Asymptotic preserving schemes on kinetic models with singular limits

Changhui Tan

Department of Mathematics Rice University

Joint work with Alina Chertock and Bokai Yan

Kinetic Descriptions of Chemical and Biological Systems: Models, Analysis and Numerics Iowa State University, March 23, 2017

2 Kinetic swarming models and zero-inertia limit

- 3 Velocity scaling methods
- Asymptotic-preserving scheme
- 5 Numerical experiments

2 Kinetic swarming models and zero-inertia limit

3 Velocity scaling methods

4 Asymptotic-preserving scheme

5 Numerical experiments

Changhui Tan (Rice University)

Asymptotic-preserving schemes

[Jin '99]

$$\begin{array}{c|c}
 & f_{\epsilon}^{h} & \xrightarrow{h \to 0} & f_{\epsilon} \\
 & \downarrow^{\epsilon \to 0} & \downarrow^{\epsilon \to 0} \\
 & f^{h} & \xrightarrow{h \to 0} & f
\end{array}$$

- Given f_e → f, design a discretization f^h_e for f_e that converges to the discretization f^h for f.
- Asymptotic-preserving property: h does not depend on ϵ .
- Extremely powerful in solving kinetic systems with hydrodynamic limits.

When the limit is singular

- Consider the case when f is singular, e.g. $f(t, x, v) = \rho(t, x)\delta_{v=u(t,x)}$.
- The discretization f^h can not be accurate. So f_ε^h is also not accurate when ε is small.
- Idea: Construct a family of invertible maps \mathcal{T}_{ϵ} , so that $\mathcal{T}_{\epsilon}f_{\epsilon}$ converges to a non-singular profile.
- Main Difficulty: Find \mathcal{T}_{ϵ} that correctly captures the singularity. $\ensuremath{\widehat{\mathbb{S}}}^{\operatorname{RICE}}$

2 Kinetic swarming models and zero-inertia limit

3 Velocity scaling methods

4 Asymptotic-preserving scheme

5 Numerical experiments

Changhui Tan (Rice University)

Three-zone models for swarms: [Reynolds '87]

- Long range: Attraction
- Short range: Repulsion
- Middle range: Alignment

rice

• Agent-based interaction dynamics (based on Newton's second law)

$$\dot{x}_i = v_i, \quad m\dot{v}_i = F_i, \quad i = 1, \cdots, N.$$

The interaction force F_i depends on $\{x_j\}_{j=1}^N$ and $\{v_j\}_{j=1}^N$.

- Attractive/Repulsive force: $F_i(t) = -\frac{1}{N} \sum_{j \neq i} \nabla K(x_j(t) x_i(t)).$
- Alignment force: $F_i = \frac{1}{N} \sum_{j=1}^{N} \phi(|x_j x_i|)(v_j v_i)$. [**Cucker-Smale '07**, Motsch-Tadmor '11, Vicsek '95, ...] Flocking [Ha-Liu '09]

• Vlasov-type kinetic equations

$$\partial_t f + \mathbf{v} \cdot \nabla_x f + \frac{1}{m} \nabla_{\mathbf{v}} \cdot (F(f)f) = 0,$$

where f = f(t, x, v) is a probability measure in (x, v) space.

• Nonlocal interaction forces:

$$F^{CS}(f)(t,x,v) = \iint \phi(|x-y|)(v_*-v)f(t,y,v_*)dv_*dy$$
$$F^{AR}(f)(t,x,v) = \iint -\nabla_x K(x-y)f(t,y,v_*)dv_*dy.$$

- Two systems that we concern:
 - **(1)** [ARR] Attraction-Repulsion-Relaxation: $F = F^{AR} v$.
 - **(ara)** Attraction-Repulsion-Alignment(3 zones): $F = F^{AR} + F^{CS} \bigotimes_{RICE}$

Zero inertia limit

• Consider the limit when total mass $m = \epsilon \rightarrow 0$.

$$\partial_t f_{\epsilon} + \mathbf{v} \cdot \nabla_x f_{\epsilon} + \frac{1}{\epsilon} \nabla_{\mathbf{v}} \cdot (F(f_{\epsilon})f_{\epsilon}) = 0,$$

• A formal derivation of the $\epsilon \rightarrow 0$ limit $(f_{\epsilon} \rightarrow f)$:

•

$$\int \nabla_{\mathbf{v}} \varphi(\mathbf{v}) \cdot F(f) f \, d\mathbf{v} = 0.$$

$$\varphi(\mathbf{v}) = 1: \quad \partial_t \rho + \nabla_x \cdot (\rho u) = 0.$$

$$\varphi(\mathbf{v}) = \mathbf{v}: \quad [\mathsf{ARR}] \quad u(x) = -(\nabla_x K * \rho)(x),$$

$$[\mathsf{ARA}] \quad \int \phi(|x - y|)(u(x) - u(y))\rho(y)dy = -(\nabla_x K * \rho)(x).$$

$$[\mathbf{v}) = \frac{1}{2}|\mathbf{v} - u|^2: \quad [\mathsf{ARR}] \quad \int |\mathbf{v} - u|^2 f(x, \mathbf{v})d\mathbf{v} = 0,$$

$$[\mathsf{ARA}] \quad (\phi * \rho)(x) \quad \int |\mathbf{v} - u|^2 f(x, \mathbf{v})d\mathbf{v} = 0.$$

$$\Rightarrow \quad f(t, x, \mathbf{v}) = \rho(t, x) \quad \delta_{\mathbf{v} = u(t, x)}.$$

 φ (

CE

$$f(t, x, v) = \rho(t, x) \ \delta_{v=u(t, x)}.$$

• For [ARR], the limiting system is the aggregation equation

 $\partial_t \rho + \nabla_x \cdot ((-\nabla_x K * \rho)\rho) = 0.$

Wellposedness: [Laurent '07, Bertozzi-Carrillo-Laurent '09, ...] Rigorous passage to the limit: [Jabin '99, Fetecau-Sun '15]

• For [ARA], the limiting system has an implicitly defined velocity u. $\partial_t \rho + \nabla_x \cdot (\rho u) = 0,$ $\int \phi(|x - y|)(u(x) - u(y))\rho(y)dy = -(\nabla_x K * \rho)(x).$ Wellposedness: [Fetecau-Sun-CT '16] Additional restriction: $\int \rho(t, x)u(t, x)dx = \int \rho_0(x)u_0(x)dx.$ Rigorous passage to the limit: [Fetecau-Sun-CT '16]

Changhui Tan (Rice University)

2 Kinetic swarming models and zero-inertia limit

3 Velocity scaling methods

4 Asymptotic-preserving scheme

5 Numerical experiments

12 / 28

Changhui Tan (Rice University)

$$f_{\epsilon}(t,x,v) \rightarrow \rho(t,x) \ \delta_{v=u(t,x)}.$$

• The transformation \mathcal{T}_{ϵ} : rescale $f_{\epsilon} \leftrightarrow (g_{\epsilon}, u_{\epsilon}, \omega_{\epsilon})$:

$$f_\epsilon(t,x,v) = rac{1}{\omega_\epsilon^d} g_\epsilon(t,x,\xi), \quad \xi = rac{v-u_\epsilon(t,x)}{\omega_\epsilon}.$$

- u_{ϵ} is the macroscopic velocity: $u_{\epsilon}(t,x) = \frac{\int v f_{\epsilon}(t,x,v) dv}{\int f_{\epsilon}(t,x,v) dv}$.
- ω_{ϵ} is the scaling factor.

Goal: choose ω_{ϵ} appropriately so that $g_{\epsilon} \rightarrow g$ and g is not singular.

Velocity scaling: history

• Kinetic system with singular equilibrium.

$$f(t,x,v) o
ho^\infty(x) \delta_{v=v^\infty}, \quad ext{as } t o \infty.$$

• Rescale $f \leftrightarrow (g, u, \omega)$:

$$f(t,x,v) = rac{1}{\omega(t,x)^d}g(t,x,\xi), \quad \xi = rac{v-u(t,x)}{\omega}.$$

• Linear Fokker-Planck [Filbet-Russo '04], Granular gas [Filbet-Rey '13]:

$$\omega = \sqrt{\mathsf{Temperature}}.$$

• Kinetic flocking models [Rey-CT '16]: Propose a new ω and prove that $g(t, x, v) = g_0(x, v)$ for spatially "homogenous" system: $\partial_t f + \nabla_v \cdot (F^{CS}(f)f) = 0$.

Spatially "Homogenous" system

$$\partial_t f_{\epsilon} + \frac{1}{\epsilon} \nabla_v \cdot (F(f_{\epsilon})f_{\epsilon}) = 0.$$

• Rewrite the system in terms of g_{ϵ}

$$\partial_t g_{\epsilon} = \left(\frac{\partial_t \omega_{\epsilon}}{\omega_{\epsilon}} + \frac{1}{\epsilon} \mathcal{A}_{\epsilon}\right) \nabla_{\xi} \cdot (\xi g_{\epsilon}) + \frac{1}{\omega_{\epsilon}} \left(\partial_t u_{\epsilon} - \frac{1}{\epsilon} \mathcal{B}_{\epsilon}\right) \cdot \nabla_{\xi} g_{\epsilon}.$$

 $\begin{array}{ll} [\text{ARR}]: & \mathcal{A}_{\epsilon}(t,x) = 1, \quad \mathcal{B}_{\epsilon}(t,x) = -u_{\epsilon}(t,x) - \int \nabla_{x} \mathcal{K}(x-y)\rho_{\epsilon}(y)dy, \\ [\text{ARA}]: & \mathcal{A}_{\epsilon}(t,x) = \int \phi(|x-y|)\rho_{\epsilon}(t,y)dy, \\ & \mathcal{B}_{\epsilon}(t,x) = \int \phi(|x-y|)(u_{\epsilon}(t,y) - u_{\epsilon}(t,x))\rho_{\epsilon}(y)dy - \int \nabla_{x} \mathcal{K}(x-y)\rho_{\epsilon}(y)dy. \end{array}$

- It is easy to check $\partial_t u_{\epsilon} = \frac{1}{\epsilon} \mathcal{B}_{\epsilon}(t, x).$
- Take $\omega_{\epsilon}(t, x) = \exp\left(-\frac{1}{\epsilon}\int_{0}^{t} \mathcal{A}_{\epsilon}(s, x)ds\right)$. Then $\partial_{t}g_{\epsilon} = 0$!! The *exact* scaling is valid for any initial configurations.

Scaling on the full system

• With free transport, the full system in terms of g_ϵ reads

$$\begin{aligned} \partial_t \mathbf{g}_{\epsilon} + (\mathbf{u}_{\epsilon} + \omega_{\epsilon}\xi) \cdot \nabla_{\mathbf{x}} \mathbf{g}_{\epsilon} \\ &= \left(\frac{\partial_t \omega_{\epsilon}}{\omega_{\epsilon}} + (\mathbf{u}_{\epsilon} + \omega_{\epsilon}\xi) \cdot \frac{\nabla_{\mathbf{x}} \omega_{\epsilon}}{\omega_{\epsilon}} + \frac{1}{\epsilon} \mathcal{A}_{\epsilon} \right) \nabla_{\xi} \cdot (\xi \mathbf{g}_{\epsilon}) \\ &+ \frac{1}{\omega_{\epsilon}} \left(\partial_t \mathbf{u}_{\epsilon} + (\mathbf{u}_{\epsilon} + \omega_{\epsilon}\xi) \cdot \nabla_{\mathbf{x}} \mathbf{u}_{\epsilon} - \frac{1}{\epsilon} \mathcal{B}_{\epsilon} \right) \cdot \nabla_{\xi} \mathbf{g}_{\epsilon}. \end{aligned}$$

- Exact scaling can not be expected:
 - The dynamics of u_{ϵ} :

$$\partial_t u_\epsilon + u_\epsilon \cdot
abla_{\mathsf{x}} u_\epsilon + rac{1}{
ho_\epsilon}
abla_{\mathsf{x}} \cdot (\omega_\epsilon^2 P_\epsilon) = rac{1}{\epsilon} \mathcal{B}_\epsilon, \quad P_\epsilon = \int \xi \otimes \xi g_\epsilon(\xi) d\xi.$$

2 The choice of ω_{ϵ} :

$$\partial_t \omega_\epsilon + u_\epsilon \cdot \nabla_x \omega_\epsilon + \frac{1}{\epsilon} \mathcal{A}_\epsilon \omega_\epsilon = 0.$$

Scaling on the full system

• With free transport, the full system in terms of g_ϵ reads

$$egin{aligned} &\partial_t egin{aligned} &\partial_t egin{aligned} &\partial_t egin{aligned} && = (\xi \cdot
abla_x \omega_\epsilon) \,
abla_\xi \cdot (\xi eta_\epsilon) \ && + ((\xi \cdot
abla_x) u_\epsilon) \cdot
abla_\xi egin{aligned} && + \left((\xi \cdot
abla_x) u_\epsilon
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot (\omega_\epsilon^2 P_\epsilon)
ight) \cdot
abla_\xi egin{aligned} && + \left(\nabla_x \cdot ($$

Exact scaling can not be expected:

1 The dynamics of u_{ϵ} :

$$\partial_t u_\epsilon + u_\epsilon \cdot \nabla_x u_\epsilon + rac{1}{
ho_\epsilon} \nabla_x \cdot (\omega_\epsilon^2 P_\epsilon) = rac{1}{\epsilon} \mathcal{B}_\epsilon, \quad P_\epsilon = \int \xi \otimes \xi g_\epsilon(\xi) d\xi.$$

2 The choice of ω_{ϵ} :

$$\partial_t \omega_\epsilon + u_\epsilon \cdot \nabla_x \omega_\epsilon + \frac{1}{\epsilon} \mathcal{A}_\epsilon \omega_\epsilon = 0.$$

2 Kinetic swarming models and zero-inertia limit

3 Velocity scaling methods

Asymptotic-preserving scheme

5 Numerical experiments

17 / 28

Changhui Tan (Rice University)

- N

Recall the main idea to overcome singular limit

Two ingredients for the scheme to be asymptotic-preserving:

- g_{ϵ} does not become singular as $\epsilon \to 0$.
- 2 An asymptotic-preserving scheme on $(g_{\epsilon}, u_{\epsilon}, \omega_{\epsilon})$.

 We call {g_ε} is non-singular if g_ε neither concentrate nor spread out in v, as ε approaches 0.

 $\max_{\xi} |g_{\epsilon}(t,x,\xi)| \leq G, \quad ext{and} \quad \sup_{\xi} g_{\epsilon}(t,x,\xi) \subset B_R(0).$

for all (t, x). G, R are independent with respect to ϵ .

• Goal: Prove that under our choice of transformation \mathcal{T}_{ϵ} , the rescaled family of solutions $\{g_{\epsilon}\}$ is non-singular.

i

• Recall the dynamics of g_e:

$$egin{aligned} &\partial_t g_\epsilon + \left(u_\epsilon + \omega_\epsilon \xi
ight) \cdot
abla_{\mathsf{x}} g_\epsilon \ &= \left(\xi \cdot
abla_{\mathsf{x}} \omega_\epsilon
ight)
abla_{\xi} \cdot \left(\xi g_\epsilon
ight) \ &+ \left(\left(\xi \cdot
abla_{\mathsf{x}}\right) u_\epsilon
ight) \cdot
abla_{\xi} g_\epsilon - rac{1}{
ho_\epsilon \omega_\epsilon} \left(
abla_{\mathsf{x}} \cdot \left(\omega_\epsilon^2 P_\epsilon
ight)
ight) \cdot
abla_{\xi} g_\epsilon, \end{aligned}$$

One major **difficulty** is to control the spacial derivatives $\nabla_x g_{\epsilon}, \nabla_x \omega_{\epsilon}, \nabla_x u_{\epsilon}$ and $\nabla_x P_{\epsilon}$ uniformly in ϵ .

• Take u_{ϵ} as an example. Recall its dynamics

$$\partial_t u_\epsilon + u_\epsilon \cdot \nabla_{\mathsf{x}} u_\epsilon + rac{1}{
ho_\epsilon} \nabla_{\mathsf{x}} \cdot (\omega_\epsilon^2 P_\epsilon) = rac{1}{\epsilon} \mathcal{B}_\epsilon.$$

- One major **difficulty** is to control the spacial derivatives $\nabla_x g_{\epsilon}, \nabla_x \omega_{\epsilon}, \nabla_x u_{\epsilon}$ and $\nabla_x P_{\epsilon}$ uniformly in ϵ .
- Take u_{ϵ} as an example. Recall its dynamics

$$\partial_t u_\epsilon + u_\epsilon \cdot \nabla_x u_\epsilon + \frac{1}{\rho_\epsilon} \nabla_x \cdot (\omega_\epsilon^2 P_\epsilon) = \frac{1}{\epsilon} \mathcal{B}_\epsilon.$$

- Without pressure $(P_{\epsilon} \equiv 0)$: $\sup_{0 \le \epsilon \le \epsilon_0} \|\nabla_x u_{\epsilon}\|_{L^{\infty}} \le C.$ [Tadmor-CT '14]
- 2 Limiting system $(u_{\epsilon} \rightarrow u)$: $\|\nabla_{\times} u\|_{L^{\infty}} \leq C$.[Fetecau-Sun-CT '16]
- Solution Note that u_e → u weak-* in measure. Therefore, the bound on the limiting system does not imply uniform bound on ||∇_xu_e||_{L∞}.

• We assume that the solution does not have spatial oscillations:

 $egin{aligned} |
abla_x g_\epsilon(t,x,\xi)| \leq & C_1 g_\epsilon(t,x,\xi), \ |
abla_x u_\epsilon(t,x)| \leq & C_2. \end{aligned}$

• The assumptions imply non-oscillatory bound for other quantities:

$$egin{aligned} |
abla_{ imes}
ho_{\epsilon}(t,x)| &\leq C_{1}
ho_{\epsilon}(t,x), \ |
abla_{ imes}P_{\epsilon}(t,x)| &\leq C_{1}P_{\epsilon}(t,x), \ \|
abla_{ imes}\omega_{\epsilon}(t,\cdot)\|_{L^{\infty}} &\leq rac{C_{1}(e^{C_{2}t}-1)}{C_{2}\epsilon}\exp\left(-rac{c}{\epsilon}t
ight). \end{aligned}$$

Changhui Tan (Rice University)

- ∢ ≣ →

Theorem ([Chertock-CT-Yan '17])

Let $(g_{\epsilon}, u_{\epsilon}, \omega_{\epsilon})$ be the solution of the rescaled dynamics. Assume the solution satisfies the non-oscillatory conditions. Then, there exists a time $T = T(g^0) > 0$ such that $g_{\epsilon}(t)$ is non-singular for all $t \in [0, T]$.

- If the solution is not oscillatory in spatial variable, the proposed transformation based on velocity scaling resolves the singularity in the original limit.
- The non-oscillatory conditions can be verified numerically.

Asymptotic-preserving scheme for the rescaled system

• For $(u_{\epsilon}, \omega_{\epsilon})$, the stiff term is *linear*. Use standard IMEX scheme.

$$egin{aligned} \partial_t u_\epsilon + u_\epsilon \cdot
abla_{ imes} u_\epsilon + rac{1}{
ho_\epsilon}
abla_{ imes} \cdot (\omega_\epsilon^2 P_\epsilon) &= rac{1}{\epsilon} \mathcal{B}_\epsilon, \ \partial_t \omega_\epsilon + u_\epsilon \cdot
abla_{ imes} \omega_\epsilon + rac{1}{\epsilon} \mathcal{A}_\epsilon \omega_\epsilon &= 0. \end{aligned}$$

• For g_{ϵ} , there is no explicit dependence on ϵ . Use explicit schemes.

$$egin{aligned} &\partial_t \mathbf{g}_\epsilon +
abla_{\mathbf{x}} \cdot \left((u_\epsilon + \omega_\epsilon \xi) \mathbf{g}_\epsilon
ight) \ &= &
abla_t \mathbf{g}_\epsilon \cdot \left[\left((\xi \cdot
abla_{\mathbf{x}} \omega_\epsilon) \xi + (\xi \cdot
abla_{\mathbf{x}}) u_\epsilon - rac{1}{
ho_\epsilon \omega_\epsilon} \left(
abla_{\mathbf{x}} \cdot (\omega_\epsilon^2 P_\epsilon)
ight)
ight) \mathbf{g}_\epsilon
ight]. \end{aligned}$$

We use finite volume method, e.g. upwind. Some corrections are introduced to ensure $\int vg_{\epsilon}(t, x, v)dv = 0$. (Follow from [Rey-Tan '16])

2 Kinetic swarming models and zero-inertia limit

3 Velocity scaling methods

4 Asymptotic-preserving scheme

5 Numerical experiments

Changhui Tan (Rice University)

3.0

Validation of non-oscillatory assumptions

Plots of $\max_{x} |\nabla_{x} u_{\epsilon}(t, x)|$, $\max_{x} |\nabla_{x} \rho_{\epsilon}(t, x)/\rho_{\epsilon}(t, x)|$ and $\max_{x} |\nabla_{x} P_{\epsilon}(t, x)/\rho_{\epsilon}(t, x)|$ for $t \in [0, 1]$ and different choices of ϵ .

Initial condition: $g^{0}(x,\xi) = \rho^{0}(x)M(\xi),$ $\rho^{0}(x) = 1 + e^{-20(x-1)^{2}} + e^{-20(x+1)^{2}},$ $u^{0}(x) = 0,$ $\omega^{0}(x) = 1.$

Consistency test

Comparison between solving f_{ϵ} and $(g_{\epsilon}, u_{\epsilon}, \omega_{\epsilon})$ for $\epsilon = 1$. Snapshots of (ρ, u) at t = 0, 0.3, 0.7.

Snapshots of g at t = 0.7.

Changhui Tan (Rice University)

Snapshots of $(\rho_{\epsilon}, u_{\epsilon})$ at t = 1 for different ϵ . When ϵ becomes small, the profile approaches the limiting system.

Thanks for your attention!

28 / 28

Changhui Tan (Rice University)

프 (프)