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(time dependent) Born-Oppenheimer approximation

Nuclear-electronic Schrödinger equation

𝑖𝜕 Ψ(𝑥, 𝑅) = −12Δ Ψ(𝑥, 𝑅) − 1
2𝑀Δ Ψ(𝑥, 𝑅) + 𝑉(𝑥, 𝑅)Ψ(𝑥, 𝑅)

Born-Oppenheimer (adiabatic) approximation
𝜀 = 1/𝑀 ≪ 1 (𝑀 ≈ 1836 for hydrogen)

Assume that the wave function takes

Ψ(𝑥, 𝑅) = 𝜓(𝑅)Φ (𝑥; 𝑅)

where Φ (⋅; 𝑅) is the ground state for electronic Hamiltonian

− Δ + 𝑉(𝑥, 𝑅)]Φ (𝑥; 𝑅) = 𝐸 (𝑅)Φ (𝑥; 𝑅)



Semiclassical limit

Nuclear Schrodinger equation

𝑖𝜕 𝜓(𝑅) = − 1
2𝑀Δ 𝜓(𝑅) + 𝐸 (𝑅)Ψ(𝑥, 𝑅)

We are interested in long time dynamics for nuclei, hence we rescale to the
time scale 𝒪(√𝑀) and get (recall 𝜀 = 1/𝑀)

𝑖𝜀𝜕 𝜓(𝑅) = −𝜀2 Δ 𝜓(𝑅) + 𝐸 (𝑅)Ψ(𝑥, 𝑅)

Semiclassical approximation (𝜀 ≪ 1) gives Newton’s equation of motion

𝑀�̈� = −∇ 𝐸 (𝑅).

Mathematical works by Combes, Hagedorn, Jecko, Joye, Markowich,
Martinez, Maslov, Panati, Paul, Spohn, Teufel, ...



Born-Oppenheimer molecular dynamics
BOMD equation of motion

𝑀�̈� = −∇ 𝐸 (𝑅);
𝐸 (𝑅) = inf ⟨Φ|𝐻(𝑥; 𝑅)|Φ⟩.

Force can be calculated using Hellmann-Feynman theorem

∇ 𝐸 (𝑅) = ⟨Φ (𝑥; 𝑅)|∇ 𝐻(𝑥; 𝑅)|Φ (𝑥; 𝑅)⟩.

Unfortunately, the variational problem is too difficult to solve practically.
• Curse of dimensionality (𝑑 = 3𝑁, where 𝑁 is the number of

electrons);
• Symmetry restrictions of Φ due to Pauli’s exclusion principle

Φ(𝑥 ,⋯ , 𝑥 ,⋯ , 𝑥 ,⋯ , 𝑥 ) = −Φ(𝑥 ,⋯ , 𝑥 ,⋯ , 𝑥 ,⋯ , 𝑥 );

• Φ has complicated singularity structure.
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Density functional theory
Approximate solutions are given by electronic structure models.
The most popular choice is the density functional theory

[Hohenberg-Kohn 1964, Kohn-Sham 1965]
The energy is a functional of the one-body electron density 𝜌 ∶ ℝ → ℝ

𝜌(𝑥) = 𝑁 |Φ| (𝑥, 𝑥 ,⋯ , 𝑥 ) d𝑥 ⋯ d𝑥 .

Levy-Lieb constrained variational principle [Levy 1979, Lieb 1983]:

𝐸 = inf ⟨Φ|𝐻|Φ⟩ = inf inf
∶ ↦

⟨Φ|𝐻|Φ⟩ = inf 𝐸DFT(𝜌).

The energy functional takes the general form

𝐸DFT(𝜌; 𝑅) = 𝑇 (𝜌) + 𝜌𝑉 (𝑥; 𝑅) + 1
2

𝜌(𝑥)𝜌(𝑦)
|𝑥 − 𝑦| + 𝐸 (𝜌)

𝑇 (𝜌): Kinetic energy of non-interacting electrons;
𝐸 (𝜌): Exchange-correlation energy, which encodes the many-body
interaction.
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Kohn-Sham density functional theory

Kohn-Sham density functional theory introduces one-particle orbitals to
better approximate the kinetic and exchange-correlation energies.
It is the most widely used electronic structure theory, which achieves the
best compromise between accuracy and cost.
The energy functional is minimized for 𝑁 orbitals {𝜓 } ⊂ 𝐻 (ℝ ).

𝐸 ({𝜓 }; 𝑅) = 1
2 |∇𝜓 | + 𝜌𝑉 (𝑥; 𝑅) + 1

2
𝜌(𝑥)𝜌(𝑦)
|𝑥 − 𝑦| + 𝐸 (𝜌)

where the electron density is given by

𝜌(𝑥) = |𝜓 | (𝑥).

Remark: spin degree of freedom is neglected



Kohn-Sham density functional theory
Kohn-Sham DFT can be understood as a mean field type theory, as
electrons interact through an effective potential.
The electron density satisfies the following consistent relation:

𝐻 (𝜌)𝜓 = 𝐸 𝜓 , and 𝜌(𝑥) = |𝜓 | (𝑥)

where the effective Hamiltonian contains the interactions of electrons:

𝐻 (𝜌) = − Δ + 𝑉 (𝜌);

𝑉 (𝜌) = 𝑉 + 𝑉 (𝜌) + 𝐸 (𝜌).

Note that this gives a fix point equation

𝜌 = 𝐹 (𝜌).



BOMD with Kohn-Sham DFT
Equation of motion

𝑀�̈� = −∇ 𝐸 , (𝑅);
𝐸 , (𝑅) = inf

{ }
𝐸 ({𝜓 }; 𝑅).

Straightforward application of Hellmann-Feynman type argument gives

∇ 𝐸 , (𝑅) = 𝜌 (𝑥; 𝑅) 𝜕𝜕𝑅𝑉 (𝑥; 𝑅) d𝑥

We can then write

𝑀�̈� = − 𝜌 (𝑥; 𝑅) 𝜕𝜕𝑅𝑉 (𝑥; 𝑅) d𝑥

𝜌 (𝑥; 𝑅) = argmin𝐸 (𝜌; 𝑅)

where (with some abuse of notation)
𝐸 (𝜌; 𝑅) = inf

{ }∶{ }↦
𝐸 ({𝜓 }; 𝑅)

for math justification, see [Ambrosio-Figalli-Friesecke-Giannoulis-Paul 2011]
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Self-consistent field iteration
The challenge is now to find the ground state electron density

𝜌 (𝑥; 𝑅) = argmin𝐸 (𝜌; 𝑅).

The common (and efficient) way to find 𝜌 is to use a nonlinear iteration
scheme to solve the fix point equation

𝜌 = 𝐹 (𝜌).

This is known as the self-consistent field (SCF) iteration in literature.
An example of the mixing scheme is:

1. 𝜌 = 𝐹 (𝜌 )
2. 𝜌 = 𝜌 + 𝛼𝑃(𝜌 − 𝜌 )

where 𝛼 is a mixing parameter and 𝑃 a preconditioner, e.g.
𝑃 = Id for simple mixing,
𝑃 = for Kerker mixing.
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Simple mixing:
𝜌 = 𝜌 + 𝛼(𝐹 (𝜌 ) − 𝜌 ).

Kerker mixing:

𝜌 = 𝜌 + 𝛼 −Δ
4𝜋𝛾 − Δ(𝐹 (𝜌 ) − 𝜌 )

We will not go into the details of more advanced SCF iteration scheme
here, but just make two remarks for discussions in the sequel:

1. As usual for iterative schemes, the SCF iteration starts with an initial
guess 𝜌 , which greatly affects the number of iterations;

2. As the system has huge number of degrees of freedom, in practice,
the SCF iteration can take a long time to converge. This is the
bottleneck of BOMD simulations.



A simple example
Let us use as example the dynamics of an one-dimensional chain of atoms.

𝐸 (𝜓, 𝑅) = |∇𝜓 | +1
2 (𝜌(𝑥)−𝑚(𝑥; 𝑅))𝑣(|𝑥−𝑦|)(𝜌(𝑦)−𝑚(𝑦; 𝑅))

where 𝑚(𝑥; 𝑅) = ∑ 𝑚ion(𝑥 − 𝑅 ). By different choice of ionic background
charge 𝑚ion, we have either insulating or metallic systems.
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We use BOMD to study the phonon frequency of the system.
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How to accelerate BOMD?
Since the bottleneck is SCF, we try to reduce the number of steps:

• Use 𝜌 from last atom position 𝑅 as initial guess (already used);
• Terminate the SCF iteration before convergence (who need 10 ) ...
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Since the bottleneck is SCF, we try to reduce the number of steps:

• Use 𝜌 from last atom position 𝑅 as initial guess (already used);
• Terminate the SCF iteration before convergence (who need 10 ) ...

Unfortunately, it does not work ...
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More SCF steps?
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Recall the Born-Oppenheimer molecular dynamics

𝑀�̈� = − 𝜌 (𝑥; 𝑅)𝜕 𝑉 (𝑥; 𝑅) d𝑥

𝜌 (𝑥; 𝑅) = argmin𝐸 (𝜌; 𝑅)

We have introduced a dependence on the initial guess 𝜌 (superscript
dropped), which is superficial now, since 𝜌 is the minimizer (assuming
uniqueness, at least locally ...)
When we use non-convergent SCF iteration,
let us denote 𝜌 (𝑥; 𝑅, 𝜌) the output density from initial guess 𝜌 of the
non-convergent SCF iteration.

𝑀�̈� = − 𝜌 (𝑥; 𝑅, 𝜌)𝜕 𝑉 (𝑥; 𝑅) d𝑥

𝜌(𝑡+) ← 𝜌 (𝑥; 𝑅, 𝜌(𝑡))

where we update the initial guess for the next time step using the current
output.
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Loss of time-reversible symmetry

BOMD with non-convergent SCF iteration

𝑀�̈� = − 𝜌 (𝑥; 𝑅, 𝜌)𝜕 𝑉 (𝑥; 𝑅) d𝑥

𝜌(𝑡+) ← 𝜌 (𝑥; 𝑅, 𝜌(𝑡))

Due to the dependence on the initial guess of the SCF iteration, the
dynamics is no longer time-reversible nor symplectic.
The loss of structure leads to instability and drift behavior.

We note that irreversibility also arises if SCF is accelerated using
• linear scaling algorithm (uncontrolled error due to cut-off), or
• adaptive basis sets (Pulay force).



Time-reversible Born-Oppenheimer molecular dynamics

Key idea: Restore the time reversibility by treating the initial guess of
electron density as dynamical variables.

[Niklasson-Tymczak-Challacombe 2006, Niklasson 2008]

Time-reversible Born-Oppenheimer molecular dynamics (TRBOMD)

𝑀�̈� = − 𝜌 (𝑥; 𝑅, 𝜌)𝜕 𝑉 (𝑥; 𝑅) d𝑥

�̈� = 𝜔 (𝜌 (𝑥; 𝑅, 𝜌) − 𝜌)

Here 𝜔 is a frequency parameter for the artificial dynamics of 𝜌.

The dynamics apparently has time reversal symmetry,
however it is not symplectic (no “energy” conservation in general).
Remark: other than the second order dynamics for 𝜌, we might also
consider time-reversible first order stochastic dynamics.



Numerical examples for TRBOMD
Back to the original phonon example, we use SCF step = 3.
Metal system:
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Insulator system:
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Questions:
• When does and how does TRBOMD work?
• How to choose the parameter 𝜔 ?
• How does the performance depend on the system and choice of 𝜌 ?

To answer these (at least partially), we first do a linear stability analysis of
the dynamics.
Denote 𝑅∗ and 𝜌∗ = 𝜌 (𝑅∗) the reference equilibrium state.
Write 𝑅 = 𝑅∗ + 𝑅 and 𝜌 = 𝜌∗ + 𝜌, we have (after dropping tildes)

𝑀�̈� = − 𝜌 (𝑥; 𝑅∗ + 𝑅, 𝜌∗ + 𝜌)𝜕 𝑉 (𝑥; 𝑅∗ + 𝑅)d𝑥

�̈� = 𝜔 𝜌 (𝑅∗ + 𝑅, 𝜌∗ + 𝜌) − 𝜌∗ − 𝜌

Assumption: consistency of the SCF map

𝜌 (𝑅, 𝜌 (𝑅)) = 𝜌 (𝑅), in particular 𝜌 (𝑅∗, 𝜌∗) = 𝜌∗.
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• How does the performance depend on the system and choice of 𝜌 ?

To answer these (at least partially), we first do a linear stability analysis of
the dynamics.
Denote 𝑅∗ and 𝜌∗ = 𝜌 (𝑅∗) the reference equilibrium state.
Write 𝑅 = 𝑅∗ + 𝑅 and 𝜌 = 𝜌∗ + 𝜌, we have (after dropping tildes)

𝑀�̈� = − 𝜌 (𝑥; 𝑅∗ + 𝑅, 𝜌∗ + 𝜌)𝜕 𝑉 (𝑥; 𝑅∗ + 𝑅)d𝑥

�̈� = 𝜔 𝜌 (𝑅∗ + 𝑅, 𝜌∗ + 𝜌) − 𝜌∗ − 𝜌

Assumption: consistency of the SCF map

𝜌 (𝑅, 𝜌 (𝑅)) = 𝜌 (𝑅), in particular 𝜌 (𝑅∗, 𝜌∗) = 𝜌∗.



Linearization gives (all derivatives evaluated at 𝑅∗ and 𝜌∗)

𝑀�̈� = − 𝜕𝑉
𝜕𝑅

𝜕𝜌
𝜕𝑅 + 𝜌∗𝜕 𝑉

𝜕𝑅
𝑅 − 𝜕𝑉

𝜕𝑅
𝜕𝜌
𝜕𝜌 𝜌

𝜔 �̈� =
𝜕𝜌
𝜕𝑅 𝑅 +

𝜕𝜌
𝜕𝜌 − Id 𝜌

By consistency of the SCF map, we have
𝜕𝜌
𝜕𝑅 = Id−

𝜕𝜌
𝜕𝜌

𝜕𝜌
𝜕𝑅

=∶ 𝒦
𝜕𝜌
𝜕𝑅

We arrive at

𝑀�̈� = −𝑀𝒟𝑅 − 𝜕𝑉
𝜕𝑅 (𝒦 − Id)

𝜕𝜌
𝜕𝑅 𝑅 − 𝜌

𝜔 �̈� = 𝒦
𝜕𝜌
𝜕𝑅 𝑅 − 𝜌

where 𝒟 is the dynamical matrix for atoms

𝑀𝒟 = 𝜕𝑉
𝜕𝑅

𝜕𝜌
𝜕𝑅 + 𝜌∗𝜕 𝑉

𝜕𝑅



Linearization gives (all derivatives evaluated at 𝑅∗ and 𝜌∗)
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𝜕𝑅

𝜕𝜌
𝜕𝑅 + 𝜌∗𝜕 𝑉

𝜕𝑅
𝑅 − 𝜕𝑉

𝜕𝑅
𝜕𝜌
𝜕𝜌 𝜌

𝜔 �̈� =
𝜕𝜌
𝜕𝑅 𝑅 +

𝜕𝜌
𝜕𝜌 − Id 𝜌

By consistency of the SCF map, we have
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Linearized TRBOMD

𝑀�̈� = −𝑀𝒟𝑅 − 𝜕𝑉
𝜕𝑅 (𝒦 − Id)

𝜕𝜌
𝜕𝑅 𝑅 − 𝜌

𝜔 �̈� = 𝒦
𝜕𝜌
𝜕𝑅 𝑅 − 𝜌

Note that 𝑀�̈� = −𝑀𝒟𝑅 agrees with the linearization of BOMD, which
gives the (Born-Oppenheimer) phonon frequency of the atoms.

Observations:
1. 𝒦 = Id−𝜕𝜌 /𝜕𝜌 must be diagonalizable with positive eigenvalues,

otherwise, the 𝜌 dynamics is unstable.
2. Denote the characteristic frequency of 𝑅 as Ω, we have

Ω − Ω(𝒟)
Ω(𝒟) = 𝜔 𝜕𝑉

𝜕𝑅 (Id−𝒦 )
𝜕𝜌
𝜕𝑅 + 𝒪 Ω(𝒟)

𝜔 𝜆 (𝒦)

under the non-resonance condition: 𝜔 ≪ 𝜆 (𝒦)/Ω(𝒟) .



Accuracy of TRBOMD

Accuracy from linear response analysis:

Ω − Ω(𝒟)
Ω(𝒟) = 𝜔 𝜕𝑉

𝜕𝑅 (Id−𝒦 )
𝜕𝜌
𝜕𝑅 + 𝒪 Ω(𝒟)

𝜔 𝜆 (𝒦)

Hence, to improve the accuracy, we want to increase 𝜔; however, larger 𝜔
gives stiffness of the equation, which requires more computational cost.
We have a trade off between accuracy and cost.

We also see that the prefactor decreases if the spectrum of 𝒦 is close to
Id. Recall that 𝒦 = Id− . We would want to choose SCF map so
that

𝜕𝜌
𝜕𝜌 ≪ 1

This means that the output does not depend much on the initial guess, in
other words, we would like to choose an effective SCF consistent iteration.



Numerical validation: Error as a function of 𝜔 for metallic system

𝜔 𝑅 − 𝑅 𝑅 − 𝑅 |Ω /Ω(𝒟) − 1|
1𝑒4 0.84367 0.87842𝑒 − 3 0.35399𝑒 − 3
2𝑒4 1.67923 1.74862𝑒 − 3 0.71191𝑒 − 3
3𝑒4 2.50381 2.60483𝑒 − 3 1.10521𝑒 − 3
4𝑒4 3.33255 3.46855𝑒 − 3 1.40545𝑒 − 3
5𝑒4 4.14935 4.31790𝑒 − 3 1.79543𝑒 − 3
6𝑒4 4.94810 5.14452𝑒 − 3 2.19074𝑒 − 3
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Summary of the linear response analysis
• Linear stability requires 𝜆(𝒦) > 0 (requirement of SCF map).
• Accuracy 𝒪(𝜔 ) provided non-resonance 𝜔 ≪ 𝜆 (𝒦)/Ω(𝒟) .
• Performance depends on 𝜕𝜌 /𝜕𝜌, the effectiveness of SCF iteration.

More on the stability condition 𝜆(𝒦) > 0:
.Lemma..

......

If 𝜌 is given by simple mixing or Kerker mixing, 𝒦 is diagonalizable and
its eigenvalues are real. The condition 𝜆(𝒦) > 0 can be satisfied with
suitable choice of preconditioner and the mixing parameter.

.Sketch of Proof...

......
For simple or Kerker mixing, 𝜕𝜌 /𝜕𝜌 is a polynomial of 𝑃𝜕𝜌 /𝜕𝜌.
Claim: 𝑃𝜕𝜌 /𝜕𝜌 is diagonalizable with real eigenvalues. ␣



How about nonlinear regime?

𝑀�̈� = − 𝜌 (𝑥; 𝑅, 𝜌)𝜕 𝑉 (𝑥; 𝑅) d𝑥

�̈� = 𝜔 (𝜌 (𝑅, 𝜌) − 𝜌)

For 𝜔 ≫ 1, we have time scale separation: 𝜌 changes much faster
compared to 𝑅.
Formal two-scale asymptotic expansion (𝜏 = 𝜔𝑡):

𝑅 = 𝑅(𝑡) and 𝜌 = 𝜌(𝑡, 𝜏)

To the leading order, we obtain

𝑀�̈�(𝑡) = − 𝜌 (𝑥; 𝑅(𝑡), 𝜌(𝑡, 𝜏))𝜕 𝑉 (𝑥; 𝑅(𝑡)) d𝑥

𝜕 𝜌(𝑡, 𝜏) = 𝜌 (𝑅(𝑡), 𝜌(𝑡, 𝜏)) − 𝜌(𝑡, 𝜏)



Averaging perspective of TRBOMD
To the leading order in 𝜔

𝑀�̈�(𝑡) = − 𝜌 (𝑥; 𝑅(𝑡), 𝜌(𝑡, 𝜏))𝜕 𝑉 (𝑥; 𝑅(𝑡)) d𝑥

𝜕 𝜌(𝑡, 𝜏) = 𝜌 (𝑅(𝑡), 𝜌(𝑡, 𝜏)) − 𝜌(𝑡, 𝜏)

𝑅(𝑡) is frozen in the leading order equation for 𝜌.
Assumption: The limit of the time average exists

s𝜌(𝑥; 𝑅(𝑡)) = lim
→

1
𝑇 𝜌 (𝑅(𝑡), 𝜌(𝑡, 𝜏)) d𝜏

As 𝜌 can be fairly nonlinear and complicated, it seems difficult to
justify the assumption in general.
Average of 𝑅 equation over 𝜏, we have

𝑀�̈�(𝑡) = − s𝜌(𝑥; 𝑅(𝑡))𝜕 𝑉 (𝑥; 𝑅(𝑡)) d𝑥



Effective equation of TRBOMD for 𝑅:

𝑀�̈�(𝑡) = − s𝜌(𝑥; 𝑅(𝑡))𝜕 𝑉 (𝑥; 𝑅(𝑡)) d𝑥

Compared with BOMD

𝑀�̈�(𝑡) = − 𝜌 (𝑥; 𝑅(𝑡))𝜕 𝑉 (𝑥; 𝑅(𝑡)) d𝑥

The pathwise accuracy is determined by the difference 𝜌 − s𝜌.
In the limit 𝜔 → ∞, TRBOMD may still have an error compared to BOMD.
It is affected by the SCF map 𝜌 and the long time dynamics of 𝜌(𝜏).
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Numerical example: non-equilibrium case, metal system
At time 0, we “kick” the first atom, so that �̇� (0) = 1𝑒 − 3.
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Car-Parrinello molecular dynamics
Key idea: Undo the adiabatic limit by introducing (artificial) classical
dynamics for electrons. It can be viewed as a relaxation scheme.

[Car-Parrinello 1985]

Car-Parrinello equation of motion

𝑀�̈� = −𝜕𝐸 (𝜓, 𝑅)
𝜕𝑅 = − 𝜌 (𝑥)𝑉 (𝑥; 𝑅)

𝜕𝑅 d𝑥

𝜇�̈� = −𝜕𝐸 (𝜓, 𝑅)
𝜕𝜓 + 𝜓 Λ

Here Λ’s are Lagrange multipliers for the orthonormality constraints.
CPMD is a Hamiltonian system (on the manifold ∫𝜓 𝜓 = 𝛿 ) with
Lagrangian given by

ℒ(𝑅, �̇�, 𝜓, �̇�) = 𝑀|�̇�| + 𝜇 �̇� − 𝐸 (𝜓, 𝑅).



Analysis of CPMD
The stability is guaranteed by the energy conservation.
Following the similar strategy, we have

1. Adiabatic condition: 𝜇 ≪ 𝜆 (ℋ)/Ω(𝒟) where ℋ = 𝜕 𝐸 /𝜕𝜓
and 𝜆 (ℋ) = 𝐸 ; Fails for gapless system.

2. Accuracy of phonon frequency:
Ω − Ω((𝐷))

Ω(𝒟) ≲ 𝜇
𝐸

.

The analysis can be extended to the nonlinear regime (a classical adiabatic
type result), thanks to the symplectic structure:
.
Theorem (Bornemann-Schütte 1998)
..

......

For insulating systems (with spectral gap), for a finite time 𝑇 small enough
that the gap persists, we have

𝑅 − 𝑅
( , )

≤ 𝐶(𝑇)𝜇 / .



Comparison between TRBOMD and CPMD

TRBOMD CPMD
structure time-reversible symplectic
tuning parameter 𝜔 𝜇
non-resonance condition 𝜔 ≪ 𝜆 (𝒦)/Ω 𝜇 ≪ 𝜆 (ℋ)/Ω

𝒦 = 𝐼 − ℋ =

insulator yes (if 𝜆(𝒦) > 0) yes
metal yes (if 𝜆(𝒦) > 0) no

• TRBOMD works for metal
• TRBOMD offers more flexibility to improve accuracy

(i.e. using better SCF maps)
• TRBOMD is NOT guaranteed to be long-time stable



Numerical comparison of TRBOMD and CPMD: Insulating system

𝜇 𝑅 − 𝑅 𝑅 − 𝑅 |Ω /Ω(𝒟) − 1|
1𝑒4 0.27009𝑒 + 2 0.32930𝑒 − 1 1.24227𝑒 − 2
2𝑒4 0.52117𝑒 + 2 0.60463𝑒 − 1 2.42788𝑒 − 2
3𝑒4 0.75312𝑒 + 2 0.85131𝑒 − 1 3.58139𝑒 − 2
4𝑒4 0.96623𝑒 + 2 1.09253𝑒 − 1 4.68517𝑒 − 2
5𝑒4 1.16149𝑒 + 2 1.31137𝑒 − 1 5.14133𝑒 − 2
6𝑒4 1.33986𝑒 + 2 1.49472𝑒 − 1 5.95193𝑒 − 2
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Numerical comparison of TRBOMD and CPMD: Metallic system
𝜇 𝑅 − 𝑅 𝑅 − 𝑅 |Ω /Ω(𝒟) − 1|
1𝑒4 34.6848 3.60028𝑒 − 2 1.43067𝑒 − 2
2𝑒4 38.8461 4.19386𝑒 − 2 1.67889𝑒 − 2
3𝑒4 40.9346 4.43534𝑒 − 2 1.82828𝑒 − 2
4𝑒4 42.3424 4.57893𝑒 − 2 1.80796𝑒 − 2
5𝑒4 43.6062 4.70760𝑒 − 2 1.87239𝑒 − 2
6𝑒4 44.8588 4.83539𝑒 − 2 1.89897𝑒 − 2
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Conclusion and future directions
Conclusion

• BOMD can be accelerated by using the time-reversible
Born-Oppenheimer molecular dynamics.

• TRBOMD is time-reversible, and hence has better long-time stability;
however, it is not symplectic.

• TRBOMD requires effective self-consistent field iterations to work.
• The tuning parameter 𝜔 offers a trade-off of efficiency and accuracy.

Some future directions
• Canonical ensemble (NVT) case (thermostat).
• Long-time behavior and nonlinear stability of TRBOMD.
• Time-reversible stochastic version of TRBOMD.
• Explore symplectic BOMD with non-convergent SCF iterations.
• Better understanding of SCF iterations (e.g. 𝒦).
• CPMD for metallic systems.
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