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𝑓 𝛼

𝑔 𝛼

𝛼 ∼ 𝜚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

push-forward

push-forward

approximation

𝜇 ≔ 𝑓 ∘ 𝜚

𝜈 ≔ 𝑔 ∘ 𝜚



𝜓 𝑧, 𝑥, 𝑦
output

𝜓0(𝑥, 𝑦)

initial condition

z
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Two motivation slides:
nonlinear laser propagation

𝑖𝜓𝑧 𝑧, 𝑥, 𝑦 + Δ𝜓 + 𝜓 2𝜓 − 𝜖 𝜓 4𝜓 = 0
Nonlinear Schrodinger equation

PDE model



𝜓 𝑧, 𝑥, 𝑦; 𝛼
random output

𝜓0(𝑥, 𝑦; 𝛼)

𝛼 - noise parameter

PDE model

Each laser shot
is different

random initial condition

z
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𝑖𝜓𝑧 𝑧, 𝑥, 𝑦 + Δ𝜓 + 𝜓 2𝜓 − 𝜖 𝜓 4𝜓 = 0

[Sagiv, Ditwkoski, Fibich, Opt. Exp. 2017]

Two motivation slides:
nonlinear laser propagation



random output

𝛼 - noise parameter

Each laser shot
is different

random initial condition

z
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Moment estimation
e.g., E 𝜓 𝑧𝑖 , 𝑥𝑖 , 𝑦𝑖

2 ,
over many realizations 

(repetitions)

[e.g., Fibich, Eisenman, Ilan, Zigler, Opt. Lett. 
2005]

What kind of statistics do we want to compute?

𝑖𝜓𝑧 𝑧, 𝑥, 𝑦 + Δ𝜓 + 𝜓 2𝜓 − 𝜖 𝜓 4𝜓 = 0

𝜓 𝑧, 𝑥, 𝑦; 𝛼𝜓0(𝑥, 𝑦; 𝛼)

𝑧𝑖 , 𝑥𝑖 , 𝑦𝑖

PDE model

Two motivation slides:
nonlinear laser propagation



random output

𝛼 - noise parameter

Each laser shot
is different

random initial condition

z
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Density estimation
Probability Density Function 

(PDF) of some “quantity of 

interest” 𝑓 𝜓

𝑖𝜓𝑧 𝑧, 𝑥, 𝑦 + Δ𝜓 + 𝜓 2𝜓 − 𝜖 𝜓 4𝜓 = 0

𝜓 𝑧, 𝑥, 𝑦; 𝛼𝜓0(𝑥, 𝑦; 𝛼)

What kind of statistics do we want to compute?

PDE model

Two motivation slides:
nonlinear laser propagation

Moment estimation
e.g., E 𝜓 𝑧𝑖 , 𝑥𝑖 , 𝑦𝑖

2 ,
over many realizations 

(repetitions)



𝜓 𝑧, 𝒙; 𝛼
random output

𝜓0(𝒙; 𝛼)

𝛼 - noise parameter

NLS model

Each laser shot
is different

random initial condition

z
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Why study the PDF − Examples from optics
𝑖𝜓𝑧 𝑧, 𝑥, 𝑦 + Δ𝜓 + 𝜓 2𝜓 − 𝜖 𝜓 4𝜓 = 0

Beam fusion Beam repulsion

𝑧

𝑥

𝑧

𝑥

𝜓0 = 𝑅𝜅1 𝑥 + 𝑑 𝑒𝑖𝜃𝑥 + (1 + 0.1𝛼)𝑅𝜅1 𝑥 − 𝑑 𝑒−𝑖𝜃𝑥

Random amplitude

Example I: over many 
repetitions, what are the 
chances of fusion vs. 
repulsion?

[Sagiv, Ditwkoski, Fibich, Opt. Exp. 2017]

Example II: Distribution of 
polarization as a function of 
propagation distance

[\w Patwardhan et al, PRA 2019]



General standard nonlinear PDE settings

Initial value problem

ቊ
𝑢𝑡 𝑡, 𝒙 = 𝑄 𝒙, 𝑢 𝑢

𝑢 𝑡 = 0, 𝒙 = 𝑢0(𝒙)

▪ “quantity of interest” (model output) 𝑓 𝑢 𝑡, 𝒙

▪ e.g.,  𝑓 = 𝑢 𝑡𝑖 , 𝑥𝑖 , f = ∫ 𝑑𝑥 u 2, …

▪ 𝑢 & 𝑓(𝑢) are evaluated numerically
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General Settings – Nonlinear PDE with randomness
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Initial value problem with randomness (both i.c. 𝑢0 and operator 𝑄)

ቊ
𝑢𝑡 𝑡, 𝒙; 𝜶 = 𝑄 𝒙, 𝑢; 𝜶 𝑢

𝑢 𝑡 = 0, 𝒙; 𝜶 = 𝑢0(𝒙; 𝜶)

▪ 𝜶 distributed according to a known measure

▪ “quantity of interest” (model output) 𝑓 𝜶 ≔ 𝑓 𝑢 𝑡, 𝒙; 𝜶

▪ e.g.,  𝑓 = 𝑢 𝑡𝑖 , 𝑥𝑖 , f = ∫ 𝑑𝑥 u 2, …

▪ 𝑢 & 𝑓(𝑢) are evaluated numerically



General Settings – Nonlinear PDE with randomness
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Initial value problem with randomness

ቊ
𝑢𝑡 𝑡, 𝒙; 𝜶 = 𝑄 𝒙, 𝑢; 𝜶 𝑢

𝑢 𝑡 = 0, 𝒙; 𝜶 = 𝑢0(𝒙; 𝜶)

▪ 𝜶 distributed according to a known measure

▪ “quantity of interest” (model output) 𝑓 𝜶 ≔ 𝑓 𝑢 𝑡, 𝒙; 𝜶

▪ e.g.,  𝑓 = 𝑢 𝑡𝑖 , 𝑥𝑖 , f = ∫ 𝑑𝑥 u 2, …

How to approximate the PDF of 𝑓 𝜶 , 
a random variable, numerically?



Agenda

▪ PDF approximation

▪ Is moment-estimation sufficient?

▪ An algorithm & convergence results

▪ Transport-theory point of view
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Agenda

▪ PDF approximation

▪ Is moment-estimation sufficient?

How does standard UQ methods perform in this task

▪ An algorithm & convergence results

▪ Transport-theory point of view
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General Settings – Nonlinear PDE with randomness
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Initial value problem with randomness

ቊ
𝑢𝑡 𝑡, 𝒙; 𝜶 = 𝑄 𝒙, 𝑢; 𝜶 𝑢

𝑢 𝑡 = 0, 𝒙; 𝜶 = 𝑢0(𝒙; 𝜶)

▪ 𝜶 distributed according to a known measure

▪ “quantity of interest” (model output) 𝑓 𝜶 ≔ 𝑓 𝑢 𝑡, 𝒙; 𝜶

▪ e.g.,  𝑓 = 𝑢 𝑡𝑖 , 𝑥𝑖 , f = ∫ 𝑑𝑥 u 2, …

Constraints: 

• Can only compute 𝑓 𝛼𝑗 for a given 𝛼𝑗
• Computation of 𝑓 𝜶𝒋 is expensive (e.g., solving the (3+1)dimensional NLS)

•Can only use a small sample {𝑓 𝛼1 , … , 𝑓 𝛼𝑁 }

How to approximate the PDF of 𝑓 𝜶 , 
a random variable, numerically?



Standard statistical methods

Moment estimation

• Monte-Carlo 𝐄𝛼 𝑓 ≈
1

𝑁
σ𝑛=1
𝑁 𝑓𝑛

• …
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Density (PDF) estimation

• Histogram method

• Kernel density estimators (KDE)

• …

Step I – draw i.i.d. samples 𝛼1, … , 𝛼𝑁
Step II – compute the samples {𝑓(𝛼1), … , 𝑓(𝛼𝑁)}



Standard statistical methods
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• Poor approximations for small N (
1

𝑁
error)

Moment estimation

• Monte-Carlo 𝐄𝛼 𝑓 ≈
1

𝑁
σ𝑛=1
𝑁 𝑓𝑛

• …

Density (PDF) estimation

• Histogram method

• Kernel density estimators (KDE)

• …

Step I – draw i.i.d. samples 𝛼1, … , 𝛼𝑁
Step II – compute the samples {𝑓(𝛼1), … , 𝑓(𝛼𝑁)}

e.g. Histogram method with N=10 samples



Standard statistical methods
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Exact PDF

Moment estimation

• Monte-Carlo 𝐄𝛼 𝑓 ≈
1

𝑁
σ𝑛=1
𝑁 𝑓𝑛

• …

Density (PDF) estimation

• Histogram method

• Kernel density estimators (KDE)

• …

Step I – draw i.i.d. samples 𝛼1, … , 𝛼𝑁
Step II – compute the samples {𝑓(𝛼1), … , 𝑓(𝛼𝑁)}

e.g. Histogram method with N=10 samples

Can we improve?

• Poor approximations for small N



Standard statistical methods

Moment estimation

• Monte-Carlo 𝐄𝛼 𝑓 ≈
1

𝑁
σ𝑛=1
𝑁 𝑓𝑛

• …
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Density (PDF) estimation

• Histogram method

• Kernel density estimators (KDE)

• …

Can we improve?
• Methods above only use 𝑓(𝛼1), … , 𝑓(𝛼𝑁) .

• We can also use

1. The relation 𝑓 𝜶 ↔ 𝜶

2. Smoothness of 𝑓 𝜶

These assumptions underly many studies in uncertainty 
quantification (UQ), specifically in uncertainty propagation

Step I – draw i.i.d. samples 𝛼1, … , 𝛼𝑁
Step II – compute the samples {𝑓(𝛼1), … , 𝑓(𝛼𝑁)}



Approximation-based estimation
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𝑓 𝛼
moment, PDF

𝐄𝛼 𝑓 , 𝑝

𝑝 is the PDF of 𝑓

Quantity of interest



Approximation-based estimation
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𝑓 𝛼
moment, PDF

𝐄𝛼 𝑓 , 𝑝

𝑝 is the PDF of 𝑓

• Unknown explicitly
• Each evaluation is computationally expensive

cannot take a large sample



Approximation-based estimation
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𝑓 𝛼

𝑔 𝛼

Approximation 
using few 
samples

moment, PDF

moment, PDF

𝐄𝛼 𝑓 , 𝑝

𝑬𝜶 𝑔 , Ƹ𝑝
known function,

“cheap” evaluation

𝑬𝜶 𝒈 , ෝ𝒑 are known exactly

cannot take a large sample

𝑝 is the PDF of 𝑓

Ƹ𝑝 is the PDF of 𝑔



Approximation-based estimation
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𝑓 𝛼

Questions

▪ Which approximation 𝑔 𝛼 ≈ 𝑓(𝛼) should be used?

▪ How small are E𝛼 𝑓 − E𝛼 𝑔 and ||𝑝 − Ƹ𝑝|| ? 

moment, PDF

moment, PDF

𝐄𝛼 𝑓 , 𝑝

𝑵 → ∞

cannot take a large sample

𝑝 is the PDF of 𝑓

Approximation 
using few 
samples

𝑔 𝛼 𝑬𝜶 𝑔 , Ƹ𝑝

Ƹ𝑝 is the PDF of 𝑔



Standard in the field of uncertainty quantification (UQ)

Approximate 𝑓 using orthogonal polynomials 𝑞𝑛(𝛼)

𝑓𝑁 𝛼 = ෍

𝑛=0

𝑁−1

𝑞𝑛 , 𝑓 𝑞𝑛 𝛼

▪ Spectral accuracy (moments and 𝐿2)
𝐄𝛼 𝑓 − 𝐄𝛼 𝑓𝑁 = 𝑂 𝑒−𝛾𝑁 , 𝑁 ≫ 1 𝑓 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐

Attempt I - generalized polynomial chaos (gPC)  

21

[see e.g., D. Xiu, 2010]



Standard in the field of uncertainty quantification (UQ)

Approximate 𝑓 using orthogonal polynomials 𝑞𝑛(𝛼)

𝑓𝑁 𝛼 = ෍

𝑛=0

𝑁−1

𝑞𝑛 , 𝑓 𝑞𝑛 𝛼

▪ Spectral accuracy (moments and 𝐿2)
𝐄𝛼 𝑓 − 𝐄𝛼 𝑓𝑁 = 𝑂 𝑒−𝛾𝑁 , 𝑁 ≫ 1 𝑓 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐

But,

Attempt I - generalized polynomial chaos (gPC)  

22

PDF estimation
No theory for 𝑝 − 𝑝𝑁

Will it work in practice?



Example – gPC fails at PDF estimation
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𝛼

𝑓 = tanh 9𝛼 +
𝛼

2
, 𝛼 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [−1, 1]



Example – gPC fails at PDF estimation
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PDF approximation, 𝑁 = 12 samples

𝛼

Why does it fail?

𝑓 = tanh 9𝛼 +
𝛼

2
, 𝛼 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [−1, 1]



Example – gPC fails at PDF estimation
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PDF approximation, 𝑁 = 12 samples

𝛼

𝑓 = tanh 9𝛼 +
𝛼

2
, 𝛼 ∼ 𝑈[−1, 1]

𝜶

Derivative

Why does it fail?

Lemma: Under general 
smoothness conditions

𝑝 𝑦 = ෍

𝑓 𝛼 =𝑦

1

𝑓′ 𝛼

Although gPC is spectrally 
accurate (in 𝐿2), it produces 
“artificial” zero derivatives.

Artificial extremal points



Agenda

▪ PDF approximation

▪ Is moment-estimation sufficient?

▪ An algorithm & convergence results

Approximating pushed-forward densities, provably

▪ Transport-theory point of view
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An Alternative Approximation-based estimation

27

𝑓 𝛼

Lessons learned

▪ For PDF approximation, spectral 

moment accuracy is not sufficient.

▪ It is necessary that g′ ≠ 0 ↔ 𝑓′ ≠ 0
𝑔 − 𝑓 , 𝑔′ − 𝑓′ ≪ 1,

▪ “Monotonicity preserving approximation”

approximation

moment, PDF

moment, PDF

𝐄𝛼 𝑓 , 𝑝

𝑁 → ∞

can take a large sample, since 
computation of 𝑓𝑁 𝛼 is cheap

cannot take a large sample

𝑝 is the PDF of 𝑓

𝑔 𝛼 𝑬𝜶 𝑔 , Ƹ𝑝

Ƹ𝑝 is the PDF of 𝑔

Solution: use spline interpolation

(piece-wise polynomials)



Theorem 1 (Ditkowski, Fibich, AS ’18):

Let 𝑝 and 𝑝𝑁 be the probability density functions (PDF) of 𝑓(𝛼) and its

m-degree spline interpolant on 𝑁 equi-distributed points. Then

𝑝 − 𝑝𝑁 1 ≤ 𝐾𝑁−𝑚,

The solution - Spline-based approach (1d)

28



Theorem 1 (Ditkowski, Fibich, AS ’18):

Let 𝑓 ∈ 𝐶𝑝𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒
𝑚+1 ( 𝛼min, 𝛼max] with 𝒇′ > 𝒂 > 𝟎, let 𝛼 be distributed

by 𝑐 𝛼 𝑑𝛼 where 𝑐 ∈ 𝐶1( 𝛼min, 𝛼max] .

and

Let 𝑝 and 𝑝𝑁 be the probability density functions (PDF) of 𝑓(𝛼) and its

m-degree spline interpolant on 𝑁 equi-distributed points. Then

𝑝 − 𝑝𝑁 1 ≤ 𝐾𝑁−𝑚,

The solution - Spline-based approach (1d)
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Theorem 1 (Ditkowski, Fibich, AS ’18):

Let 𝑓 ∈ 𝐶𝑝𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒
𝑚+1 ( 𝛼min, 𝛼max] with 𝑓′ > 𝑎 > 0, let 𝛼 be distributed

by 𝑐 𝛼 𝑑𝛼 where 𝑐 ∈ 𝐶1( 𝛼min, 𝛼max] .

and

Let 𝑝 and 𝑝𝑁 be the probability density functions (PDF) of 𝑓(𝛼) and its

m-degree spline interpolant on 𝑁 equi-distributed points. Then

𝑝 − 𝑝𝑁 1 ≤ 𝐾𝑁−𝑚,

For all

𝑁 >
𝑚 2𝐶𝑚||𝑓

(𝑚+1)||∞
𝑎

(𝛼max − 𝛼𝑚𝑖𝑛)

The solution - Spline-based approach (1d)

30



Proof “ingredients”
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Theorem 1 (Ditkowski, Fibich, AS ’18):

Let 𝑝 and 𝑝𝑁 be the probability density functions (PDF) of 𝑓(𝛼) and its

m-degree spline interpolant on 𝑁 equi-distributed points. Then

𝑝 − 𝑝𝑁 1 ≤ 𝐾𝑁−𝑚

Lemma: Under general 
smoothness conditions

𝑝 𝑦 = ෍

𝑓 𝛼 =𝑦

𝑐 𝛼

𝑓′ 𝛼



Proof “ingredients”
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Theorem 1 (Ditkowski, Fibich, AS ’18):

Let 𝑝 and 𝑝𝑁 be the probability density functions (PDF) of 𝑓(𝛼) and its

m-degree spline interpolant on 𝑁 equi-distributed points. Then

𝑝 − 𝑝𝑁 1 ≤ 𝐾𝑁−𝑚

Lemma: Under general 
smoothness conditions

𝑝 𝑦 = ෍

𝑓 𝛼 =𝑦

𝑐 𝛼

𝑓′ 𝛼

Theorem (Meyer, Hall, ‘76): for 𝑓 ∈ 𝐶𝑚+1 ,

Then

|| 𝑓 − 𝑠 𝑗 ||∞ ≤ 𝐶𝑚 𝑓 ℎ𝑚+1−𝑗 𝑗 = 0,…𝑚 − 1
where h>0 is the maximal spacing between 
interpolation points



Proof “ingredients”
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Theorem 1 (Ditkowski, Fibich, AS ’18):

Let 𝑝 and 𝑝𝑁 be the probability density functions (PDF) of 𝑓(𝛼) and its

m-degree spline interpolant on 𝑁 equi-distributed points. Then

𝑝 − 𝑝𝑁 1 ≤ 𝐾𝑁−𝑚

Lemma: Under general 
smoothness conditions

𝑝 𝑦 = ෍

𝑓 𝛼 =𝑦

𝑐 𝛼

𝑓′ 𝛼

Theorem (Meyer, Hall, ‘76): for 𝑓 ∈ 𝐶𝑚+1 ,

Then

|| 𝑓 − 𝑠 𝑗 ||∞ ≤ 𝐶𝑚 𝑓 ℎ𝑚+1−𝑗 𝑗 = 0,…𝑚 − 1
where h>0 is the maximal spacing between 
interpolation points

Hence, if 𝒇 is monotone, 𝑵 is high enough, and 𝒚 in f’s image, 𝛼 ∼ 𝑈(−1,1)

||𝑝 − 𝑝𝑁||1 = ∫ 𝑑𝑦 |𝑝 𝑦 − 𝑝𝑁 𝑦 | = ∫ 𝑑𝑦|
1

𝑓′ 𝑓−1 𝑦
−

1

𝑠′ 𝑠−1 𝑦
|

= ⋯



𝜎 𝑓 − 𝜎 𝑓𝑁

PDF estimation

34

𝛼

PDF approximation, 𝑁 = 12

Statistically optimal 

𝑓 = tanh 9𝛼 +
𝛼

2
, 𝛼 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [−1, 1]



𝜎 𝑓 − 𝜎 𝑓𝑁

PDF estimation

35

𝛼

PDF approximation, 𝑁 = 12

𝑓 = tanh 9𝛼 +
𝛼

2
, 𝛼 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [−1, 1]



Coupled NLS example

phase: 𝜑± 𝑡 = arg 𝐴± 𝑡, 𝑥 = 0 𝑚𝑜𝑑 (2𝜋)

polarization 𝜃 𝑡 = 𝜑+ 𝑡 − 𝜑− 𝑡

Random elliptical beam –

𝐴± 𝑡 = 0 = 1 + 𝛼 𝐶±𝑒
−𝑥2 , 𝛼 ∼ 𝑈(−0.1,0.1)

𝒊
𝝏

𝝏𝒕
𝑨± 𝒕, 𝒙 +

𝝏𝟐

𝝏𝒙𝟐
𝑨± +

𝟐

𝟑
𝑨±

𝟐
+ 𝟐 𝑨∓

𝟐 𝑨± = 𝟎

𝜃 𝜃

PDF, N=64 PDF, N=64

[with Patwardhan 
et al, PRA, 2019]



Coupled NLS example

𝑁

𝑝 − 𝑝𝑁 1

~𝑁−3.7

𝒊
𝝏

𝝏𝒕
𝑨± 𝒕, 𝒙 +

𝝏𝟐

𝝏𝒙𝟐
𝑨± +

𝟐

𝟑
𝑨±

𝟐
+ 𝟐 𝑨∓

𝟐 𝑨± = 𝟎

𝜃 𝜃

PDF, N=64 PDF, N=64

phase: 𝜑± 𝑡 = arg 𝐴± 𝑡, 𝑥 = 0 𝑚𝑜𝑑 (2𝜋)

polarization 𝜃 𝑡 = 𝜑+ 𝑡 − 𝜑− 𝑡

Random elliptical beam –

𝐴± 𝑡 = 0 = 1 + 𝛼 𝐶±𝑒
−𝑥2 , 𝛼 ∼ 𝑈(−0.1,0.1)

𝒊
𝝏

𝝏𝒕
𝑨± 𝒕, 𝒙 +

𝝏𝟐

𝝏𝒙𝟐
𝑨± +

𝟐

𝟑
𝑨±

𝟐
+ 𝟐 𝑨∓

𝟐 𝑨± = 𝟎
[with Patwardhan 
et al, PRA, 2019]



Burgers equation – shock location

Initial condition: u0 x = 𝛼 sin(𝑥)

Shock location at 𝑡 → ∞ 𝛼 = −𝑐𝑜𝑠 𝑋𝑠

Distribution of random initial amplitude –

𝛼 𝜈 = ቐ
−1 + 1 + 4𝜈2

2𝜈
0

𝜈 ≠ 0
𝜈 = 0

𝜈 ∼ 𝑁(0, 𝜎)

38

𝒖𝒕 𝒕, 𝒙 +
𝟏

𝟐
𝒖𝟐

𝒙
=
𝟏

𝟐
𝒔𝒊𝒏 𝒙

𝒙

𝑋𝑠 𝑋𝑠

PDF, N=11 PDF, N=11

[compare Chen, Gottlieb, Hesthaven, JCP 2005]



Burgers equation – shock location

Initial condition: u0 x = 𝛼 sin(𝑥)

Shock location at 𝑡 → ∞ 𝛼 = −𝑐𝑜𝑠 𝑋𝑠

Distribution of random initial amplitude –

𝛼 𝜈 = ቐ
−1 + 1 + 4𝜈2

2𝜈
0

𝜈 ≠ 0
𝜈 = 0

𝜈 ∼ 𝑁(0, 𝜎)

39

𝑁

𝑝 − 𝑝𝑁 1

𝒖𝒕 𝒕, 𝒙 +
𝟏

𝟐
𝒖𝟐

𝒙
=
𝟏

𝟐
𝒔𝒊𝒏 𝒙

𝒙

𝑋𝑠 𝑋𝑠

PDF, N=11 PDF, N=11

~𝑁−3.1

[compare Chen, Gottlieb, Hesthaven, JCP 2005]



Spline-based density estimation for 

multidimensional noise

41

Can this problem be solved if the input noise 

is multi-dimensional?

(physically – multiple uncertain or noisy 

terms in the system)



Theorem 2 (Ditkowski, Fibich, AS ’18):

Let Ω = 0,1 𝑑 , let 𝑓 ∈ 𝐶𝑚+1 Ω with ∇𝑓 > 𝑎 > 0, let 𝛼 be uniformly

distributed in Ω,

and

Let 𝑝 and 𝑝𝑁 be the probability density functions (PDF) of 𝑓(𝛼) and its

m-degree tensor-product spline interpolant on 𝑁𝑑 equi-distributed

points. Then

𝑝 − 𝑝𝑁 1 ≤ 𝐾𝑁−
𝑚
𝑑 ,

Spline-based density estimation for 

multidimensional noise

42



Theorem 2 (Ditkowski, Fibich, AS ’18):

Let Ω = 0,1 𝑑 , let 𝑓 ∈ 𝐶𝑚+1 Ω with ∇𝑓 > 𝑎 > 0, let 𝛼 be uniformly

distributed in Ω,

and

Let 𝑝 and 𝑝𝑁 be the probability density functions (PDF) of 𝑓(𝛼) and its

m-degree tensor-product spline interpolant on 𝑵𝒅 equi-distributed

points. Then

𝑝 − 𝑝𝑁 1 ≤ 𝐾𝑵−
𝒎
𝒅 ,

Curse of dimensionality

43

For kernel density estimators [e.g., Devroye `84]

||𝑝 − 𝑝𝑘𝑑𝑒,𝑁||1 ∼ 𝑁−0.4

Our method is preferable when 𝑑 ≤
5𝑚

2



From d=1 to d>1:

“Same” result, more complicated proof

44

Theorem 1 (Ditkowski, Fibich, AS ’18):

Let 𝑝 and 𝑝𝑁 be the probability density functions (PDF) of 𝑓(𝛼) and its

m-degree spline interpolant on 𝑁 equi-distributed points. Then

𝑝 − 𝑝𝑁 1 ≤ 𝐾𝑁−
𝑚
𝑑

Theorem (Schultz, ‘69): for 𝑓 ∈ 𝐶𝑚+1 ,

Then

|| 𝑓 − 𝑠 𝑗 ||∞ ≤ 𝐶𝑚 𝑓 ℎ𝑚+1−𝑗 𝑗 = 0,…𝑚 − 1
where h>0 is the maximal spacing between 
interpolation points



From d=1 to d>1:

“Same” result, more complicated proof
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Theorem 1 (Ditkowski, Fibich, AS ’18):

Let 𝑝 and 𝑝𝑁 be the probability density functions (PDF) of 𝑓(𝛼) and its

m-degree spline interpolant on 𝑁 equi-distributed points. Then

𝑝 − 𝑝𝑁 1 ≤ 𝐾𝑁−
𝑚
𝑑

Lemma: Under general 
smoothness conditions

𝑝 𝑦 ∼ න
𝑓−1(𝑦)

1

|∇𝑓|
𝑑𝜎

Theorem (Schultz, ‘69): for 𝑓 ∈ 𝐶𝑚+1 ,

Then

|| 𝑓 − 𝑠 𝑗 ||∞ ≤ 𝐶𝑚 𝑓 ℎ𝑚+1−𝑗 𝑗 = 0,…𝑚 − 1
where h>0 is the maximal spacing between 
interpolation points



From d=1 to d>1:

“Same” result, more complicated proof
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Theorem 1 (Ditkowski, Fibich, AS ’18):

Let 𝑝 and 𝑝𝑁 be the probability density functions (PDF) of 𝑓(𝛼) and its

m-degree spline interpolant on 𝑁 equi-distributed points. Then

𝑝 − 𝑝𝑁 1 ≤ 𝐾𝑁−
𝑚
𝑑

Lemma: Under general 
smoothness conditions

𝑝 𝑦 ∼ න
𝑓−1(𝑦)

1

|∇𝑓|
𝑑𝜎

Theorem (Schultz, ‘69): for 𝑓 ∈ 𝐶𝑚+1 ,

Then

|| 𝑓 − 𝑠 𝑗 ||∞ ≤ 𝐶𝑚 𝑓 ℎ𝑚+1−𝑗 𝑗 = 0,…𝑚 − 1
where h>0 is the maximal spacing between 
interpolation points

Under some conditions

||𝑝 − 𝑝𝑁||1 = ∫ 𝑑𝑦 |𝑝 𝑦 − 𝑝𝑁 𝑦 | = ∫ 𝑑𝑦න
𝑓−1 𝑦

1

|∇𝑓|
𝑑𝜎 − න

𝑔−1 𝑦

1

|∇𝑔|
𝑑𝜎 = ⋯



From d=1 to d>1:

“Same” result, more complicated proof

47

Theorem 1 (Ditkowski, Fibich, AS ’18):

Let 𝑝 and 𝑝𝑁 be the probability density functions (PDF) of 𝑓(𝛼) and its

m-degree spline interpolant on 𝑁 equi-distributed points. Then

𝑝 − 𝑝𝑁 1 ≤ 𝐾𝑁−
𝑚
𝑑

Lemma: Under general 
smoothness conditions

𝑝 𝑦 ∼ න
𝑓−1(𝑦)

1

|∇𝑓|
𝑑𝜎

Theorem (Schultz, ‘69): for 𝑓 ∈ 𝐶𝑚+1 ,

Then

|| 𝑓 − 𝑠 𝑗 ||∞ ≤ 𝐶𝑚 𝑓 ℎ𝑚+1−𝑗 𝑗 = 0,…𝑚 − 1
where h>0 is the maximal spacing between 
interpolation points

Under some conditions

||𝑝 − 𝑝𝑁||1 = ∫ 𝑑𝑦 |𝑝 𝑦 − 𝑝𝑁 𝑦 | = ∫ 𝑑𝑦න
𝑓−1 𝑦

1

|∇𝑓|
𝑑𝜎 − න

𝑔−1 𝑦

1

|∇𝑔|
𝑑𝜎 = ⋯

Different manifolds – more complications



2-dimensional example

48

𝛼1

𝛼2

𝑓 𝛼1, 𝛼2 = tanh 6𝛼1𝛼2 +
𝛼1
2

+
𝛼1 + 𝛼2

2
, 𝛼1, 𝛼2 ∼ 𝑈𝑛𝑖 −1,1 , 𝑖. 𝑖. 𝑑.

𝑓

𝐿1 𝑒𝑟𝑟𝑜𝑟

𝑁

𝑁−𝟐.𝟏



3 dimensional example

49

𝑓 𝛼1, 𝛼2, 𝛼3 = tanh 2𝛼1 + 3𝛼2 + 3𝛼3 +
𝛼1 + 𝛼2 + 𝛼3

3
,

𝛼1, 𝛼2, 𝛼3 ∼ 𝑈𝑛𝑖 −1,1 , 𝑖. 𝑖. 𝑑.

𝑓

𝑃
𝐷
𝐹

𝐿1 𝑒𝑟𝑟𝑜𝑟

𝑁
𝑁−𝟏.09



Conclusions (non-transport outlook)

▪ Convergence of moments and in 𝐿2 does not guarantee 

convergence in PDFs

▪ Spline perform well for PDF approximation

▪ Any other “local” method might do – RBFs, other splines, 

GMM,… 

▪ With theoretical guarantees in all dimensions.

▪ With explicit “maximal dimensions” of effectiveness

50

A. Sagiv, A. Ditkowski, G. Fibich 
Density estimation in uncertainty propagation problems using a 
surrogate model 
arXiv 1803.10991 (under review)



Conclusions (non-transport outlook)

▪ Convergence of moments and in 𝐿2 does not guarantee 

convergence in PDFs

▪ Spline perform well for PDF approximation

▪ Any other “local” method might do – RBFs, other splines, 

GMM,… 

▪ With theoretical guarantees in all dimensions.

▪ With explicit “maximal dimensions” of effectiveness
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Open question: 
Can the theory of push-forwarded densities be 

simplified?



Agenda

▪ PDF approximation

▪ Is moment-estimation sufficient?

▪ An algorithm & convergence results

▪ Transport-theory point of view

Simplifying the theory of measure approximation

52



Spline PDF Theory revisited

53

Theorem 2 (Ditkowski, Fibich, AS ’18):

Let Ω = 0,1 𝑑 , let 𝑓 ∈ 𝐶𝑚+1 Ω with 𝛁𝒇 > 𝒂 > 𝟎, let 𝛼 be uniformly

distributed in Ω,

and

Let 𝑝 and 𝑝𝑁 be the probability density functions (PDF) of 𝑓(𝛼) and its

m-degree tensor-product spline interpolant on 𝑁𝑑 equi-distributed

points. Then

𝑝 − 𝑝𝑁 1 ≤ 𝐾𝑁−
𝑚
𝑑 ,

Problem  I – “arbitrary” derivative condition from application standpoint
Problem II – spline approximate derivatives in 𝐿∞, other methods do not 



Spline PDF Theory revisited

54

Theorem 2 (Ditkowski, Fibich, AS ’18):

Let Ω = 0,1 𝑑 , let 𝑓 ∈ 𝐶𝑚+1 Ω with 𝛁𝒇 > 𝒂 > 𝟎, let 𝜶 be uniformly

distributed in 𝛀,

and

Let 𝑝 and 𝑝𝑁 be the probability density functions (PDF) of 𝑓(𝛼) and its

m-degree tensor-product spline interpolant on 𝑁𝑑 equi-distributed

points. Then

𝑝 − 𝑝𝑁 1 ≤ 𝐾𝑁−
𝑚
𝑑 ,

Problem  III – uniform measure (or absolutely continuous)
Problem IV – Omega is a box (compact)



Approximation-based estimation

55

𝑓 𝛼 𝑝

𝛼 ∼ 𝜚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

push-forward

density of interest



Approximation-based estimation

56

𝑓 𝛼

𝑔 𝛼

𝑝

𝛼 ∼ 𝜚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

Ƹ𝑝

push-forward

push-forward

approximation



Approximation-based estimation

57

𝑓 𝛼

𝑔 𝛼

𝛼 ∼ 𝜚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

push-forward

push-forward

approximation

𝜇 ≔ 𝑓∗𝜚

𝜈 ≔ 𝑔∗𝜚

Generally – these are 
measures, not densities



Approximation-based estimation

58

𝑓 𝛼

𝑔 𝛼

𝜇 ≔ 𝑓∗𝜚

𝛼 ∼ 𝜚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

𝜈 ≔ 𝑔∗𝜚

push-forward

push-forward

approximation

How should the difference between 𝜇 and 𝜈 be measured?

Generally – these are 
measures, not densities

[Gibbs and Su, Int. 
Stats. Rev. 2002]



Is PDF the right way to measure?

A numerical example:

𝑓 𝛼 = 𝛼; 𝑔 𝛼 = 𝛼 + 10−3 sin(100𝛼)
⇒ ||𝑓 − 𝑔||𝐿𝑞 ∼ 10−3

59



Is PDF the right way to measure?

A numerical example:

𝑓 𝛼 = 𝛼; 𝑔 𝛼 = 𝛼 + 10−3 sin(100𝛼)
𝜚 = 𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒, 𝜇 ≔ 𝑓∗𝜚; 𝜈 ≔ 𝑔∗𝜚

60

10−3𝑒𝑟𝑟𝑜𝑟 10−1𝑒𝑟𝑟𝑜𝑟
This difference can 
be made arbitrarily
large



Is PDF the right way to measure?

A numerical example:

𝑓 𝛼 = 𝛼; 𝑔 𝛼 = 𝛼 + 10−3 sin(100𝛼)
𝜚 = 𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒, 𝜇 ≔ 𝑓∗𝜚; 𝜈 ≔ 𝑔∗𝜚

61

PDFs are 
different, but

𝜇 0.2,0.4
≈ 𝜈( 0.2,0.4 )



Is PDF the right way to measure?

A numerical example:

𝑓 𝛼 = 𝛼; 𝑔 𝛼 = 𝛼 + 10−3 sin(100𝛼)
𝜚 = 𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒, 𝜇 ≔ 𝑓∗𝜚; 𝜈 ≔ 𝑔∗𝜚

62

PDFs are 
different, but

𝜇 0.2,0.4
≈ 𝜈( 0.2,0.4 )

“transfer” mass 
on a local scale



Underlying Theory – Wasserstein Metrics

𝑊𝑝 𝜇, 𝜈 = inf ∫𝑅×𝑅 𝑥 − 𝑦 𝑝𝑑𝛾(𝑥, 𝑦)
1

𝑝

Such that 𝜇, 𝜈 are marginals of 𝛾

63

𝜇 𝜈

Intuitively (for p=1) 
a transport plan: move 
𝛾(𝑥, 𝑦) mass over 
|𝑥 − 𝑦| distance

X Y



Underlying Theory – Wasserstein Metrics

𝑊𝑝 𝜇, 𝜈 = inf ∫𝑅×𝑅 𝑥 − 𝑦 𝑝𝑑𝛾(𝑥, 𝑦)
1

𝑝

Such that 𝜇, 𝜈 are marginals of 𝛾

64

𝜇 𝜈

Intuitively (for p=1) 
a transport plan: move 
𝛾(𝑥, 𝑦) mass over 
|𝑥 − 𝑦| distance

Then take infimum over 
all such plans

X Y



Indeed – Wasserstein theory is simple

65

Theorem 3 (AS ’19):

Let Ω ⊆ 𝑅𝑑, let 𝑓, 𝑔 ∈ 𝐶 ഥ𝛀 , and let 𝜚 be a Borel measure

and 𝜇 = 𝑓∗𝜚, 𝜈 = 𝑔∗𝜚

1. 𝑊𝑝(𝜇, 𝜈) ≤ ||𝑓 − 𝑔||∞

i.e., pointwise accuracy guarantees Wasserstein accuracy



Indeed – Wasserstein theory is simple
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Theorem 3 (AS ’19):

Let Ω ⊆ 𝑅𝑑, let 𝑓, 𝑔 ∈ 𝐶 ഥ𝛀 , and let 𝜚 be a Borel measure

and 𝜇 = 𝑓∗𝜚, 𝜈 = 𝑔∗𝜚

1. 𝑊𝑝(𝜇, 𝜈) ≤ ||𝑓 − 𝑔||∞

2. 𝑊𝑝(𝜇, 𝜈) ≤ ||𝑓 − 𝑔||𝑝 (if 𝛺 is bounded)

i.e., 𝑳𝒑 accuracy guarantess Wasserstein accuracy



Indeed – Wasserstein theory is simple
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Theorem 3 (AS ’19):

Let Ω ⊆ 𝑅𝑑, let 𝑓, 𝑔 ∈ 𝐶 ഥ𝛀 , and let 𝜚 be a Borel measure

and 𝜇 = 𝑓∗𝜚, 𝜈 = 𝑔∗𝜚

1. 𝑊𝑝(𝜇, 𝜈) ≤ ||𝑓 − 𝑔||∞

2. 𝑊𝑝(𝜇, 𝜈) ≤ ||𝑓 − 𝑔||𝑝 (if 𝛺 is bounded)

3. 𝑊𝑝(𝜇, 𝜈) ≤ 𝐶(𝑝, 𝑞)||𝑓 − 𝑔||𝑞

𝑝

𝑞+𝑝 ⋅ ||𝑓 − 𝑔||∞

𝑞

𝑞+𝑝
for all 𝑞 ≥ 1



Indeed – Wasserstein theory is simple

68

• No conditions on the underlying measure and domain (=many noise models)
• No derivative approximation conditions
• Every 𝐿𝑞 convergence works (=many possible approximation methods)

Theorem 3 (AS ’19):

Let Ω ⊆ 𝑅𝑑, let 𝑓, 𝑔 ∈ 𝐶 ഥ𝛀 , let 𝜚 be a Borel measure

and 𝜇 = 𝑓∗𝜚, 𝜈 = 𝑔∗𝜚

1. 𝑊𝑝(𝜇, 𝜈) ≤ ||𝑓 − 𝑔||∞

2. 𝑊𝑝(𝜇, 𝜈) ≤ ||𝑓 − 𝑔||𝑝 (if 𝛺 is bounded)

3. 𝑊𝑝(𝜇, 𝜈) ≤ 𝐶(𝑝, 𝑞)||𝑓 − 𝑔||𝑞

𝑝

𝑞+𝑝 ⋅ ||𝑓 − 𝑔||∞

𝑞

𝑞+𝑝
for all 𝑞 ≥ 1



Proof sketch

𝑄𝑗

69

Here – Ω is a cube, 𝜚 is Lebesgue

𝑅

𝜇𝑗 = 𝑓∗𝜚 ቚ
𝑄𝑗

𝜈𝑗 = 𝑔∗𝜚 ቚ
𝑄𝑗

Step I – push forward a small cube 𝑄𝑗 to define to 

measures (of same mass) on R 



Proof sketch

𝑄𝑗
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Here – Ω is a cube, 𝜚 is Lebesgue

𝑅

𝜇𝑗 = 𝑓∗𝜚 ቚ
𝑄𝑗

𝜈𝑗 = 𝑔∗𝜚 ቚ
𝑄𝑗

Step II – for 𝜀 > 0, by continuity, if 𝑑𝑖𝑎𝑚 𝑄𝑗 < 𝛿

Then 𝑓 𝑥 − 𝑓 𝑦 , 𝑔 𝑥 − 𝑔 𝑦 ≤ 𝜀
And so for any transport,

the mass 𝜀𝑑 travels a distance ≤ 𝑓 − 𝑔
𝐿∞

+ 𝑜 𝜖



Proof sketch

𝑄𝑗
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Here – Ω is a cube, 𝜚 is Lebesgue

𝑅

𝜇𝑗 = 𝑓∗𝜚 ቚ
𝑄𝑗

𝜈𝑗 = 𝑔∗𝜚 ቚ
𝑄𝑗

Step II – for 𝜀 > 0, by continuity, if 𝑑𝑖𝑎𝑚 𝑄𝑗 < 𝛿

Then 𝑓 𝑥 − 𝑓 𝑦 , 𝑔 𝑥 − 𝑔 𝑦 ≤ 𝜀
And so for any transport,

the mass 𝜀𝑑 travels a distance ≤ 𝑓 − 𝑔
𝐿∞

+ 𝑜 𝜖

Step III – this is true for all cubes, for any 𝜀 > 0



Agenda

▪ PDF approximation

▪ Is moment-estimation sufficient?

▪ An algorithm & convergence results

▪ Transport-theory point of view

Back to the Uncertainty-quantification problem

72



Pause, why Wasserstein?

▪ The distance between PDFs is natural and 

intuitive to use…

▪ But difficult to work with.

▪ Wasserstein-theory is easier to work with, 

better approximation results…

▪ But is it useful for applications?

73



Wasserstein and CDFs

The CDF bounds are a result of a wider theory for 

Wasserstein Metrics, since

𝑊1 𝜇, 𝜈 = ||𝐹𝜇 − 𝐹𝜈||1
[Salvemini ‘43, Vallender ‘74]

74

Cumulative distribution function (CDF)

𝐹𝜇 𝑦 ≔ 𝜇 𝑦,∞



Wasserstein and CDFs

The CDF bounds are a result of a wider theory for 

Wasserstein Metrics, since

𝑊1 𝜇, 𝜈 = ||𝐹𝜇 − 𝐹𝜈||1
[Salvemini ‘43, Vallender ‘74]
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Cumulative distribution function (CDF)

𝐹𝜇 𝑦 ≔ 𝜇 𝑦,∞

Theorem 3 – for CDFs (AS ’19):

Let Ω ⊆ 𝑅𝑑, let 𝑓, 𝑔 ∈ 𝐶 ഥ𝛀 , and let 𝜚 be a Borel measure

1. ||𝐹𝜇 − 𝐹𝜈||1 ≤ ||𝑓 − 𝑔||∞

2. ||𝐹𝜇 − 𝐹𝜈||1 ≤ ||𝑓 − 𝑔||1 (if 𝛺 is bounded)

3. ||𝐹𝜇 − 𝐹𝜈||1 ≤ ||𝑓 − 𝑔||𝑞

1

𝑞+1 ⋅ ||𝑓 − 𝑔||∞
1−

1

𝑞+1
for all 𝑞 ≥ 1



Is CDF the right way to measure?

A numerical example:

𝑓 𝛼 = 𝛼; 𝑔 𝛼 = 𝛼 + 10−3 sin(100𝛼)
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𝜎 𝑓 − 𝜎 𝑓𝑁

Numerical example - revisited
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𝛼

PDF approximation, 𝑁 = 12

𝑓 = tanh 9𝛼 +
𝛼

2
, 𝛼 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [−1, 1]



Numerical methods
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Theorems 4-5 (AS ’19):

Under general smoothness conditions

1. For m order spline with spacing h>0 , then

||𝐹𝜇 − 𝐹𝜈||1 ≤ 𝐾ℎ𝑚+1

CDF error - spline



Numerical methods
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Theorems 4-5 (AS ’19):

Under general smoothness conditions

1. For m order spline with spacing h>0 , then

||𝐹𝜇 − 𝐹𝜈||1 ≤ 𝐾ℎ𝑚+1

2. For analytic function f and gPC of order N

||𝐹𝜇 − 𝐹𝜈||1 ≤ 𝐶𝑒𝑥𝑝(−𝛾𝑁)

gPC result – in sharp contrast to PDF approximation

CDF error - spline CDF error - gPC PDF error - gPC



Lower bounds
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𝑓 𝛼

𝑔 𝛼

𝜇 ≔ 𝑓 ∘ 𝜚

𝛼 ∼ 𝜚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

𝜈 ≔ 𝑔 ∘ 𝜚

push-forward

push-forward

approximation

So far

We bounded 𝑊𝑝 𝜇, 𝜈 by 𝑓 − 𝑔
𝐿𝑞

from above

What about lower bounds?



Lower bounds – key idea
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Wasserstein metric is defined as an infimum, so any
transport plan provides an upper bound
Can it be restated as a supremum?



Lower bounds – key idea
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Monge Kantorovich–

𝑊1 𝜇, 𝜈 = sup න
R

𝑤(𝑑𝜇 − 𝑑𝜈) | 𝐿𝑖𝑝 𝑤 ≤ 1

Loeper (2005) & Peyre (2018)
Under certain smoothness assumptions

𝑊2 𝜇, 𝜈 ∼ ||𝜇 − 𝜈|| ሶ𝑯−1 (supremum functional on 𝑤 ∈ ሶ𝐻1)

Wasserstein metric is defined as an infimum, so any
transport plan provides an upper bound
Can it be restated as a supremum?



Lower bounds – proof sketch
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Monge Kantorovich–

𝑊1 𝜇, 𝜈 = sup න
R

𝑤(𝑑𝜇 − 𝑑𝜈) | 𝐿𝑖𝑝 𝑤 ≤ 1

Loeper (2005) & Peyre (2018)
Under certain smoothness assumptions

𝑊2 𝜇, 𝜈 ∼ ||𝜇 − 𝜈|| ሶ𝑯−1 (supremum functional on 𝑤 ∈ ሶ𝐻1)

Proof sketch
choose 𝑤 𝑧 = 𝑐𝑘𝑦

𝑘 and recover moments by change of 
variables, e.g., 

∫R 𝑦 𝑑𝜇 − 𝑑𝜈 = ∫Ω 𝑓 𝛼 𝑑𝜚 𝛼 − ∫Ω𝑔 𝛼 𝑑𝜚(𝛼)

And similarly for 𝑊2 𝜇, 𝜈 …



Lower bounds – proof sketch
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Monge Kantorovich–

𝑊1 𝜇, 𝜈 = sup න
R

𝑤(𝑑𝜇 − 𝑑𝜈) | 𝐿𝑖𝑝 𝑤 ≤ 1

Loeper (2005) & Peyre (2018)
Under certain smoothness assumptions

𝑊2 𝜇, 𝜈 ∼ ||𝜇 − 𝜈|| ሶ𝑯−1 (supremum functional on 𝑤 ∈ ሶ𝐻1)

Theorems 5&6 (AS ’19):

Let Ω ⊆ 𝑅𝑑 be bounded, let 𝑓, 𝑔 ∈ 𝐶 ഥ𝛀 , let 𝜚 be a Borel measure

𝑊1 𝜇, 𝜈 ≥ |𝐸𝜚𝑓 − 𝐸𝜚𝑔 | ,

On an interval with Lebesgue measure-

𝑊2 𝜇, 𝜈 ≥ 𝐶 𝑓, 𝑘 𝐸𝜚𝑓
𝑘 − 𝐸𝜚𝑔

𝑘 𝑘 ≥ 1



Conclusions

▪ Convergence of moments and in 𝐿2 does not guarantee 

convergence in PDFs

▪ Spline perform well for PDF approximation

▪ With theoretical guarantees in all dimensions.

▪ Convergence in CDF is “better-behaved” than in PDFs

▪ Most popular methods converge in CDF, but not always in PDF

▪ Underlying theory – Wasserstein metric
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Thank you!
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