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(time dependent) Born-Oppenheimer approximation

Nuclear-electronic Schrédinger equation

1 1
iat‘P(x, R) = —EAx‘P(x, R) - WARW(X, R) + V(X, R)‘P(x, R)

Born-Oppenheimer (adiabatic) approximation
e=,/1/M L1 (M =~ 1836 for hydrogen)

Assume that the wave function takes
Y(x, R) = Y(R)Po(x; R)
where @ (+; R) is the ground state for electronic Hamiltonian

[ 585 + V(6 R)IPo (3 R) = Eo(R)Po (x; R)



Semiclassical limit

Nuclear Schrodinger equation

) 1
0 (R) = 5 Mg (R) + Eo(R)W(x, R)
We are interested in long time dynamics for nuclei, hence we rescale to the
time scale O(VM) and get (recall € = \/1/M)
2

(20 (R) = ~—-Bgip(R) + Eo(R)¥(x, R)

Semiclassical approximation (& < 1) gives Newton's equation of motion

MR = _VREO(R)'

Mathematical works by Combes, Hagedorn, Jecko, Joye, Markowich,
Martinez, Maslov, Panati, Paul, Spohn, Teufel, ...



Born-Oppenheimer molecular dynamics
BOMD equation of motion

MR = —V¢Eo(R);
Eq(R) = igf (®|H(x; R)| D).

Force can be calculated using Hellmann-Feynman theorem

VREo(R) = (Po(x; R)|VRH(x; R)|®o (x; R))-



Born-Oppenheimer molecular dynamics

BOMD equation of motion

MR = —VREy(R);
Eq(R) = inf (®|H(x; R)|®).

Force can be calculated using Hellmann-Feynman theorem

VREo(R) = (Po(x; R)|VRH(x; R)|®o (x; R))-

Unfortunately, the variational problem is too difficult to solve practically.

= Curse of dimensionality (d = 3N, where N is the number of
electrons);

= Symmetry restrictions of @ due to Pauli's exclusion principle
¢(x1’ see , xl} cee ]le see , xN) = —¢(x1’ cee Ixj’ cee 'xi' see , xN);

= & has complicated singularity structure.



Density functional theory

Approximate solutions are given by electronic structure models.
The most popular choice is the density functional theory

[Hohenberg-Kohn 1964, Kohn-Sham 1965]
The energy is a functional of the one-body electron density p : R® > R,

p(x) = Nflq)lz(xﬁxZI'“pr) dx2 cee de
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Density functional theory

Approximate solutions are given by electronic structure models.
The most popular choice is the density functional theory
[Hohenberg-Kohn 1964, Kohn-Sham 1965]

The energy is a functional of the one-body electron density p : R® > R,

p(x) = Nf|<b|2(x,x2,-~-,x,v) dx, -+ dxy.
Levy-Lieb constrained variational principle [Levy 1979, Lieb 1983]:
Eq = inf (P|H|®P) = inf inf (P|H|P) = inf Eprr(p).
@ p D:dmp p

The energy functional takes the general form

1
Borr (iR = Ts@) + [ VeuiB) + 5 [[ B2 4, (0)

Ts(p): Kinetic energy of non-interacting electrons;

E4c(p): Exchange-correlation energy, which encodes the many-body
interaction.



Kohn-Sham density functional theory

Kohn-Sham density functional theory introduces one-particle orbitals to
better approximate the kinetic and exchange-correlation energies.

It is the most widely used electronic structure theory, which achieves the
best compromise between accuracy and cost.

The energy functional is minimized for N orbitals {y,;} Hl(]R3).

N
1 1
Bs@iR) = 3 0 [0+ [ pVeutsmr 4 5 [[ 22220 4 Bco)
i=1

where the electron density is given by
N
2
p() = ) W, ().
i=1

Remark: spin degree of freedom is neglected



Kohn-Sham density functional theory

Kohn-Sham DFT can be understood as a mean field type theory, as
electrons interact through an effective potential.

The electron density satisfies the following consistent relation:

N
Hen(o), = b, and p() = ) [ * @)
i=1

where the effective Hamiltonian contains the interactions of electrons:

1
Hege(p) = =5 A+ Vegr(p);

1)
Vett(P) = Vexe + Ve(p) + gExc(p)-

Note that this gives a fix point equation

p = Fxs(p).



BOMD with Kohn-Sham DFT

Equation of motion
MR = —VzEoks(R);
Eoxs(R) = {I&}f} Exs({¥;} R).

Straightforward application of Hellmann-Feynman type argument gives

0
VerEoxs(R) = jPKS(X: R)ﬁVext(x; R) dx



BOMD with Kohn-Sham DFT

Equation of motion
MR = —VzEoks(R);
Eoxs(R) = {I&}f} Exs({¥;} R).

Straightforward application of Hellmann-Feynman type argument gives
VaEoxs(R) = [ pys ) gV ) i
We can then write
MR = —prS(x; R)aiRVext(x; R) dx
prs 6 R) = arg min Eics (p; R)

where (with some abuse of notation)

E :R) = inf E 1R
iR = inf  Exs((0)iR)

for math justification, see [Ambrosio-Figalli-Friesecke-Giannoulis-Paul 2011]



Self-consistent field iteration

The challenge is now to find the ground state electron density

pis (6 R) = arg min Excs (03 R).



Self-consistent field iteration
The challenge is now to find the ground state electron density
prs(ciR) = argmin Eys (o R).

The common (and efficient) way to find py is to use a nonlinear iteration
scheme to solve the fix point equation

p = Fgs(p).
This is known as the self-consistent field (SCF) iteration in literature.

An example of the mixing scheme is:
L. P =Fgs(p™)
2. Pt =p" +aP(p—p")
where a is a mixing parameter and P a preconditioner, e.g.
P =1d for simple mixing,
-A

P = pr——"Y for Kerker mixing.




Simple mixing:
p"tt = p" + a(Fgs(p™) — p™).

Kerker mixing:

W—_A(FKS " —p"

pn+1 — pn +a
We will not go into the details of more advanced SCF iteration scheme

here, but just make two remarks for discussions in the sequel:
1. As usual for iterative schemes, the SCF iteration starts with an initial
guess p°, which greatly affects the number of iterations;

2. As the system has huge number of degrees of freedom, in practice,
the SCF iteration can take a long time to converge. This is the
bottleneck of BOMD simulations.



A simple example

Let us use as example the dynamics of an one-dimensional chain of atoms.
1
Exs@R) =y [ 197 +5 || (0G0 -mGs Rw(x=yD (o) =i R)
i

where m(x; R) = X, mion(x — R;). By different choice of ionic background
charge m;,,,, we have either insulating or metallic systems.
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We use BOMD to study the phonon frequency of the system.

1st atom position

2nd atom position
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How to accelerate BOMD?
Since the bottleneck is SCF, we try to reduce the number of steps:
= Use p from last atom position R as initial guess (already used);

= Terminate the SCF iteration before convergence (who need 107°) ...

SCF consistency error

0 10 20 30 40 50
SCF iteration



How to accelerate BOMD?
Since the bottleneck is SCF, we try to reduce the number of steps:

= Use p from last atom position R as initial guess (already used);

= Terminate the SCF iteration before convergence (who need 107°) ...
Unfortunately, it does not work ...

1st atom position x107° SCF consistency error
5.4
52
5 N
4.8
4.6
0 05 1 15 2 25
t x10°
More SCF steps?
1st atom position
5.4
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t

x10°



Recall the Born-Oppenheimer molecular dynamics

MR = —prS(x; R)ORV ext(x; R) dx

Pis(x: R) = argmin Egs(p; R)



Recall the Born-Oppenheimer molecular dynamics

MR = = [ s R, )0V e ) dx
pxs(x; R, p) = arg min Exs (PR
We have introduced a dependence on the initial guess p (superscript

dropped), which is superficial now, since pyq is the minimizer (assuming
uniqueness, at least locally ...)



Recall the Born-Oppenheimer molecular dynamics

MR = = [ s R, )0V e ) dx
pxs(x; R, p) = arg min Exs (PR
We have introduced a dependence on the initial guess p (superscript

dropped), which is superficial now, since pyq is the minimizer (assuming
uniqueness, at least locally ...)

When we use non-convergent SCF iteration,
let us denote po.(x; R, p) the output density from initial guess p of the
non-convergent SCF iteration.

MR = —fpSCF(x; R, p)0RV oxt (x; R) dx
p(t+) « pscp(xi R, p(1))

where we update the initial guess for the next time step using the current
output.



Loss of time-reversible symmetry

BOMD with non-convergent SCF iteration

MR = = [ poce(ei R, )0V e ) dx
p(t+) « pscp(x; R, p(1))

Due to the dependence on the initial guess of the SCF iteration, the
dynamics is no longer time-reversible nor symplectic.

The loss of structure leads to instability and drift behavior.

We note that irreversibility also arises if SCF is accelerated using
= linear scaling algorithm (uncontrolled error due to cut-off), or

= adaptive basis sets (Pulay force).



Time-reversible Born-Oppenheimer molecular dynamics

Key idea: Restore the time reversibility by treating the initial guess of
electron density as dynamical variables.
[Niklasson-Tymczak-Challacombe 2006, Niklasson 2008]

Time-reversible Born-Oppenheimer molecular dynamics (TRBOMD)

MR = = [ poce(ei R )0V e ) dx
p = 0*(pgcr(%: R, p) — p)
Here w? is a frequency parameter for the artificial dynamics of p.
The dynamics apparently has time reversal symmetry,
however it is not symplectic (no “energy"” conservation in general).

Remark: other than the second order dynamics for p, we might also
consider time-reversible first order stochastic dynamics.



Numerical examples for TRBOMD

Back to the original phonon example, we use SCF step = 3.
Metal system:

1st atom position (BOMD vs TRBOMD) -3 SCF consistency error
5.4 15710

5.2

4.8

4.6
0

Insulator system:

1st atom position (BOMD vs TRBOMD) 25X 107 SCF consistency error
5.15 8

5.1




Questions:
= When does and how does TRBOMD work?
= How to choose the parameter w??

= How does the performance depend on the system and choice of pg.p?



Questions:
= When does and how does TRBOMD work?
= How to choose the parameter w??

= How does the performance depend on the system and choice of pg.p?

To answer these (at least partially), we first do a linear stability analysis of
the dynamics.

Denote R* and p* = pyc(R") the reference equilibrium state.
Write R=R" + R and p = p* + B, we have (after dropping tildes)

MR = - f Psce (X R™ + R, p* + p)OrVexe(x; R* + R) dx

p = w*(pgcg(R" +Rp" +p)—p*—p)



Questions:
= When does and how does TRBOMD work?
= How to choose the parameter w??

= How does the performance depend on the system and choice of pg.p?

To answer these (at least partially), we first do a linear stability analysis of
the dynamics.

Denote R* and p* = pyc(R") the reference equilibrium state.
Write R=R" + R and p = p* + B, we have (after dropping tildes)

MR = — f Pscp(G R+ R, p* + p)OgVeyt(x; R™ + R) dx
p=w*(pscgR"+Rp"+p)—p" —p)
Assumption: consistency of the SCF map

,DSCF(R, PKS(R)) = ,DKS(R), in particular pSCF(R*'p*) =p.



Linearization gives (all derivatives evaluated at R and p*)

MR = — OV ext 0Pscr 0 0%V ext
0R OR OR?

dp dp
2. SCF SCF
wp = 5 R+ ( 3p Id)p

By consistency of the SCF map, we have

0pscr _ (Id_apSCF)apKS
R op / OR

)r

_ OV ext apscp

OR

ap



Linearization gives (all derivatives evaluated at R and p*)

2
Mp = _( OV ext apscp *6 Vext>R _ OV ext apscp

aR orR P g2 dR  dp

dp dp
—2.. _ 9PscF SCF
@™p=—7p R+ ( 3p Id)

By consistency of the SCF map, we have

0Pscr 9pscr\9%Pxs . . OPks
oR _(Id_ ap )aR = K2R

We arrive at

MR = —MDR — f

w?p = %(ag;SR —p)

where D is the dynamical matrix for atoms

OV ext Ipks ,0 2Vext
MD_( R orR P g2

ant(f}C Id)( szR —P)




Linearized TRBOMD

) a
mi = —mpr — [ Wext 2K - Id)( pKSR p)

w2p = S‘C(agESR - p)

Note that MR = —MDR agrees with the linearization of BOMD, which
gives the (Born-Oppenheimer) phonon frequency of the atoms.

Observations:

1. K =1d —0pgp/dp must be diagonalizable with positive eigenvalues,
otherwise, the p dynamics is unstable.

2. Denote the characteristic frequency of R as Q, we have

Q—0D) ([ WVex _1,9p (D)’
—Q(D) =w 2( —(d-% ) KS +0(w2/1min(jc))>

under the non-resonance condition: w™? « Amin(JC)/Q(D)Z.



Accuracy of TRBOMD

Accuracy from linear response analysis:

Q-00D) _ ([ Vex - sz Q(D)°
ao) ¢ 2( T 1450+ o Zﬂmm(ﬂc)»

Hence, to improve the accuracy, we want to increase w; however, larger w
gives stiffness of the equation, which requires more computational cost.
We have a trade off between accuracy and cost.

We also see that the prefactor decreases if the spectrum of K is close to
Id. Recall that X =1d — p;CF We would want to choose SCF map so

that

0pscr
dp

This means that the output does not depend much on the initial guess, in

other words, we would like to choose an effective SCF consistent iteration.

«1




Numerical validation: Error as a function of w™2 for metallic system

P ”RBO _R™ . ||RB0 _ RTR”L«, |QTR/Q(D) Y
le4 0.84367 0.87842e — 3 0.35399e — 3
2e4 1.67923 1.74862e — 3 0.71191e — 3
3e4 2.50381 2.60483e — 3 1.10521e — 3
4e4 3.33255 3.46855e — 3 1.40545e — 3
5e4 4.14935 4.31790e — 3 1.79543e — 3
6e4 4.94810 5.14452e — 3 2.19074e — 3

L1 error of atom position

3 4
1/sqgr(w)

25

X 1d?elative error of phonon frequency

3 4
1/sqr(w) 4

SCF step = 3



Summary of the linear response analysis
= Linear stability requires A(X) > 0 (requirement of SCF map).
= Accuracy O(w™?) provided non-resonance w™? « Amin(ﬂC)/Q(D)z.
= Performance depends on dpg./dp, the effectiveness of SCF iteration.

More on the stability condition A(K) > 0:

Lemma

If pgcp is given by simple mixing or Kerker mixing, ¥ is diagonalizable and
its eigenvalues are real. The condition A(K) > 0 can be satisfied with
suitable choice of preconditioner and the mixing parameter.

Sketch of Proof.
For simple or Kerker mixing, dpg.p/0dp is a polynomial of Pdpy/dp.
Claim: Pdpyq/dp is diagonalizable with real eigenvalues. L




How about nonlinear regime?

MR = - '[ pscp(x; R, p)OgVext(x; R) dx
p= a)z(pSCF(R, p) —p)

For w? > 1, we have time scale separation: p changes much faster
compared to R.

Formal two-scale asymptotic expansion (7 = wt):
R=R(t) and p=p(1)
To the leading order, we obtain
MR = = [ psce RO, (6, D04V exe (3 R(O) d

0p(t,7) = pscr(R(®), p(6, 1)) = p(t,7)



Averaging perspective of TRBOMD

To the leading order in w

MR(E) = = [ poce s R(E), (6 10V e (33 R(EY) i
02p(t,7) = pscp(R(0), p(6,1)) = p(6,7)
R(t) is frozen in the leading order equation for p.

Assumption: The limit of the time average exists

1 T
PEIR®O) = Jim 7 | psce(RE), (6 1) d

As pgcp can be fairly nonlinear and complicated, it seems difficult to
justify the assumption in general.

Average of R equation over 7, we have

MR(®) = - [ P ROV ews (6 RD) dx



Effective equation of TRBOMD for R:

MM0=—fp@m@D%mmwma»m
Compared with BOMD

MR(®) = = [ pys(i ROV exe (6 R(D) dx

The pathwise accuracy is determined by the difference p o — p.
In the limit w — oo, TRBOMD may still have an error compared to BOMD.
It is affected by the SCF map pg.p and the long time dynamics of p(7).

IPgce® = Pyl
0.012 : ;

0.01
0.008
0.006
0.004

0.002 i

non-equilibrium metallic system, w™2 = 62500, SCF step = 7



Numerical example: non-equilibrium case, metal system
At time 0, we “kick” the first atom, so that R;(0) = 1le — 3.

40

Comparison between TRBOMD and BOMD

BOMD with non-converging SCF

40
30 //\/\/\//\— 30
20 AA/V\/ i 20
" M/\/\/\ wff

0 0
e \W o
-20 - - - . -20 .
0 1 2 3 4 5 1 2 3 4 5
t x10° t x 10°
4x 10 SCF error in TRBOMD 4x 107 SCEF error in non-conv BOMD
3 3
2 2r
1 lMMW\Mu
0 : 0 : : : :
0 2 3 4 5 0 1 2 3 4 5



Car-Parrinello molecular dynamics

Key idea: Undo the adiabatic limit by introducing (artificial) classical
dynamics for electrons. It can be viewed as a relaxation scheme.

[Car-Parrinello 1985]
Car-Parrinello equation of motion

o0E R Vext(; R
D oy D

. 0Egs(,R
Hp; = _$ * waA”
‘ j

Here A's are Lagrange multipliers for the orthonormality constraints.

MR =

CPMD is a Hamiltonian system (on the manifold fl/)il/Jj = §;j) with
Lagrangian given by

LR R ) = MR + ) (]| — Exs (. ).



Analysis of CPMD

The stability is guaranteed by the energy conservation.
Following the similar strategy, we have
1. Adiabatic condition: p & Ayin(#)/Q(D)* where H = 8*Eys /0>
and Apin(H) = Egap; Fails for gapless system.
2. Accuracy of phonon frequency:

‘Q — @) . v

0162) B (R 5

The analysis can be extended to the nonlinear regime (a classical adiabatic
type result), thanks to the symplectic structure:

Theorem (Bornemann-Schiitte 1998)
For insulating systems (with spectral gap), for a finite time T small enough
that the gap persists, we have

|r%® - | < C(Tul2.

L*(0,T)




Comparison between TRBOMD and CPMD

TRBOMD CPMD
structure time-reversible symplectic
tuning parameter w2 U
non-resonance condition @ 2 & Apmin(K)/Q° 1 K Ayin(H)/Q°

_ 7 _ 9Pscr _ 0%Exs

¥o=1- 2 7=
insulator yes (if A(%C) > 0) yes
metal yes (if (%) > 0) no

= TRBOMD works for metal

= TRBOMD offers more flexibility to improve accuracy
(i.e. using better SCF maps)

= TRBOMD is NOT guaranteed to be long-time stable



Numerical comparison of TRBOMD and CPMD: Insulating system

M ||RBO _ RCP ’ ||RB0 _ RCP”L |QCP/Q(D) _ 1|
le4 0.27009e + 2 0.32930e — 1 1.24227e — 2
2e4 0.52117e+2 0.60463e — 1 2.42788e — 2
3e4 0.75312e + 2 0.85131e — 1 3.58139e — 2
4e4  0.96623e + 2 1.09253e — 1 4.68517e¢ — 2
5e4 1.16149¢ + 2 1.31137e -1 5.14133e — 2
6e4  1.33986e + 2 1.49472e — 1 5.95193e — 2
L1 error of atom position Atom position (insulator)

140 5.15

1201 5.1

1001 5.05

80r 5

60} 4.95 _BMD

40l 4.9| - - - - TRBOMD, w2=6

2y 5 a5 s M| __cbu-sed 5 b

artificial electron mass

4 ——— CPMD, it = 6e4




Numerical comparison of TRBOMD and CPMD: Metallic system

u ||RBO -~ RCP . ||RBO -~ RCP”LOO lQCP/Q(D) —1
le4 34.6848 3.60028e — 2 1.43067¢ — 2
2e4 38.8461 4.19386e — 2 1.67889¢ — 2
3e4 40.9346 4.43534e — 2 1.82828e — 2
4e4 42.3424 4.57893e — 2 1.80796¢e — 2
5e4 43.6062 4.70760e — 2 1.87239¢e — 2
6e4 44.8588 4.83539¢e — 2 1.89897¢ — 2

4.9¢

4.8¢

4.7

Atom position (metal)

BOMD
TRBOMD, w2 = 6e4

CPMD, i = 1e4
CPMD, j1 = 6e4

7.5 8
t

8.5 9
x 10



Conclusion and future directions

Conclusion

= BOMD can be accelerated by using the time-reversible
Born-Oppenheimer molecular dynamics.

= TRBOMD is time-reversible, and hence has better long-time stability;
however, it is not symplectic.

= TRBOMD requires effective self-consistent field iterations to work.

= The tuning parameter w offers a trade-off of efficiency and accuracy.

Some future directions
= Canonical ensemble (NVT) case (thermostat).
= Long-time behavior and nonlinear stability of TRBOMD.
= Time-reversible stochastic version of TRBOMD.
= Explore symplectic BOMD with non-convergent SCF iterations.
= Better understanding of SCF iterations (e.g. K).
= CPMD for metallic systems.
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