is the PDF of f

p is the PDF of f

Questions

- Which approximation $g(\alpha) \approx f(\alpha)$ should be used?
- How small are $E_{\alpha}[f] E_{\alpha}[g]$ and $||p \hat{p}||$?

Attempt I - generalized polynomial chaos (gPC)

Standard in the field of uncertainty quantification (UQ) Approximate *f* using orthogonal polynomials $\{q_n(\alpha)\}$

$$f_N(\alpha) = \sum_{n=0}^{N-1} \langle q_n, f \rangle q_n(\alpha)$$

• Spectral accuracy (moments and L^2) $\mathbf{E}_{\alpha}[f] - \mathbf{E}_{\alpha}[f_N] = O(e^{-\gamma N}), \qquad N \gg 1 \quad f \text{ is analytic}$

Attempt I - generalized polynomial chaos (gPC)

Standard in the field of uncertainty quantification (UQ) Approximate *f* using orthogonal polynomials $\{q_n(\alpha)\}$

$$f_N(\alpha) = \sum_{n=0}^{N-1} \langle q_n, f \rangle q_n(\alpha)$$

• Spectral accuracy (moments and L^2) $\mathbf{E}_{\alpha}[f] - \mathbf{E}_{\alpha}[f_N] = O(e^{-\gamma N}), \qquad N \gg 1 \quad f \text{ is analytic}$

But,

<u>PDF estimation</u> No theory for $||p - p_N||$

Will it work in practice?

Example – gPC fails at PDF estimation

 $f = \tanh(9\alpha) + \frac{\alpha}{2}, \quad \alpha \sim Uniform [-1, 1]$

Example – gPC fails at PDF estimation

 $f = \tanh(9\alpha) + \frac{\alpha}{2}, \quad \alpha \sim Uniform [-1, 1]$ PDF approximation, N = 12 samples

Why does it fail?

Example – gPC fails at PDF estimation

<u>Lemma:</u> Under general smoothness conditions $p(y) = \sum_{f(\alpha)=y} \frac{1}{|f'(\alpha)|}$

Although gPC is spectrally accurate (in L^2), it produces "artificial" zero derivatives.

PDF approximation, N = 12 samples

Agenda

PDF approximation Is moment-estimation sufficient?

An algorithm & convergence results
 Approximating pushed-forward densities, provably

Transport-theory point of view

An Alternative Approximation-based estimation

p is the PDF of f

Lessons learned

- For PDF approximation, spectral moment accuracy is not sufficient.
- It is necessary that $g' \neq 0 \leftrightarrow f' \neq 0$ $|g - f|, |g' - f'| \ll 1$,

"Monotonicity preserving approximation"

Solution: use spline interpolation

(piece-wise polynomials)

The solution - Spline-based approach (1d)

```
Theorem 1 (Ditkowski, Fibich, AS '18):
```

Let p and p_N be the probability density functions (**PDF**) of $f(\alpha)$ and its **<u>m-degree spline</u>** interpolant on N equi-distributed points. Then

 $\|p-p_N\|_1 \leq KN^{-m},$

The solution - Spline-based approach (1d)

Theorem 1 (Ditkowski, Fibich, AS '18):

Let $f \in C_{piecewise}^{m+1}([\alpha_{\min}, \alpha_{\max}])$ with |f'| > a > 0, let α be distributed by $c(\alpha)d\alpha$ where $c \in C^1([\alpha_{\min}, \alpha_{\max}])$.

and

Let p and p_N be the probability density functions (PDF) of $f(\alpha)$ and its m-degree spline interpolant on N equi-distributed points. Then

 $\|p-p_N\|_1 \le KN^{-m},$

The solution - Spline-based approach (1d)

Theorem 1 (Ditkowski, Fibich, AS '18):

Let $f \in C_{piecewise}^{m+1}([\alpha_{\min}, \alpha_{\max}])$ with |f'| > a > 0, let α be distributed by $c(\alpha)d\alpha$ where $c \in C^1([\alpha_{\min}, \alpha_{\max}])$.

and

Let p and p_N be the probability density functions (PDF) of $f(\alpha)$ and its m-degree spline interpolant on N equi-distributed points. Then

 $\|p-p_N\|_1 \le KN^{-m},$

For all

$$N > \sqrt[m]{\frac{2C_m ||f^{(m+1)}||_{\infty}}{\alpha}} (\alpha_{\max} - \alpha_{\min})$$

Proof "ingredients"

Theorem 1 (Ditkowski, Fibich, AS '18):

Let p and p_N be the probability density functions (PDF) of $f(\alpha)$ and its m-degree spline interpolant on N equi-distributed points. Then $\|p - p_N\|_1 \le KN^{-m}$

<u>Lemma:</u> Under general smoothness conditions $p(y) = \sum_{f(\alpha)=y} \frac{c(\alpha)}{|f'(\alpha)|}$

Proof "ingredients"

Theorem 1 (Ditkowski, Fibich, AS '18):

Let p and p_N be the probability density functions (PDF) of $f(\alpha)$ and its m-degree spline interpolant on N equi-distributed points. Then $\|p - p_N\|_1 \le KN^{-m}$

<u>Lemma:</u> Under general smoothness conditions $p(y) = \sum_{f(\alpha)=y} \frac{c(\alpha)}{|f'(\alpha)|}$ <u>Theorem (Meyer, Hall, '76)</u>: for $f \in C^{m+1}$, Then $||(f - s)^{(j)}||_{\infty} \leq C_m(f)h^{m+1-j}$ j = 0, ..., m - 1where h>0 is the maximal spacing between interpolation points

Proof "ingredients"

Theorem 1 (Ditkowski, Fibich, AS '18):

Let p and p_N be the probability density functions (PDF) of $f(\alpha)$ and its m-degree spline interpolant on N equi-distributed points. Then $\|p - p_N\|_1 \le KN^{-m}$

Hence, if f is monotone, N is high enough, and y in f's image, $\alpha \sim U(-1,1)$ $||p - p_N||_1 = \int dy |p(y) - p_N(y)| = \int dy \left| \frac{1}{f'(f^{-1}(y))} - \frac{1}{s'(s^{-1}(y))} \right|$

PDF estimation

 $f = \tanh(9\alpha) + \frac{\alpha}{2}, \quad \alpha \sim Uniform [-1, 1]$

PDF approximation, N = 12

Statistically optimal

PDF estimation

 $f = \tanh(9\alpha) + \frac{\alpha}{2}, \quad \alpha \sim Uniform [-1, 1]$

PDF approximation, N = 12

Coupled NLS example

$$i\frac{\partial}{\partial t}A_{\pm}(t,x) + \frac{\partial^{2}}{\partial x^{2}}A_{\pm} + \frac{2}{3}\left(\left|A_{\pm}\right|^{2} + 2|A_{\mp}|^{2}\right)A_{\pm} = 0$$
phase: $\varphi_{\pm}(t) = \arg\left(A_{\pm}(t,x=0)\right) \mod(2\pi)$
polarization $\theta(t) = \varphi_{+}(t) - \varphi_{-}(t)$
Random elliptical beam $-A_{\pm}(t=0) = (1+\alpha)C_{\pm}e^{-x^{2}}, \qquad \alpha \sim U(-0.1,0.1)$

[with Patwardhan et al, PRA, 2019]

Coupled NLS example

$$i\frac{\partial}{\partial t}A_{\pm}(t,x) + \frac{\partial^2}{\partial x^2}A_{\pm} + \frac{2}{3}(|A_{\pm}|^2 + 2|A_{\mp}|^2)A_{\pm} = 0$$
phase: $\varphi_{\pm}(t) = \arg(A_{\pm}(t,x=0)) \mod (2\pi)$
polarization $\theta(t) = \varphi_{+}(t) - \varphi_{-}(t)$
Random elliptical beam $-A_{\pm}(t=0) = (1+\alpha)C_{\pm}e^{-x^2}, \qquad \alpha \sim U(-0.1,0.1)$

PDF, N=64 PDF, N=64 $\|p - p_N\|_1$ 10^2 10^2 10¹ exact exact gPC spline 10⁻³ 10^{0} 10^{0} $\sim N^{-3.7}$ • spline fit 10^{-2} 10^{-2} 10⁻⁷ 2π 2π 10² 0 10¹ 10³ 0 Ν θ θ

[with Patwardhan et al, PRA, 2019]

Burgers equation – shock location

$$u_t(t,x) + \frac{1}{2} \left(u^2 \right)_x = \frac{1}{2} \left(\sin(x) \right)_x$$

Initial condition: $u_0(x) = \alpha \sin(x)$ Shock location at $t \to \infty$ $\alpha = -\cos(X_s)$ Distribution of random initial amplitude – $\alpha(v) = \begin{cases} \frac{-1 + \sqrt{1 + 4v^2}}{2v} & v \neq 0\\ 0 & v = 0 \end{cases}$ $v \sim N(0, \sigma)$

[compare Chen, Gottlieb, Hesthaven, JCP 2005]

Burgers equation – shock location

$$u_t(t,x) + \frac{1}{2} \left(u^2 \right)_x = \frac{1}{2} \left(\sin(x) \right)_x$$

Initial condition: $u_0(x) = \alpha \sin(x)$ Shock location at $t \to \infty$ $\alpha = -\cos(X_s)$ Distribution of random initial amplitude $-\alpha(v) = \begin{cases} \frac{-1 + \sqrt{1 + 4v^2}}{2v} & v \neq 0\\ 0 & v = 0 \end{cases}$ $v \sim N(0, \sigma)$

[compare Chen, Gottlieb, Hesthaven, JCP 2005]

Spline-based density estimation for multidimensional noise

Can this problem be solved if the input noise is <u>multi-dimensional?</u>

(physically – multiple uncertain or noisy terms in the system)

Spline-based density estimation for multidimensional noise

Theorem 2 (Ditkowski, Fibich, AS '18):

Let $\Omega = [0,1]^d$, let $f \in C^{m+1}(\Omega)$ with $|\nabla f| > a > 0$, let α be uniformly distributed in Ω ,

and

Let *p* and p_N be the probability density functions (PDF) of $f(\alpha)$ and its m-degree tensor-product spline interpolant on N^d equi-distributed points. Then

$$\|p - p_N\|_1 \le K N^{-\frac{m}{d}},$$

Curse of dimensionality

Theorem 2 (Ditkowski, Fibich, AS '18):

Let $\Omega = [0,1]^d$, let $f \in C^{m+1}(\Omega)$ with $|\nabla f| > a > 0$, let α be uniformly distributed in Ω ,

and

Let p and p_N be the probability density functions (PDF) of $f(\alpha)$ and its m-degree tensor-product spline interpolant on N^d equi-distributed points. Then

$$\|p-p_N\|_1 \le K N^{-\frac{m}{d}},$$

For kernel density estimators [e.g., Devroye `84] $||p - p_{kde,N}||_1 \sim N^{-0.4}$ Our method is preferable when $d \leq \frac{5m}{2}$

Theorem 1 (Ditkowski, Fibich, AS '18):

Let p and p_N be the probability density functions (PDF) of $f(\alpha)$ and its m-degree spline interpolant on N equi-distributed points. Then

 $\|p - p_N\|_1 \le K N^{-\frac{m}{d}}$

<u>Theorem (Schultz, '69)</u>: for $f \in C^{m+1}$, Then $||(f - s)^{(j)}||_{\infty} \leq C_m(f)h^{m+1-j}$ j = 0, ..., m - 1where h>0 is the maximal spacing between interpolation points

Theorem 1 (Ditkowski, Fibich, AS '18):

Let p and p_N be the probability density functions (PDF) of $f(\alpha)$ and its m-degree spline interpolant on N equi-distributed points. Then

 $\|p - p_N\|_1 \le K N^{-\frac{m}{d}}$

<u>Lemma:</u> Under general smoothness conditions $p(y) \sim \int_{f^{-1}(y)} \frac{1}{|\nabla f|} d\sigma$ <u>Theorem (Schultz, '69)</u>: for $f \in C^{m+1}$, Then $||(f - s)^{(j)}||_{\infty} \leq C_m(f)h^{m+1-j}$ j = 0, ..., m - 1where h>0 is the maximal spacing between interpolation points

Theorem 1 (Ditkowski, Fibich, AS '18):

Let p and p_N be the probability density functions (PDF) of $f(\alpha)$ and its m-degree spline interpolant on N equi-distributed points. Then

 $\|p - p_N\|_1 \le K N^{-\frac{m}{d}}$

<u>Theorem (Schultz, '69)</u>: for $f \in C^{m+1}$, Then $||(f - s)^{(j)}||_{\infty} \leq C_m(f)h^{m+1-j}$ j = 0, ..., m - 1where h>0 is the maximal spacing between interpolation points

Under some conditions

$$||p - p_N||_1 = \int dy \, |p(y) - p_N(y)| = \int dy \int_{f^{-1}(y)} \frac{1}{|\nabla f|} d\sigma \, - \int_{g^{-1}(y)} \frac{1}{|\nabla g|} d\sigma \, = \cdots$$

Theorem 1 (Ditkowski, Fibich, AS '18):

Let p and p_N be the probability density functions (PDF) of $f(\alpha)$ and its m-degree spline interpolant on N equi-distributed points. Then

 $\|p - p_N\|_1 \le K N^{-\frac{m}{d}}$

<u>Theorem (Schultz, '69)</u>: for $f \in C^{m+1}$, Then $||(f - s)^{(j)}||_{\infty} \leq C_m(f)h^{m+1-j}$ j = 0, ..., m - 1where h>0 is the maximal spacing between interpolation points

Under some conditions

$$||p - p_N||_1 = \int dy \, |p(y) - p_N(y)| = \int dy \int_{f^{-1}(y)} \frac{1}{|\nabla f|} d\sigma - \int_{g^{-1}(y)} \frac{1}{|\nabla g|} d\sigma = \cdots$$

Different manifolds – more complications

2-dimensional example

3 dimensional example

$$f(\alpha_1, \alpha_2, \alpha_3) = \tanh(2\alpha_1 + 3\alpha_2 + 3\alpha_3) + \frac{\alpha_1 + \alpha_2 + \alpha_3}{3}$$

$$\alpha_1, \alpha_2, \alpha_3 \sim Uni(-1, 1), \quad i. i. d.$$

Conclusions (non-transport outlook)

- Convergence of moments and in L² does not guarantee convergence in PDFs
- Spline perform well for PDF approximation
 - Any other "local" method might do RBFs, other splines, GMM,...
 - With theoretical guarantees in all dimensions.
 - With explicit "maximal dimensions" of effectiveness

A. Sagiv, A. Ditkowski, G. Fibich Density estimation in uncertainty propagation problems using a surrogate model arXiv 1803.10991 (under review)

Conclusions (non-transport outlook)

- Convergence of moments and in L² does not guarantee convergence in PDFs
- Spline perform well for PDF approximation
 - Any other "local" method might do RBFs, other splines, GMM,...
 - With theoretical guarantees in all dimensions.
 - With explicit "maximal dimensions" of effectiveness

Open question: Can the theory of push-forwarded densities be simplified?

Agenda

PDF approximation

Is moment-estimation sufficient?

An algorithm & convergence results

Transport-theory point of view
 Simplifying the theory of measure approximation

Spline PDF Theory revisited

Theorem 2 (Ditkowski, Fibich, AS '18):

Let $\Omega = [0,1]^d$, let $f \in C^{m+1}(\Omega)$ with $|\nabla f| > a > 0$, let α be uniformly distributed in Ω ,

and

Let p and p_N be the probability density functions (PDF) of $f(\alpha)$ and its m-degree tensor-product spline interpolant on N^d equi-distributed points. Then

$$\|p-p_N\|_1 \le KN^{-\frac{m}{d}},$$

Problem I – "arbitrary" derivative condition from application standpoint Problem II – spline approximate derivatives in L^{∞} , other methods do not

Spline PDF Theory revisited

Theorem 2 (Ditkowski, Fibich, AS '18):

Let $\Omega = [0,1]^d$, let $f \in C^{m+1}(\Omega)$ with $|\nabla f| > a > 0$, let α be uniformly distributed in Ω ,

and

Let p and p_N be the probability density functions (PDF) of $f(\alpha)$ and its m-degree tensor-product spline interpolant on N^d equi-distributed points. Then

$$\|p - p_N\|_1 \le K N^{-\frac{m}{d}},$$

Problem III – uniform measure (or absolutely continuous) Problem IV – Omega is a box (compact)

 $\alpha \sim \varrho$ probability measure

density of interest

$\alpha \sim \varrho$ probability measure

$\alpha \sim \varrho$ probability measure

How should the difference between μ and ν be measured?

A numerical example:

$$f(\alpha) = \alpha; \quad g(\alpha) = \alpha + 10^{-3} \sin(100\alpha)$$
$$\Rightarrow ||f - g||_{L^q} \sim 10^{-3}$$

A numerical example:

$$\begin{array}{ll} f(\alpha) = \alpha; & g(\alpha) = \alpha + 10^{-3} \sin(100\alpha) \\ \varrho = Lebesgue, & \mu \coloneqq f_*\varrho; & \nu \coloneqq g_*\varrho \end{array}$$

This difference can be made <u>arbitrarily</u> large

A numerical example:

$$\begin{array}{ll} f(\alpha) = \alpha; & g(\alpha) = \alpha + 10^{-3} \sin(100\alpha) \\ \varrho = Lebesgue, & \mu \coloneqq f_*\varrho; & \nu \coloneqq g_*\varrho \end{array}$$

PDFs are different, but

 $\mu([0.2,0.4]) \approx \nu([0.2,0.4])$

A numerical example:

$$\begin{array}{ll} f(\alpha) = \alpha; & g(\alpha) = \alpha + 10^{-3} \sin(100\alpha) \\ \varrho = Lebesgue, & \mu \coloneqq f_*\varrho; & \nu \coloneqq g_*\varrho \end{array}$$

Underlying Theory – Wasserstein Metrics

 $W_p(\mu,\nu) = \left[\inf \int_{R \times R} |x - y|^p d\gamma(x,y)\right]^{\frac{1}{p}}$

Such that μ, ν are marginals of γ

Intuitively (for p=1) a transport plan: move $\gamma(x, y)$ mass over |x - y| distance

Underlying Theory – Wasserstein Metrics

 $W_p(\mu,\nu) = \left[\inf \int_{R \times R} |x - y|^p d\gamma(x,y)\right]^{\frac{1}{p}}$

Such that μ, ν are marginals of γ

Intuitively (for p=1) a transport plan: move $\gamma(x, y)$ mass over |x - y| distance

Then take <u>infimum</u> over all such plans

Theorem 3 (AS '19): Let $\Omega \subseteq \mathbb{R}^d$, let $f, g \in C(\overline{\Omega})$, and let ϱ be a Borel measure and $\mu = f_* \varrho$, $\nu = g_* \varrho$ 1. $W_p(\mu, \nu) \leq ||f - g||_{\infty}$ **i.e., pointwise accuracy guarantees Wasserstein accuracy**

Theorem 3 (AS '19): Let $\Omega \subseteq \mathbb{R}^d$, let $f, g \in C(\overline{\Omega})$, and let ϱ be a Borel measure and $\mu = f_* \varrho$, $\nu = g_* \varrho$ 1. $W_p(\mu, \nu) \leq ||f - g||_{\infty}$ 2. $W_p(\mu, \nu) \leq ||f - g||_p$ (if Ω is bounded)

i.e., L^p accuracy guarantess Wasserstein accuracy

Theorem 3 (AS '19): Let $\Omega \subseteq \mathbb{R}^d$, let $f, g \in C(\overline{\Omega})$, and let ϱ be a Borel measure and $\mu = f_* \varrho, \ \nu = g_* \varrho$ 1. $W_p(\mu, \nu) \leq ||f - g||_{\infty}$ 2. $W_p(\mu, \nu) \leq ||f - g||_p$ (if Ω is bounded) 3. $W_p(\mu, \nu) \leq C(p, q) ||f - g||_q^{\frac{p}{q+p}} \cdot ||f - g||_{\infty}^{\frac{q}{q+p}}$ for all $q \geq 1$

Theorem 3 (AS '19):
Let
$$\Omega \subseteq R^d$$
, let $f, g \in C(\overline{\Omega})$, let ϱ be a Borel measure
and $\mu = f_* \varrho$, $\nu = g_* \varrho$
1. $W_p(\mu, \nu) \leq ||f - g||_{\infty}$
2. $W_p(\mu, \nu) \leq ||f - g||_p$ (if Ω is bounded)
3. $W_p(\mu, \nu) \leq C(p, q) ||f - g||_q^{\frac{p}{q+p}} \cdot ||f - g||_{\infty}^{\frac{q}{q+p}}$ for all $q \geq 1$

- No conditions on the underlying measure and domain (=many noise models)
- No derivative approximation conditions
- Every L^q convergence works (=many possible approximation methods)

Proof sketch

Here – Ω is a cube, ϱ is Lebesgue

Step I – push forward a small cube Q_j to define to measures (of same mass) on R

Proof sketch

Here – Ω is a cube, ϱ is Lebesgue

Step II – for $\varepsilon > 0$, by continuity, if $diam(Q_j) < \delta$ Then |f(x) - f(y)|, $|g(x) - g(y)| \le \varepsilon$ And so for any transport, the mass ε^d travels a distance $\le ||f - g||_{I^{\infty}} + o(\varepsilon)$

Proof sketch

Here – Ω is a cube, ϱ is Lebesgue

Step II – for $\varepsilon > 0$, by continuity, if $diam(Q_j) < \delta$ Then |f(x) - f(y)|, $|g(x) - g(y)| \le \varepsilon$ And so for any transport, the mass ε^d travels a distance $\le ||f - g||_{L^{\infty}} + o(\varepsilon)$ Step III – this is true for *all cubes*, for *any* $\varepsilon > 0$

Agenda

PDF approximation

Is moment-estimation sufficient?

An algorithm & convergence results

Transport-theory point of view
 Back to the Uncertainty-quantification problem

Pause, why Wasserstein?

- The distance between PDFs is natural and intuitive to use...
 - But difficult to work with.

- Wasserstein-theory is easier to work with, better approximation results...
 - But is it useful for applications?
Wasserstein and CDFs

The CDF bounds are a result of a wider theory for **Wasserstein Metrics**, since

$$W_1(\mu, \nu) = ||F_\mu - F_\nu||_1$$

[Salvemini '43, Vallender '74]

Cumulative distribution function (CDF) $F_{\mu}(y) \coloneqq \mu([y, \infty))$

Wasserstein and CDFs

The CDF bounds are a result of a wider theory for **Wasserstein Metrics**, since

$$W_1(\mu, \nu) = ||F_\mu - F_\nu||_1$$

[Salvemini '43, Vallender '74]

Cumulative distribution function (CDF) $F_{\mu}(y) \coloneqq \mu([y,\infty))$

Theorem 3 – for CDFs (AS '19):

Let $\Omega \subseteq \mathbb{R}^d$, let $f, g \in C(\overline{\Omega})$, and let ϱ be a Borel measure 1. $||F_{\mu} - F_{\nu}||_1 \leq ||f - g||_{\infty}$ 2. $||F_{\mu} - F_{\nu}||_1 \leq ||f - g||_1$ (if Ω is bounded) 3. $||F_{\mu} - F_{\nu}||_1 \leq ||f - g||_q^{\frac{1}{q+1}} \cdot ||f - g||_{\infty}^{1-\frac{1}{q+1}}$ for all $q \geq 1$

Is CDF the right way to measure?

A numerical example:

$$f(\alpha) = \alpha;$$
 $g(\alpha) = \alpha + 10^{-3} \sin(100\alpha)$

Numerical example - revisited

PDF approximation, N = 12

Numerical methods

Theorems 4-5 (AS '19):

Under general smoothness conditions

1. For *m* order spline with spacing *h>0*, then

$$||F_{\mu} - F_{\nu}||_{1} \le Kh^{m+1}$$

Numerical methods

Theorems 4-5 (AS '19):

Under general smoothness conditions

- 1. For *m* order spline with spacing h>0, then $||F_{\mu} - F_{\nu}||_{1} \le Kh^{m+1}$
- 2. For analytic function f and gPC of order N $||F_{\mu} - F_{\nu}||_1 \leq Cexp(-\gamma N)$

gPC result – in sharp contrast to PDF approximation

Lower bounds

$\alpha \sim \varrho$ probability measure

So far

We bounded $W_p(\mu, \nu)$ by $||f - g||_{L^q}$ from above

What about lower bounds?

Lower bounds – key idea

Wasserstein metric is defined as an <u>infimum</u>, so <u>any</u> transport plan provides an upper bound Can it be restated as a <u>supremum?</u>

Lower bounds – key idea

Wasserstein metric is defined as an <u>infimum</u>, so <u>any</u> transport plan provides an upper bound Can it be restated as a <u>supremum?</u>

Monge Kantorovich-

$$W_1(\mu,\nu) = \sup\left\{\int_{\mathbb{R}} w(d\mu - d\nu) \mid Lip(w) \le 1\right\}$$

Loeper (2005) & Peyre (2018) Under certain smoothness assumptions

 $W_2(\mu,\nu) \sim ||\mu - \nu||_{\dot{H}^{-1}}$ (supremum functional on $w \in \dot{H}^1$)

Lower bounds – proof sketch

Monge Kantorovich-

$$W_1(\mu,\nu) = \sup\left\{\int_{\mathbb{R}} w(d\mu - d\nu) \mid Lip(w) \le 1\right\}$$

Loeper (2005) & Peyre (2018) Under certain smoothness assumptions

 $W_2(\mu,\nu) \sim ||\mu - \nu||_{\dot{H}^{-1}}$ (supremum functional on $w \in \dot{H}^1$)

Proof sketch

choose $w(z) = c_k y^k$ and recover moments by change of variables, e.g., $\int_{\mathbf{R}} y(d\mu - d\nu) = \int_{\Omega} f(\alpha) d\varrho(\alpha) - \int_{\Omega} g(\alpha) d\varrho(\alpha)$

And similarly for $W_2(\mu, \nu)$...

Lower bounds – proof sketch

Monge Kantorovich-

$$W_1(\mu,\nu) = \sup\left\{\int_{\mathbb{R}} w(d\mu - d\nu) \mid Lip(w) \le 1\right\}$$

Loeper (2005) & Peyre (2018) Under certain smoothness assumptions $W_2(\mu,\nu) \sim ||\mu - \nu||_{\dot{H}^{-1}}$ (supremum functional on $w \in \dot{H}^1$)

Theorems 5&6 (AS '19):

Let $\Omega \subseteq \mathbb{R}^d$ be bounded, let $f, g \in C(\overline{\Omega})$, let ϱ be a Borel measure $W_1(\mu, \nu) \ge |E_{\varrho}f - E_{\varrho}g|$,

On an interval with Lebesgue measure-

$$W_2(\mu,\nu) \ge C(f,k) \left| E_{\varrho} f^k - E_{\varrho} g^k \right| \qquad k \ge 1$$

Conclusions

- Convergence of moments and in L² does not guarantee convergence in PDFs
- Spline perform well for PDF approximation
 - With theoretical guarantees in all dimensions.
- Convergence in CDF is "better-behaved" than in PDFs
 - Most popular methods converge in CDF, but not always in PDF
 - Underlying theory Wasserstein metric

Thank you!

<u>References</u>

- A. Sagiv The Wasserstein Distances Between Pushed-Forward Measures with Applications to Uncertainty Quantification arXiv 1902:05451 (under review at Communications in Mathematical Sciences)
- A. Sagiv, A. Ditkowski, G. Fibich Density estimation in uncertainty propagation problems using a surrogate model arXiv 1803.10991 (under review)