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(time dependent) Born-Oppenheimer approximation

Nuclear-electronic Schrödinger equation

𝑖𝜕௧Ψ(𝑥, 𝑅) = −12Δ௫Ψ(𝑥, 𝑅) −
1
2𝑀ΔோΨ(𝑥, 𝑅) + 𝑉(𝑥, 𝑅)Ψ(𝑥, 𝑅)

Born-Oppenheimer (adiabatic) approximation
𝜀 = ඥ1/𝑀 ≪ 1 (𝑀 ≈ 1836 for hydrogen)

Assume that the wave function takes

Ψ(𝑥, 𝑅) = 𝜓(𝑅)Φ଴(𝑥; 𝑅)

where Φ଴(⋅; 𝑅) is the ground state for electronic Hamiltonian

ൣ−ଵ
ଶΔ௫ + 𝑉(𝑥, 𝑅)]Φ଴(𝑥; 𝑅) = 𝐸଴(𝑅)Φ଴(𝑥; 𝑅)



Semiclassical limit

Nuclear Schrodinger equation

𝑖𝜕௧𝜓(𝑅) = − 1
2𝑀Δோ𝜓(𝑅) + 𝐸଴(𝑅)Ψ(𝑥, 𝑅)

We are interested in long time dynamics for nuclei, hence we rescale to the
time scale 𝒪(√𝑀) and get (recall 𝜀 = ඥ1/𝑀)

𝑖𝜀𝜕௧𝜓(𝑅) = −𝜀
ଶ

2 Δோ𝜓(𝑅) + 𝐸଴(𝑅)Ψ(𝑥, 𝑅)

Semiclassical approximation (𝜀 ≪ 1) gives Newton’s equation of motion

𝑀𝑅̈ = −∇ோ𝐸଴(𝑅).

Mathematical works by Combes, Hagedorn, Jecko, Joye, Markowich,
Martinez, Maslov, Panati, Paul, Spohn, Teufel, ...



Born-Oppenheimer molecular dynamics
BOMD equation of motion

𝑀𝑅̈ = −∇ோ𝐸଴(𝑅);
𝐸଴(𝑅) = inf

஍
⟨Φ|𝐻(𝑥; 𝑅)|Φ⟩.

Force can be calculated using Hellmann-Feynman theorem

∇ோ𝐸଴(𝑅) = ⟨Φ଴(𝑥; 𝑅)|∇ோ𝐻(𝑥; 𝑅)|Φ଴(𝑥; 𝑅)⟩.

Unfortunately, the variational problem is too difficult to solve practically.
• Curse of dimensionality (𝑑 = 3𝑁, where 𝑁 is the number of

electrons);
• Symmetry restrictions of Φ due to Pauli’s exclusion principle

Φ(𝑥ଵ, ⋯ , 𝑥௜ , ⋯ , 𝑥௝ , ⋯ , 𝑥ே) = −Φ(𝑥ଵ, ⋯ , 𝑥௝ , ⋯ , 𝑥௜ , ⋯ , 𝑥ே);

• Φ has complicated singularity structure.
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Density functional theory
Approximate solutions are given by electronic structure models.
The most popular choice is the density functional theory

[Hohenberg-Kohn 1964, Kohn-Sham 1965]
The energy is a functional of the one-body electron density 𝜌 ∶ ℝଷ → ℝା

𝜌(𝑥) = 𝑁න|Φ|ଶ(𝑥, 𝑥ଶ, ⋯ , 𝑥ே) d𝑥ଶ⋯ d𝑥ே .

Levy-Lieb constrained variational principle [Levy 1979, Lieb 1983]:

𝐸଴ = inf
஍
⟨Φ|𝐻|Φ⟩ = inf

ఘ
inf

஍∶஍↦ఘ
⟨Φ|𝐻|Φ⟩ = inf

ఘ
𝐸DFT(𝜌).

The energy functional takes the general form

𝐸DFT(𝜌; 𝑅) = 𝑇௦(𝜌) + න𝜌𝑉ୣ୶୲(𝑥; 𝑅) +
1
2 ඵ

𝜌(𝑥)𝜌(𝑦)
|𝑥 − 𝑦| + 𝐸୶ୡ(𝜌)

𝑇௦(𝜌): Kinetic energy of non-interacting electrons;
𝐸୶ୡ(𝜌): Exchange-correlation energy, which encodes the many-body
interaction.
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Kohn-Sham density functional theory

Kohn-Sham density functional theory introduces one-particle orbitals to
better approximate the kinetic and exchange-correlation energies.
It is the most widely used electronic structure theory, which achieves the
best compromise between accuracy and cost.
The energy functional is minimized for 𝑁 orbitals {𝜓௜} ⊂ 𝐻ଵ(ℝଷ).

𝐸୏ୗ({𝜓௜}; 𝑅) =
1
2

ே

෍
௜ୀଵ

න|∇𝜓௜|
ଶ +න𝜌𝑉ୣ୶୲(𝑥; 𝑅) +

1
2 ඵ

𝜌(𝑥)𝜌(𝑦)
|𝑥 − 𝑦| + 𝐸୶ୡ(𝜌)

where the electron density is given by

𝜌(𝑥) =
ே

෍
௜ୀଵ

|𝜓௜|
ଶ(𝑥).

Remark: spin degree of freedom is neglected



Kohn-Sham density functional theory
Kohn-Sham DFT can be understood as a mean field type theory, as
electrons interact through an effective potential.
The electron density satisfies the following consistent relation:

𝐻ୣ୤୤(𝜌)𝜓௜ = 𝐸௜𝜓௜ , and 𝜌(𝑥) =
ே

෍
௜ୀଵ

|𝜓௜|
ଶ(𝑥)

where the effective Hamiltonian contains the interactions of electrons:

𝐻ୣ୤୤(𝜌) = −ଵ
ଶΔ + 𝑉ୣ୤୤(𝜌);

𝑉ୣ୤୤(𝜌) = 𝑉ୣ୶୲ + 𝑉௖(𝜌) +
ఋ
ఋఘ𝐸௫௖(𝜌).

Note that this gives a fix point equation

𝜌 = 𝐹୏ୗ(𝜌).



BOMD with Kohn-Sham DFT
Equation of motion

𝑀𝑅̈ = −∇ோ𝐸଴,୏ୗ(𝑅);
𝐸଴,୏ୗ(𝑅) = inf

{ట೔}
𝐸୏ୗ({𝜓௜}; 𝑅).

Straightforward application of Hellmann-Feynman type argument gives

∇ோ𝐸଴,୏ୗ(𝑅) = න𝜌୏ୗ(𝑥; 𝑅)
𝜕
𝜕𝑅𝑉ୣ୶୲(𝑥; 𝑅) d𝑥

We can then write

𝑀𝑅̈ = −න𝜌୏ୗ(𝑥; 𝑅)
𝜕
𝜕𝑅𝑉ୣ୶୲(𝑥; 𝑅) d𝑥

𝜌୏ୗ(𝑥; 𝑅) = argmin
ఘ

𝐸୏ୗ(𝜌; 𝑅)

where (with some abuse of notation)
𝐸୏ୗ(𝜌; 𝑅) = inf

{ట೔}∶{ట೔}↦ఘ
𝐸୏ୗ({𝜓௜}; 𝑅)

for math justification, see [Ambrosio-Figalli-Friesecke-Giannoulis-Paul 2011]
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Self-consistent field iteration
The challenge is now to find the ground state electron density

𝜌୏ୗ(𝑥; 𝑅) = argmin
ఘ

𝐸୏ୗ(𝜌; 𝑅).

The common (and efficient) way to find 𝜌୏ୗ is to use a nonlinear iteration
scheme to solve the fix point equation

𝜌 = 𝐹୏ୗ(𝜌).

This is known as the self-consistent field (SCF) iteration in literature.
An example of the mixing scheme is:

1. ෥𝜌 = 𝐹୏ୗ(𝜌௡)
2. 𝜌௡ାଵ = 𝜌௡ + 𝛼𝑃(෥𝜌 − 𝜌௡)

where 𝛼 is a mixing parameter and 𝑃 a preconditioner, e.g.
𝑃 = Id for simple mixing,
𝑃 = ି୼

ସగఊି୼ for Kerker mixing.
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Simple mixing:
𝜌௡ାଵ = 𝜌௡ + 𝛼(𝐹୏ୗ(𝜌௡) − 𝜌௡).

Kerker mixing:

𝜌௡ାଵ = 𝜌௡ + 𝛼 −Δ
4𝜋𝛾 − Δ(𝐹୏ୗ(𝜌

௡) − 𝜌௡)

We will not go into the details of more advanced SCF iteration scheme
here, but just make two remarks for discussions in the sequel:

1. As usual for iterative schemes, the SCF iteration starts with an initial
guess 𝜌଴, which greatly affects the number of iterations;

2. As the system has huge number of degrees of freedom, in practice,
the SCF iteration can take a long time to converge. This is the
bottleneck of BOMD simulations.



A simple example
Let us use as example the dynamics of an one-dimensional chain of atoms.

𝐸୏ୗ(𝜓, 𝑅) =෍
௜
න|∇𝜓௜|

ଶ+1
2 ඵ(𝜌(𝑥)−𝑚(𝑥; 𝑅))𝑣(|𝑥−𝑦|)(𝜌(𝑦)−𝑚(𝑦; 𝑅))

where 𝑚(𝑥; 𝑅) = ∑ூ𝑚ion(𝑥 − 𝑅ூ). By different choice of ionic background
charge 𝑚ion, we have either insulating or metallic systems.
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We use BOMD to study the phonon frequency of the system.
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How to accelerate BOMD?
Since the bottleneck is SCF, we try to reduce the number of steps:

• Use 𝜌 from last atom position 𝑅 as initial guess (already used);
• Terminate the SCF iteration before convergence (who need 10ିଽ) ...
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Since the bottleneck is SCF, we try to reduce the number of steps:

• Use 𝜌 from last atom position 𝑅 as initial guess (already used);
• Terminate the SCF iteration before convergence (who need 10ିଽ) ...

Unfortunately, it does not work ...
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Recall the Born-Oppenheimer molecular dynamics

𝑀𝑅̈ = −න𝜌୏ୗ(𝑥; 𝑅)𝜕ோ𝑉ୣ୶୲(𝑥; 𝑅) d𝑥

𝜌୏ୗ(𝑥; 𝑅) = argmin
ఘ

𝐸୏ୗ(𝜌; 𝑅)

We have introduced a dependence on the initial guess 𝜌 (superscript
dropped), which is superficial now, since 𝜌୏ୗ is the minimizer (assuming
uniqueness, at least locally ...)
When we use non-convergent SCF iteration,
let us denote 𝜌ୗେ୊(𝑥; 𝑅, 𝜌) the output density from initial guess 𝜌 of the
non-convergent SCF iteration.

𝑀𝑅̈ = −න𝜌ୗେ୊(𝑥; 𝑅, 𝜌)𝜕ோ𝑉ୣ୶୲(𝑥; 𝑅) d𝑥

𝜌(𝑡+) ← 𝜌ୗେ୊(𝑥; 𝑅, 𝜌(𝑡))

where we update the initial guess for the next time step using the current
output.
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Loss of time-reversible symmetry

BOMD with non-convergent SCF iteration

𝑀𝑅̈ = −න𝜌ୗେ୊(𝑥; 𝑅, 𝜌)𝜕ோ𝑉ୣ୶୲(𝑥; 𝑅) d𝑥

𝜌(𝑡+) ← 𝜌ୗେ୊(𝑥; 𝑅, 𝜌(𝑡))

Due to the dependence on the initial guess of the SCF iteration, the
dynamics is no longer time-reversible nor symplectic.
The loss of structure leads to instability and drift behavior.

We note that irreversibility also arises if SCF is accelerated using
• linear scaling algorithm (uncontrolled error due to cut-off), or
• adaptive basis sets (Pulay force).



Time-reversible Born-Oppenheimer molecular dynamics

Key idea: Restore the time reversibility by treating the initial guess of
electron density as dynamical variables.

[Niklasson-Tymczak-Challacombe 2006, Niklasson 2008]

Time-reversible Born-Oppenheimer molecular dynamics (TRBOMD)

𝑀𝑅̈ = −න𝜌ୗେ୊(𝑥; 𝑅, 𝜌)𝜕ோ𝑉ୣ୶୲(𝑥; 𝑅) d𝑥

𝜌̈ = 𝜔ଶ(𝜌ୗେ୊(𝑥; 𝑅, 𝜌) − 𝜌)

Here 𝜔ଶ is a frequency parameter for the artificial dynamics of 𝜌.

The dynamics apparently has time reversal symmetry,
however it is not symplectic (no “energy” conservation in general).
Remark: other than the second order dynamics for 𝜌, we might also
consider time-reversible first order stochastic dynamics.



Numerical examples for TRBOMD
Back to the original phonon example, we use SCF step = 3.
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Insulator system:
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Questions:
• When does and how does TRBOMD work?
• How to choose the parameter 𝜔ଶ?
• How does the performance depend on the system and choice of 𝜌ୗେ୊?

To answer these (at least partially), we first do a linear stability analysis of
the dynamics.
Denote 𝑅∗ and 𝜌∗ = 𝜌୏ୗ(𝑅

∗) the reference equilibrium state.
Write 𝑅 = 𝑅∗ + ෥𝑅 and 𝜌 = 𝜌∗ + ෥𝜌, we have (after dropping tildes)

𝑀𝑅̈ = −න𝜌ୗେ୊(𝑥; 𝑅
∗ + 𝑅, 𝜌∗ + 𝜌)𝜕ோ𝑉ୣ୶୲(𝑥; 𝑅∗ + 𝑅)d𝑥

𝜌̈ = 𝜔ଶ൫𝜌ୗେ୊(𝑅
∗ + 𝑅, 𝜌∗ + 𝜌) − 𝜌∗ − 𝜌൯

Assumption: consistency of the SCF map

𝜌ୗେ୊(𝑅, 𝜌୏ୗ(𝑅)) = 𝜌୏ୗ(𝑅), in particular 𝜌ୗେ୊(𝑅
∗, 𝜌∗) = 𝜌∗.
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Linearization gives (all derivatives evaluated at 𝑅∗ and 𝜌∗)

𝑀𝑅̈ = −ቆන 𝜕𝑉ୣ୶୲
𝜕𝑅

𝜕𝜌ୗେ୊
𝜕𝑅 + 𝜌∗𝜕

ଶ𝑉ୣ୶୲
𝜕𝑅ଶ

ቇ𝑅 − න 𝜕𝑉ୣ୶୲
𝜕𝑅

𝜕𝜌ୗେ୊
𝜕𝜌 𝜌

𝜔ିଶ𝜌̈ =
𝜕𝜌ୗେ୊
𝜕𝑅 𝑅 + ቀ

𝜕𝜌ୗେ୊
𝜕𝜌 − Idቁ𝜌

By consistency of the SCF map, we have
𝜕𝜌ୗେ୊
𝜕𝑅 = ቀId−

𝜕𝜌ୗେ୊
𝜕𝜌 ቁ

𝜕𝜌୏ୗ
𝜕𝑅

=∶ 𝒦
𝜕𝜌୏ୗ
𝜕𝑅

We arrive at

𝑀𝑅̈ = −𝑀𝒟𝑅 −න 𝜕𝑉ୣ୶୲
𝜕𝑅 (𝒦 − Id)ቀ

𝜕𝜌୏ୗ
𝜕𝑅 𝑅 − 𝜌ቁ

𝜔ିଶ𝜌̈ = 𝒦ቀ
𝜕𝜌୏ୗ
𝜕𝑅 𝑅 − 𝜌ቁ

where 𝒟 is the dynamical matrix for atoms

𝑀𝒟 = ቆන 𝜕𝑉ୣ୶୲
𝜕𝑅

𝜕𝜌୏ୗ
𝜕𝑅 + 𝜌∗𝜕

ଶ𝑉ୣ୶୲
𝜕𝑅ଶ

ቇ
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Linearized TRBOMD

𝑀𝑅̈ = −𝑀𝒟𝑅 −න 𝜕𝑉ୣ୶୲
𝜕𝑅 (𝒦 − Id)ቀ

𝜕𝜌୏ୗ
𝜕𝑅 𝑅 − 𝜌ቁ

𝜔ିଶ𝜌̈ = 𝒦ቀ
𝜕𝜌୏ୗ
𝜕𝑅 𝑅 − 𝜌ቁ

Note that 𝑀𝑅̈ = −𝑀𝒟𝑅 agrees with the linearization of BOMD, which
gives the (Born-Oppenheimer) phonon frequency of the atoms.

Observations:
1. 𝒦 = Id−𝜕𝜌ୗେ୊/𝜕𝜌 must be diagonalizable with positive eigenvalues,

otherwise, the 𝜌 dynamics is unstable.
2. Denote the characteristic frequency of 𝑅 as Ω, we have

Ω − Ω(𝒟)
Ω(𝒟) = 𝜔ିଶቆන 𝜕𝑉ୣ୶୲

𝜕𝑅 (Id−𝒦ିଵ)
𝜕𝜌୏ୗ
𝜕𝑅 + 𝒪ቀ Ω(𝒟)ଶ

𝜔ଶ𝜆୫୧୬(𝒦)
ቁቇ

under the non-resonance condition: 𝜔ିଶ ≪ 𝜆୫୧୬(𝒦)/Ω(𝒟)ଶ.



Accuracy of TRBOMD

Accuracy from linear response analysis:

Ω − Ω(𝒟)
Ω(𝒟) = 𝜔ିଶቆන 𝜕𝑉ୣ୶୲

𝜕𝑅 (Id−𝒦ିଵ)
𝜕𝜌୏ୗ
𝜕𝑅 + 𝒪ቀ Ω(𝒟)ଶ

𝜔ଶ𝜆୫୧୬(𝒦)
ቁቇ

Hence, to improve the accuracy, we want to increase 𝜔; however, larger 𝜔
gives stiffness of the equation, which requires more computational cost.
We have a trade off between accuracy and cost.

We also see that the prefactor decreases if the spectrum of 𝒦 is close to
Id. Recall that 𝒦 = Id−డఘ౏ిూ

డఘ . We would want to choose SCF map so
that

ብ
𝜕𝜌ୗେ୊
𝜕𝜌 ብ ≪ 1

This means that the output does not depend much on the initial guess, in
other words, we would like to choose an effective SCF consistent iteration.



Numerical validation: Error as a function of 𝜔ିଶ for metallic system

𝜔ିଶ ቛ𝑅୆୓ − 𝑅୘ୖቛ
௅భ

ቛ𝑅୆୓ − 𝑅୘ୖቛ
௅ಮ

|Ω୘ୖ/Ω(𝒟) − 1|
1𝑒4 0.84367 0.87842𝑒 − 3 0.35399𝑒 − 3
2𝑒4 1.67923 1.74862𝑒 − 3 0.71191𝑒 − 3
3𝑒4 2.50381 2.60483𝑒 − 3 1.10521𝑒 − 3
4𝑒4 3.33255 3.46855𝑒 − 3 1.40545𝑒 − 3
5𝑒4 4.14935 4.31790𝑒 − 3 1.79543𝑒 − 3
6𝑒4 4.94810 5.14452𝑒 − 3 2.19074𝑒 − 3
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Summary of the linear response analysis
• Linear stability requires 𝜆(𝒦) > 0 (requirement of SCF map).
• Accuracy 𝒪(𝜔ିଶ) provided non-resonance 𝜔ିଶ ≪ 𝜆୫୧୬(𝒦)/Ω(𝒟)ଶ.
• Performance depends on 𝜕𝜌ୗେ୊/𝜕𝜌, the effectiveness of SCF iteration.

More on the stability condition 𝜆(𝒦) > 0:
.Lemma..

......

If 𝜌ୗେ୊ is given by simple mixing or Kerker mixing, 𝒦 is diagonalizable and
its eigenvalues are real. The condition 𝜆(𝒦) > 0 can be satisfied with
suitable choice of preconditioner and the mixing parameter.

.Sketch of Proof...

......
For simple or Kerker mixing, 𝜕𝜌ୗେ୊/𝜕𝜌 is a polynomial of 𝑃𝜕𝜌୏ୗ/𝜕𝜌.
Claim: 𝑃𝜕𝜌୏ୗ/𝜕𝜌 is diagonalizable with real eigenvalues. ␣



How about nonlinear regime?

𝑀𝑅̈ = −න𝜌ୗେ୊(𝑥; 𝑅, 𝜌)𝜕ோ𝑉ୣ୶୲(𝑥; 𝑅) d𝑥

𝜌̈ = 𝜔ଶ(𝜌ୗେ୊(𝑅, 𝜌) − 𝜌)

For 𝜔ଶ ≫ 1, we have time scale separation: 𝜌 changes much faster
compared to 𝑅.
Formal two-scale asymptotic expansion (𝜏 = 𝜔𝑡):

𝑅 = 𝑅(𝑡) and 𝜌 = 𝜌(𝑡, 𝜏)

To the leading order, we obtain

𝑀𝑅̈(𝑡) = −න𝜌ୗେ୊(𝑥; 𝑅(𝑡), 𝜌(𝑡, 𝜏))𝜕ோ𝑉ୣ୶୲(𝑥; 𝑅(𝑡)) d𝑥

𝜕ଶఛ𝜌(𝑡, 𝜏) = 𝜌ୗେ୊(𝑅(𝑡), 𝜌(𝑡, 𝜏)) − 𝜌(𝑡, 𝜏)



Averaging perspective of TRBOMD
To the leading order in 𝜔

𝑀𝑅̈(𝑡) = −න𝜌ୗେ୊(𝑥; 𝑅(𝑡), 𝜌(𝑡, 𝜏))𝜕ோ𝑉ୣ୶୲(𝑥; 𝑅(𝑡)) d𝑥

𝜕ଶఛ𝜌(𝑡, 𝜏) = 𝜌ୗେ୊(𝑅(𝑡), 𝜌(𝑡, 𝜏)) − 𝜌(𝑡, 𝜏)

𝑅(𝑡) is frozen in the leading order equation for 𝜌.
Assumption: The limit of the time average exists

s𝜌(𝑥; 𝑅(𝑡)) = lim
்→ஶ

1
𝑇 න

்

଴
𝜌ୗେ୊(𝑅(𝑡), 𝜌(𝑡, 𝜏)) d𝜏

As 𝜌ୗେ୊ can be fairly nonlinear and complicated, it seems difficult to
justify the assumption in general.
Average of 𝑅 equation over 𝜏, we have

𝑀𝑅̈(𝑡) = −න s𝜌(𝑥; 𝑅(𝑡))𝜕ோ𝑉ୣ୶୲(𝑥; 𝑅(𝑡)) d𝑥



Effective equation of TRBOMD for 𝑅:

𝑀𝑅̈(𝑡) = −න s𝜌(𝑥; 𝑅(𝑡))𝜕ோ𝑉ୣ୶୲(𝑥; 𝑅(𝑡)) d𝑥

Compared with BOMD

𝑀𝑅̈(𝑡) = −න𝜌୏ୗ(𝑥; 𝑅(𝑡))𝜕ோ𝑉ୣ୶୲(𝑥; 𝑅(𝑡)) d𝑥

The pathwise accuracy is determined by the difference 𝜌୏ୗ − s𝜌.
In the limit 𝜔 → ∞, TRBOMD may still have an error compared to BOMD.
It is affected by the SCF map 𝜌ୗେ୊ and the long time dynamics of 𝜌(𝜏).
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Numerical example: non-equilibrium case, metal system
At time 0, we “kick” the first atom, so that 𝑅̇ଵ(0) = 1𝑒 − 3.

0 1 2 3 4 5

x 10
5

−20

−10

0

10

20

30

40
Comparison between TRBOMD and BOMD

t
0 1 2 3 4 5

x 10
5

−20

−10

0

10

20

30

40
BOMD with non−converging SCF

t

0 1 2 3 4 5

x 10
5

0

1

2

3

4
x 10

−3

t

SCF error in TRBOMD

0 1 2 3 4 5

x 10
5

0

1

2

3

4
x 10

−3 SCF error in non−conv BOMD



Car-Parrinello molecular dynamics
Key idea: Undo the adiabatic limit by introducing (artificial) classical
dynamics for electrons. It can be viewed as a relaxation scheme.

[Car-Parrinello 1985]

Car-Parrinello equation of motion

𝑀𝑅̈ = −𝜕𝐸୏ୗ(𝜓, 𝑅)𝜕𝑅 = −න𝜌ట(𝑥)
𝑉ୣ୶୲(𝑥; 𝑅)

𝜕𝑅 d𝑥

𝜇𝜓̈௜ = −𝜕𝐸୏ୗ(𝜓, 𝑅)𝜕𝜓௜
+෍

௝
𝜓௝Λ௝௜

Here Λ’s are Lagrange multipliers for the orthonormality constraints.
CPMD is a Hamiltonian system (on the manifold ∫𝜓௜𝜓௝ = 𝛿௜௝) with
Lagrangian given by

ℒ(𝑅, 𝑅̇, 𝜓, 𝜓̇) = 𝑀|𝑅̇|ଶ + 𝜇෍
௜
ฮ𝜓̇ฮଶ − 𝐸୏ୗ(𝜓, 𝑅).



Analysis of CPMD
The stability is guaranteed by the energy conservation.
Following the similar strategy, we have

1. Adiabatic condition: 𝜇 ≪ 𝜆୫୧୬(ℋ)/Ω(𝒟)ଶ where ℋ = 𝜕ଶ𝐸୏ୗ/𝜕𝜓ଶ

and 𝜆୫୧୬(ℋ) = 𝐸୥ୟ୮; Fails for gapless system.
2. Accuracy of phonon frequency:

ቤΩ − Ω((𝐷))
Ω(𝒟) ቤ ≲ 𝜇

𝐸ଶ୥ୟ୮
.

The analysis can be extended to the nonlinear regime (a classical adiabatic
type result), thanks to the symplectic structure:
.
Theorem (Bornemann-Schütte 1998)
..

......

For insulating systems (with spectral gap), for a finite time 𝑇 small enough
that the gap persists, we have

ቛ𝑅୆୓ − 𝑅େ୔ቛ
௅ಮ(଴,்)

≤ 𝐶(𝑇)𝜇ଵ/ଶ.



Comparison between TRBOMD and CPMD

TRBOMD CPMD
structure time-reversible symplectic
tuning parameter 𝜔ିଶ 𝜇
non-resonance condition 𝜔ିଶ ≪ 𝜆୫୧୬(𝒦)/Ωଶ 𝜇 ≪ 𝜆୫୧୬(ℋ)/Ωଶ

𝒦 = 𝐼 − డఘ౏ిూ
డఘ ℋ = డమாే౏

డటమ

insulator yes (if 𝜆(𝒦) > 0) yes
metal yes (if 𝜆(𝒦) > 0) no

• TRBOMD works for metal
• TRBOMD offers more flexibility to improve accuracy

(i.e. using better SCF maps)
• TRBOMD is NOT guaranteed to be long-time stable



Numerical comparison of TRBOMD and CPMD: Insulating system

𝜇 ቛ𝑅୆୓ − 𝑅େ୔ቛ
௅భ

ቛ𝑅୆୓ − 𝑅େ୔ቛ
௅ಮ

|Ωେ୔/Ω(𝒟) − 1|
1𝑒4 0.27009𝑒 + 2 0.32930𝑒 − 1 1.24227𝑒 − 2
2𝑒4 0.52117𝑒 + 2 0.60463𝑒 − 1 2.42788𝑒 − 2
3𝑒4 0.75312𝑒 + 2 0.85131𝑒 − 1 3.58139𝑒 − 2
4𝑒4 0.96623𝑒 + 2 1.09253𝑒 − 1 4.68517𝑒 − 2
5𝑒4 1.16149𝑒 + 2 1.31137𝑒 − 1 5.14133𝑒 − 2
6𝑒4 1.33986𝑒 + 2 1.49472𝑒 − 1 5.95193𝑒 − 2
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Numerical comparison of TRBOMD and CPMD: Metallic system
𝜇 ቛ𝑅୆୓ − 𝑅େ୔ቛ

௅భ
ቛ𝑅୆୓ − 𝑅େ୔ቛ

௅ಮ
|Ωେ୔/Ω(𝒟) − 1|

1𝑒4 34.6848 3.60028𝑒 − 2 1.43067𝑒 − 2
2𝑒4 38.8461 4.19386𝑒 − 2 1.67889𝑒 − 2
3𝑒4 40.9346 4.43534𝑒 − 2 1.82828𝑒 − 2
4𝑒4 42.3424 4.57893𝑒 − 2 1.80796𝑒 − 2
5𝑒4 43.6062 4.70760𝑒 − 2 1.87239𝑒 − 2
6𝑒4 44.8588 4.83539𝑒 − 2 1.89897𝑒 − 2
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Conclusion and future directions
Conclusion

• BOMD can be accelerated by using the time-reversible
Born-Oppenheimer molecular dynamics.

• TRBOMD is time-reversible, and hence has better long-time stability;
however, it is not symplectic.

• TRBOMD requires effective self-consistent field iterations to work.
• The tuning parameter 𝜔 offers a trade-off of efficiency and accuracy.

Some future directions
• Canonical ensemble (NVT) case (thermostat).
• Long-time behavior and nonlinear stability of TRBOMD.
• Time-reversible stochastic version of TRBOMD.
• Explore symplectic BOMD with non-convergent SCF iterations.
• Better understanding of SCF iterations (e.g. 𝒦).
• CPMD for metallic systems.
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