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Ground state electronic structure theory 
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𝑇� 

Many body ground state electron energy 
 

𝐸 = inf
Ψ

Ψ 𝐻 Ψ  
 
𝛹(𝑥1, … , 𝑥𝑁) is a 3N dimensional antisymmetric function. 
 
Curse of dimensionality. 

𝑉�𝑒𝑒𝑒 𝑉�𝑒𝑒 



Density functional theory 
Represent many body ground state energy as universal 
functional of the marginal distribution (electron density) 
[Hohenberg-Kohn,1964] 

𝜌 𝑥 = 𝑁� Ψ 𝑥, 𝑥2, … , 𝑥𝑁 2𝑑𝑥2 ⋯𝑑𝑥𝑁 

 
𝐸 = inf

Ψ
Ψ 𝐻 Ψ = inf

𝜌
inf
Ψ↦𝜌

Ψ 𝑇� + 𝑉�𝑒𝑒𝑒 + 𝑉�𝑒𝑒 Ψ  

= inf
𝜌

( inf
Ψ↦𝜌

Ψ 𝑇� + 𝑉�𝑒𝑒 Ψ + �𝜌 𝑥 𝑣𝑒𝑒𝑒 𝑥  𝑑𝑑) 

≡ inf
𝜌

 𝐹𝐻𝐻 𝜌 + �𝜌 𝑥 𝑣𝑒𝑒𝑒 𝑥  𝑑𝑑 
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Constrained minimization viewpoint [Levy, 1979], [Lieb, 1983] 

𝑉�𝑒𝑒𝑒 𝑥1, … , 𝑥𝑁 = �𝑣𝑒𝑒𝑒(𝑥𝑖)
𝑁

𝑖=1

 



Kohn-Sham density functional theory 
• 𝐹𝐻𝐻 𝜌  exists but does not have known explicit form. 
• Kohn-Sham density functional theory 

 
𝐹𝐻𝐻 𝜌 = inf

Ψ↦𝜌
Ψ 𝑇� + 𝑉�𝑒𝑒 Ψ  

= inf
Ψ↦𝜌

Ψ 𝑇� Ψ +
1
2
�
𝜌 𝑥 𝜌(𝑦)

|𝑥 − 𝑦|
+ 𝐸𝑥𝑥 𝜌  

≡ 𝐹𝐾𝑆 𝜌  
 

• inf
Ψ↦𝜌

Ψ 𝑇� Ψ  corresponds to a non-interacting system.  Its 

minimizer is one single Slater determinant.  This is called 
the Kohn-Sham kinetic energy functional.  
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Kohn-Sham density functional theory 
• Euler-Lagrange equation gives the Kohn-Sham equations 

[Kohn-Sham, 1965] 
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−
1
2
Δ + 𝑣𝑒𝑒𝑒 + ∫ 𝑑𝑥′

𝜌 𝑥′

𝑥 − 𝑥′
+
𝛿𝐸𝑥𝑥
𝛿𝛿

𝜌 𝜓𝑖 𝑥 = 𝜀𝑖𝜓𝑖 𝑥  

𝜌 𝑥 = � 𝜓𝑖 𝑥 2
𝑁

𝑖=1

,   ∫ 𝑑𝑑 𝜓𝑖∗ 𝑥 𝜓𝑗 𝑥 = 𝛿𝑖𝑖 

• One always solves eq in 𝑅3 for 𝑁 electrons (as opposed to 
eq in 𝑅3𝑁) 



Kohn-Sham density functional theory 
 

• Best balances efficiency and accuracy. Most widely used 
electronic structure theory for molecules, liquids, solids 
etc. 
 

• Exchange-correlation energy only takes less than 0.1% 
of the total energy, but it is this small part of the energy 
that significantly impacts chemical properties e.g. 
hydrogen bonding, van der Waals, dissociation etc. 
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Successful work on exchange-correlation 
functional is unusually important 
• LDA (KS, PZ) 

 
 
 

• GGA (PBE) 
 
 

 
• Hybrid (B3LYP) 
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More on exchange-correlation functionals 
• Local density approximation (LDA) 

𝐸𝑥𝑥 𝜌 = �𝜌 𝑥 𝜖𝑥𝑥(𝜌 𝑥 )𝑑𝑑 

• Generalized gradient approximation (GGA) 

𝐸𝑥𝑥 𝜌 = �𝜌 𝑥 𝜖𝑥𝑥(𝜌 𝑥 ,𝛻𝜌(𝑥))𝑑𝑑 

• Hybrid functional (B3LYP implemented in Gaussian 
package)  

 
 
• More extreme: M11-L functional (48 fitting parameters, 

[Peverati-Truhlar, 2011]). Machine learning (106 
parameters [Burke et al. 2012]) 
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Current status of designing functional 
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Surprisingly simple system, fail for all DFT 
functionals: 𝐻2 dissociation 
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[Cohen, Mori-Sanchez, Yang, Science 2008] 

R 

R 

Similar failure process: [Lee-Handy, 1993], [Andersson-Roos, 1994], many others 

Equilibrium bond length 

Dissociation limit 



Strictly correlated electron state 
• Hohenberg-Kohn functional 

𝐹𝐻𝐻 𝜌 = inf
Ψ↦𝜌

Ψ 𝑇� + 𝑉�𝑒𝑒 Ψ  

≈ inf
Ψ↦𝜌

Ψ 𝑇� Ψ + inf
Ψ↦𝜌

Ψ 𝑉�𝑒𝑒 Ψ  

≡ 𝑇𝑠 𝜌 + 𝑉𝑒𝑒𝑆𝑆𝑆 𝜌  
≡ 𝐹𝐾𝐾−𝑆𝑆𝑆[𝜌] 
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Strictly correlated electron state 
• Hohenberg-Kohn functional 

𝐹𝐻𝐻 𝜌 = inf
Ψ↦𝜌

Ψ 𝑇� + 𝑉�𝑒𝑒 Ψ  

≈ inf
Ψ↦𝜌

Ψ 𝑇� Ψ + inf
Ψ↦𝜌

Ψ 𝑉�𝑒𝑒 Ψ  

≡ 𝑇𝑠 𝜌 + 𝑉𝑒𝑒𝑆𝑆𝑆 𝜌  
≡ 𝐹𝐾𝐾−𝑆𝑆𝑆[𝜌] 

 
• The minimizer Ψ[𝜌] corresponding to 𝑉𝑒𝑒𝑆𝑆𝑆 𝜌  is referred 

to as the “strictly correlated electron state” (SCE) [Seidl-
Perdew-Levy, 1999] 
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Strictly correlated nature 
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The positions of electrons in the SCE state for Li atom.   
[Seidl- Gori-Giorgi - Savin, 2007] 



Properties of the SCE functional 
• Complementary to the KS functional 

 
• Fully non-local 

 
• More natural in the dissociation limit 

 
• Motivated from the adiabatic connection formula for the exact 

exchange-correlation functional [Langreth-Perdew, 1975], 
[Gunnarsson-Lundqvist, 1976] 
 

• [Liu-Burke, JCP 2009] 
In any event, the advent of SC calculations opens up a whole new 
alternative approach to DFT calculations of electronic structure, and only 
experience can show how and when this will prove more fruitful than the 
traditional KS scheme. 
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SCE formulation 
𝑉�𝑒𝑒 𝑥1, … , 𝑥𝑁 = �𝑐(𝑥𝑖 , 𝑥𝑗)

𝑖<𝑗

, 𝑐 𝑥,𝑦 =
1

|𝑥 − 𝑦|
 

𝑉𝑒𝑒𝑆𝑆𝑆 𝜌 = inf
Ψ↦𝜌

Ψ 𝑉�𝑒𝑒 Ψ  

= inf
Ψ↦𝜌

�𝑉�𝑒𝑒 𝑥1, … , 𝑥𝑁 Ψ 𝑥1, … , 𝑥𝑁 2 𝑑𝑥1𝑑𝑥2 ⋯𝑑𝑥𝑁 

Or equivalently 

inf
𝑃
�𝑉�𝑒𝑒 𝑥1, … , 𝑥𝑁 𝑃 𝑥1, … , 𝑥𝑁 𝑑𝑥1𝑑𝑥2 ⋯𝑑𝑥𝑁 

𝑠. 𝑡.�𝑃 𝑥, … , 𝑥𝑁 𝑑𝑥2 ⋯𝑑𝑥𝑁 =
𝜌 𝑥
𝑁

 

𝑃 𝑥1, … , 𝑥𝑁 = 𝑃 𝑥Π 1 , … , 𝑥Π 𝑁  
𝑃 𝑥1, … , 𝑥𝑁 ≥ 0 
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Π: Permutation 

This is an 𝑁-body optimal transport problem with Coulomb cost 
function (after relaxation due to Kantorovich). 



Remarks on SCE formulation 
• SCE does not distinguish between bosonic (symmetric) and 

fermionic (antisymmetric) wavefunctions. 
 

• Optimal transport usually studied with |𝑥 − 𝑦| or 𝑥 − 𝑦 2 cost 
functions.  These are attractive cost functions.  In SCE, the 
Coulomb cost function is repulsive and singular, which leads to 
qualitatively different behavior. 
 

• Rigorous theory for Coulomb cost with 𝑁 = 2 [Cotar-Friesecke-
Kluppelberg, 2013] 
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Remarks on SCE formulation 
• The 𝑁-body SCE problem can be solved exactly by a 2-body 

problem.  Define the pair density matrix: 
 𝜌2 𝑥,𝑦 = ∫𝑃(𝑥,𝑦, 𝑥3, … , 𝑥𝑁)𝑑𝑥3 ⋯𝑑𝑥𝑁 
   
  SCE becomes 

inf
𝜌2

𝑁
2 �𝑐 𝑥,𝑦 𝜌2 𝑥,𝑦 𝑑𝑑𝑑𝑑 

𝑠. 𝑡.�𝜌2 𝑥,𝑦 𝑑𝑑 =
𝜌 𝑥
𝑁  

𝑃 ↦ 𝜌2 
 
• 𝑃 ↦ 𝜌2: Any admissible 𝜌2 must be the marginal distribution of some 
𝑃.  This is called 𝑁 representability of the pair density matrix. 
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Remarks on SCE formulation 
 

• Neglecting the N-representability leads to energy that is too low 
[Coleman, 1963] 

inf
𝜌2

𝑁
2 �𝑐 𝑥,𝑦 𝜌2 𝑥,𝑦 𝑑𝑑𝑑𝑑 

𝑠. 𝑡.�𝜌2 𝑥, 𝑦 𝑑𝑑 =
𝜌 𝑥
𝑁

 

𝜌2 𝑥, 𝑦 = 𝜌2 𝑦, 𝑥 , 𝜌2 𝑥, 𝑦 ≥ 0 
 
• Systematic condition and approximation of the N-representability 

[Friesecke-Mendl-Pass-Cotar-Kluppelberg, 2013], [Mazziotti 2012] 
 

• Here we consider solving the N-body optimal transport problem 
directly. 
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Monge formulation 
• Introduce ansartz 

𝑃 𝑥1, … , 𝑥𝑁 =
𝜌 𝑥1
𝑁 𝛿 𝑥2 − 𝑇2 𝑥1 ⋯𝛿 𝑥𝑁 − 𝑇𝑁 𝑥1  

 
• The optimal 𝑃 is a very singular function in the 3N-dimensional 

space. 
 

• 𝑇𝑖:𝑅3 → 𝑅3 are called the optimal maps, or co-motion functions. 
They satisfy the mass conservation condition 

�𝜌
𝐴

= � 𝜌
𝑇𝑖(𝐴)

, i ≥ 2  

• Rigorous justification for 𝑁 = 2 [Cotar-Friesecke-Kluppelberg, 
2013] 
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Problem of Monge formulation 
• The mass conservation condition is difficult to implement 

numerically. 
 

• Each optimal maps is again singular in general.  The singularity 
is rooted in the repulsive nature of the Coulomb cost function.  
The location of singularity is so far not systematically 
predictable for general systems. 
 

• With the help of semi-analytic method, Monge formulation can 
be solved for spherical-symmetric atoms, and strictly 1D 
systems, but so far no more. 
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Problem of Monge formulation 
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Radial co-motion functions for 
Carbon  
[Seidl- Gori-Giorgi - Savin, 2007] 

Co-motion function for a 1D atom 
with N=2  
[Buttazzo-Pascale - Gori-Giorgi, 
2012] 



Linear programming viewpoint 
• Consider 

inf
𝑃
�𝑉�𝑒𝑒 𝑥1, … , 𝑥𝑁 𝑃 𝑥1, … , 𝑥𝑁 𝑑𝑥1𝑑𝑥2 ⋯𝑑𝑥𝑁 

𝑠. 𝑡.�𝑃 𝑥, … , 𝑥𝑁 𝑑𝑥2 ⋯𝑑𝑥𝑁 =
𝜌 𝑥
𝑁  

𝑃 𝑥1, … , 𝑥𝑁 = 𝑃 𝑥Π 1 , … , 𝑥Π 𝑁  
𝑃 𝑥1, … , 𝑥𝑁 ≥ 0 

 
• Assume we discretize 𝑅3 into 𝑀 points, then 𝑃 𝑥1, … , 𝑥𝑁  are 

discretized into 𝑀𝑁 variables.  This is a linear programming 
problem for these 𝑀𝑁 variables. 
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Kantorovich dual formulation 
• Duality for linear programming [Dantzig-von Neumann 1947] 

 
 

24 

max
𝑥

𝑐𝑇𝑥 
s. t.𝐴𝐴 ≤ 𝑏 

  𝑥 ≥ 0  
 

 

min
𝑦
𝑏𝑇𝑦 

s. t.𝐴𝑇𝑦 ≥ 𝑐 
  𝑦 ≥ 0  



Kantorovich dual formulation 
• Duality for linear programming [Dantzig-von Neumann 1947] 
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max
𝑥

𝑐𝑇𝑥 
s. t.𝐴𝐴 ≤ 𝑏 

  𝑥 ≥ 0  
 

 

min
𝑦
𝑏𝑇𝑦 

s. t.𝐴𝑇𝑦 ≥ 𝑐 
  𝑦 ≥ 0  

inf
𝑃
�𝑉�𝑒𝑒 𝑥1, … , 𝑥𝑁 𝑃 𝑥1, … , 𝑥𝑁 𝑑𝑥1𝑑𝑥2⋯𝑑𝑥𝑁 

𝑠. 𝑡.�𝑃 𝑥, … , 𝑥𝑁 𝑑𝑥2⋯𝑑𝑥𝑁 =
𝜌 𝑥
𝑁

 

�𝑃 𝑥1,𝑥, … , 𝑥𝑁 𝑑𝑥1𝑑𝑥3⋯𝑑𝑥𝑁 =
𝜌 𝑥
𝑁

 

… 

�𝑃 𝑥1 … , 𝑥𝑁−1, 𝑥 𝑑𝑥1⋯𝑑𝑥𝑁−1 =
𝜌 𝑥
𝑁

 

𝑃 𝑥1, … , 𝑥𝑁 ≥ 0 



Kantorovich dual formulation 
• Duality for linear programming [Dantzig-von Neumann 1947] 
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max
𝑥

𝑐𝑇𝑥 
s. t.𝐴𝐴 ≤ 𝑏 

  𝑥 ≥ 0  
 

 

min
𝑦
𝑏𝑇𝑦 

s. t.𝐴𝑇𝑦 ≥ 𝑐 
  𝑦 ≥ 0  

inf
𝑃
�𝑉�𝑒𝑒 𝑥1, … , 𝑥𝑁 𝑃 𝑥1, … , 𝑥𝑁 𝑑𝑥1𝑑𝑥2⋯𝑑𝑥𝑁 

𝑠. 𝑡.�𝑃 𝑥, … , 𝑥𝑁 𝑑𝑥2⋯𝑑𝑥𝑁 =
𝜌 𝑥
𝑁

 

�𝑃 𝑥1,𝑥, … , 𝑥𝑁 𝑑𝑥1𝑑𝑥3⋯𝑑𝑥𝑁 =
𝜌 𝑥
𝑁

 

… 

�𝑃 𝑥1 … , 𝑥𝑁−1, 𝑥 𝑑𝑥1⋯𝑑𝑥𝑁−1 =
𝜌 𝑥
𝑁

 

𝑃 𝑥1, … , 𝑥𝑁 ≥ 0 

sup
{𝑢𝑖(𝑥)}

�
1
𝑁�𝑑𝑑 𝑢𝑖 𝑥 𝜌(𝑥)

𝑁

𝑖=1

 

𝑠. 𝑡.∑ 𝑢𝑖(𝑥𝑖)𝑁
𝑖=1 ≤ 𝑉�𝑒𝑒 𝑥1, … , 𝑥𝑁   



Kantorovich dual formulation 
• Define the Kantorovich potential 

𝑢 𝑥 =
1
𝑁
�𝑢𝑖(𝑥)
𝑁

𝑖=1

 

and use symmetry, we have the Kantorovich dual formulation for SCE 

sup
𝑢
�𝑑𝑑 𝑢 𝑥 𝜌(𝑥)  

𝑠. 𝑡.�𝑢(𝑥𝑖)
𝑁

𝑖=1

≤ 𝑉�𝑒𝑒 𝑥1, … , 𝑥𝑁  

 
• Dual formulation for SCE introduced by [Buttazzo-Pascale - Gori-

Giorgi, 2012].  More rigorous treatment of Monge-Kantorovich duality 
but for quadratic cost e.g. [Gangbo-Swiech, 1998].  
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Kantorovich potential is more regular 

28 

- 

Kantorovich dual potential, Be atom co-motion functions, Be atom 
[Seidl- Gori-Giorgi - Savin, 2007] 



Problem of Kantorovich formulation 
• ∑ 𝑢(𝑥𝑖)𝑁

𝑖=1 ≤ 𝑉�𝑒𝑒 𝑥1, … , 𝑥𝑁  should be satisfied ∀𝑥1, … , 𝑥𝑁: 
𝑀𝑁 number of constraints 
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Problem of Kantorovich formulation 
• ∑ 𝑢(𝑥𝑖)𝑁

𝑖=1 ≤ 𝑉�𝑒𝑒 𝑥1, … , 𝑥𝑁  should be satisfied ∀𝑥1, … , 𝑥𝑁: 
𝑀𝑁 number of constraints 

30 

Monge Kantorovich dual 
Solve for 𝑁 − 1 optimal maps 𝑅3 → 𝑅3 Solve for one Kantorovich potential 

𝑅3 → 𝑅 
Mass conservation condition 𝑀𝑁 number of constraints 
Optimal maps are singular Kantorovich potential is (conjectured to 

be) more regular 
Rely on semi-analytical formula  May work for general systems such as 

atoms and molecules 
(So far) only for spherical symmetric 

atoms and strictly 1D systems 
 

No work done yet 
 



Problem of Kantorovich formulation 
• ∑ 𝑢(𝑥𝑖)𝑁

𝑖=1 ≤ 𝑉�𝑒𝑒 𝑥1, … , 𝑥𝑁  should be satisfied ∀𝑥1, … , 𝑥𝑁: 
𝑀𝑁 number of constraints 
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Monge Kantorovich dual 
Solve for 𝑁 − 1 optimal maps 𝑅3 → 𝑅3 Solve for one Kantorovich potential 

𝑅3 → 𝑅 
Mass conservation condition 𝑀𝑁 number of constraints 
Optimal maps are singular Kantorovich potential is (conjectured to 

be) more regular 
Rely on semi-analytical formula May work for general systems such as 

atoms and molecules 
(So far) only for spherical symmetric 

atoms and strictly 1D systems 
 

No work done yet 
 

[Mendl-LL, PRB 2013] 



Reformulation 
• Consider isolated molecule.  Define 

𝑢 𝑥 = 𝑣 𝑥 + 𝐶 
𝐶 is a constant chosen so that asymptotically [Buttazzo-
Pascale - Gori-Giorgi, 2012] 

𝑣 𝑥 →
𝑁 − 1

|𝑥| , 𝑥 → ∞ 

• Define  

𝑔 𝑣 = inf
{𝑟𝑖}

𝑉�𝑒𝑒 𝑥1, … , 𝑥𝑁 −�𝑣(𝑥𝑖)
𝑁

𝑖=1

 

  Then  

𝑉𝑒𝑒𝑆𝑆𝑆 𝜌 = sup
𝑣,𝐶

�𝑑𝑑 𝑣 𝑥 𝜌 𝑥 + 𝑁𝑁  

𝑠. 𝑡.  𝑔 𝑣 ≥ 𝑁𝑁 
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Reformulation 
• Define  

𝐿 𝑣,𝐶, 𝜆 = −�𝑣 𝑥 𝜌 𝑥 𝑑𝑑 − 𝑁𝑁 − 𝜆 𝑔 𝑣 − 𝑁𝑁  

The Karush-Kuhn-Tucker (KKT) condition states that 
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Nested optimization problem 
• Nested unconstrained optimization problem.  Addressing 𝑀𝑁 

number of constraints by optimization 

𝑉𝑒𝑒𝑆𝑆𝑆 𝜌 = sup
𝑣
�𝑑𝑑 𝑣 𝑥 𝜌 𝑥 + 𝑔[𝑣]  

• 𝑣(𝑥) decays slowly in the real space 

𝑣 𝑥 →
𝑁 − 1

|𝑥| , 𝑥 → ∞ 

Introduce pseudocharge 

𝑣 𝑥 = �
𝑚(𝑦)

|𝑥 − 𝑦|𝑑𝑑 

�𝑚 𝑥 𝑑𝑑 = 𝑁 − 1 

Then 𝑚(𝑥) should decay rapidly can be represented on a small 
computational domain.  

34 



Problem of the nested optimization 
approach 
• Now we run into the “no-free-lunch theorem”… 
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Problem of the nested optimization 
approach 
• Now we run into the “no-free-lunch theorem”… 

 
• The difficulty due to singularity of the optimal maps and 

the mass conservation condition must still exist in the 
Kantorovich dual formulation. 
 

• In the nested optimization formulation, the difficulty is that 
𝛿𝛿[𝑣]
𝛿𝛿

  or
𝛿𝛿[𝑚]
𝛿𝑚

 

is not computable through the Hellman-Feynman type 
formula. 
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Computing the derivative 
• Consider  

𝑓 𝑥 = min
𝑦
𝑔(𝑥,𝑦) 

If for each 𝑥 there is a unique 𝑦∗(𝑥) as the minimizer and 
𝑦∗(𝑥) is smooth, then using chain rule 
𝑓′ 𝑥 = 𝑔𝑥 𝑥,𝑦∗ 𝑥 + 𝑔𝑦 𝑥,𝑦∗ 𝑥 𝑦∗ 𝑥 ′ = 𝑔𝑥 𝑥,𝑦∗ 𝑥  
 

• However, it can be shown that 𝑔[𝑣] has at least 𝑀 
minimizers at the optimal 𝑣∗ which makes the above 
argument invalid. 
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Computing the derivative 
• Even if cost is not an issue, finite difference scheme is 

also difficult. 
 

• In practice we compute the derivative for the outer 
iteration using derivative-free optimization schemes [e.g. 
Nelder-Mead 1965] 
 

• Derivative-free optimization only allows to use a very 
small number of degrees of freedom, which is the major 
drawback of this work. 
 

• Represent the pseudocharge 𝑚(𝑥) by a few basis 
functions such as Gaussians. 
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Beryllium atom 
• Spherically symmetric system. 
• Converged electron density obtained from configuration-

interaction calculation. 
• Semi-analytic form for co-motion functions. 
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[Seidl- Gori-Giorgi - Savin, 2007] 



Beryllium atom 
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One Gaussian Two Gaussians 

- 

Gaussians for 𝒎(𝒙) 1 2 
Error of 𝑉𝑒𝑒𝑆𝑆𝑆[𝜌] 20.3% 1.6% 



1D quantum wire 
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4 electrons 
[Malet- Gori-Giorgi, 2013] 



Comparing SCE with LDA 
• [Malet- Gori-Giorgi, 2013] 

 
• N=2 

 
• LDA systematically fails in 

the dissociation limit as 𝐿 
increases, while SCE at 
least qualitatively predicts 
the correct behavior. 
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1D quantum wire 
• KS-SCE, with self-consistent 

iteration. 
 

• Periodic boundary condition, 𝑣 
represented by ~ 10 Fourier 
modes. 
 

• Qualitatively correct with the 
co-motion function formulation. 
 

• Strong correlation (L=12) is 
even easier than weak 
correlation (L=6) 
 

• Sensitive to initial guess. 
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Model trimer 

44 

Pseudocharge: three Gaussians with distance R to 0, and variance 𝜎. 



Conclusion 
• Systematic failure of existing DFT functional for strongly 

correlated systems, such as 𝐻2 in the dissociation limit. 
 

• Strictly correlated electron (SCE). The key obstacle is a general 
and reliable algorithm that allows the computation of SCE 
functional for general systems. 
 

• Optimal transport problem with Coulomb cost. Monge 
formulation and Kantorovich dual formulation.  The Kantorovich 
dual formulation may work better for general systems. 
 

• Nested optimization approach as a first step for solving this 
optimal transport problem in the Kantorovich dual formulation. 
 

• Derivative-free optimization is a major drawback. 
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Future work and open questions 
• Allow the computation of the derivative 𝛿𝛿[𝑚]

𝛿𝛿
. 

 
• Computing the 𝐻2 dissociation limit in the KS-SCE formulation 

using a set of basis functions (such as Gaussians). 
 

• Monge-Kantorovich duality for optimal transport problem with 
Coulomb cost.  𝑁 > 2. 
 

• Regularity of the Kantorovich potential. 
 

 
 

Thank you for your attention! 

46 


	Slide Number 1
	Outline
	Ground state electronic structure theory
	Density functional theory
	Kohn-Sham density functional theory
	Kohn-Sham density functional theory
	Kohn-Sham density functional theory
	Successful work on exchange-correlation functional is unusually important
	More on exchange-correlation functionals
	Current status of designing functional
	Surprisingly simple system, fail for all DFT functionals:  𝐻 2  dissociation
	Strictly correlated electron state
	Strictly correlated electron state
	Strictly correlated nature
	Properties of the SCE functional
	SCE formulation
	Remarks on SCE formulation
	Remarks on SCE formulation
	Remarks on SCE formulation
	Monge formulation
	Problem of Monge formulation
	Problem of Monge formulation
	Linear programming viewpoint
	Kantorovich dual formulation
	Kantorovich dual formulation
	Kantorovich dual formulation
	Kantorovich dual formulation
	Kantorovich potential is more regular
	Problem of Kantorovich formulation
	Problem of Kantorovich formulation
	Problem of Kantorovich formulation
	Reformulation
	Reformulation
	Nested optimization problem
	Problem of the nested optimization approach
	Problem of the nested optimization approach
	Computing the derivative
	Computing the derivative
	Beryllium atom
	Beryllium atom
	1D quantum wire
	Comparing SCE with LDA
	1D quantum wire
	Model trimer
	Conclusion
	Future work and open questions
	Kohn-Sham density functional theory
	Kohn-Sham density functional theory
	Kohn-Sham density functional theory

