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Asymptotic-preserving schemes

[Jin ’99]

f
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✏ f✏

f

h

f

h ! 0

✏ ! 0 ✏ ! 0

h ! 0

Given f✏ ! f , design a discretization f

h

✏ for f✏ that converges to the
discretization f

h for f .

Asymptotic-preserving property: h does not depend on ✏.

Extremely powerful in solving kinetic systems with hydrodynamic
limits.
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When the limit is singular
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g

h ! 0

✏ ! 0 ✏ ! 0

h ! 0

T✏

T �1

✏

Consider the case when f is singular, e.g. f (t, x , v) = ⇢(t, x)�
v=u(t,x).

The discretization f

h can not be accurate. So f

h

✏ is also not accurate
when ✏ is small.

Idea: Construct a family of invertible maps T✏, so that T✏f✏ converges
to a non-singular profile.

Main Di�culty: Find T✏ that correctly captures the singularity.
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Swarming

Three-zone models for swarms: [Reynolds ’87]

Long range: Attraction

Short range: Repulsion

Middle range: Alignment
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Agent-based models on swarming

Agent-based interaction dynamics (based on Newton’s second law)

ẋ

i

= v

i

, mv̇

i

= F

i

, i = 1, · · · ,N.

The interaction force F

i

depends on {x
j

}N
j=1

and {v
j

}N
j=1

.

Attractive/Repulsive force: F
i

(t) = � 1

N

X

j 6=i

rK (x
j

(t)� x

i

(t)).

Alignment force: F
i

=
1

N

NX

j=1

�(|x
j

� x

i

|)(v
j

� v

i

).

[Cucker-Smale ’07, Motsch-Tadmor ’11, Vicsek ’95, ...]

Flocking [Ha-Liu ’09]
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Kinetic swarming models

Vlasov-type kinetic equations

@
t

f + v ·r
x

f +
1

m

r
v

· (F (f )f ) = 0,

where f = f (t, x , v) is a probability measure in (x , v) space.

Nonlocal interaction forces:

F

CS(f )(t, x , v) =

ZZ
�(|x � y |)(v⇤ � v)f (t, y , v⇤)dv⇤dy

F

AR(f )(t, x , v) =

ZZ
�r

x

K (x � y)f (t, y , v⇤)dv⇤dy .

Two systems that we concern:
1 [ARR] Attraction-Repulsion-Relaxation: F = F

AR � v .
2 [ARA] Attraction-Repulsion-Alignment(3 zones): F = F

AR + F

CS .
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Zero inertia limit

Consider the limit when total mass m = ✏ ! 0.

@
t

f✏ + v ·r
x

f✏ +
1

✏
r

v

· (F (f✏)f✏) = 0,

A formal derivation of the ✏ ! 0 limit (f✏ ! f ):
Z

r
v

'(v) · F (f )f dv = 0.

'(v) = 1: @
t

⇢+r
x

· (⇢u) = 0.

'(v) = v : [ARR] u(x) = �(r
x

K ⇤ ⇢)(x),
[ARA]

R
�(|x � y |)(u(x)� u(y))⇢(y)dy = �(r

x

K ⇤ ⇢)(x).

'(v) = 1

2

|v � u|2: [ARR]
R
|v � u|2f (x , v)dv = 0,

[ARA] (� ⇤ ⇢)(x)
R
|v � u|2f (x , v)dv = 0.

) f (t, x , v) = ⇢(t, x) �
v=u(t,x).
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Limiting system

f (t, x , v) = ⇢(t, x) �
v=u(t,x).

For [ARR], the limiting system is the aggregation equation

@
t

⇢+r
x

· ((�r
x

K ⇤ ⇢)⇢) = 0.

Wellposedness: [Laurent ’07, Bertozzi-Carrillo-Laurent ’09, ...]

Rigorous passage to the limit: [Jabin ’99, Fetecau-Sun ’15]

For [ARA], the limiting system has an implicitly defined velocity u.

@
t

⇢+r
x

· (⇢u) = 0,
Z

�(|x � y |)(u(x)� u(y))⇢(y)dy = �(r
x

K ⇤ ⇢)(x).
Wellposedness: [Fetecau-Sun-CT ’16]

Additional restriction:

Z
⇢(t, x)u(t, x)dx =

Z
⇢
0

(x)u
0

(x)dx .

Rigorous passage to the limit: [Fetecau-Sun-CT ’16]
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Velocity scaling: framework

f✏(t, x , v) ! ⇢(t, x) �
v=u(t,x).

The transformation T✏: rescale f✏ $ (g✏, u✏,!✏):

f✏(t, x , v) =
1

!d

✏
g✏(t, x , ⇠), ⇠ =

v � u✏(t, x)

!✏
.

u✏ is the macroscopic velocity: u✏(t, x) =

R
vf✏(t, x , v)dvR
f✏(t, x , v)dv

.

!✏ is the scaling factor.

Goal: choose !✏ appropriately so that g✏ ! g and g is not singular.
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Velocity scaling: history

Kinetic system with singular equilibrium.

f (t, x , v) ! ⇢1(x)�
v=v

1 , as t ! 1.

Rescale f $ (g , u,!):

f (t, x , v) =
1

!(t, x)d
g(t, x , ⇠), ⇠ =

v � u(t, x)

!
.

Linear Fokker-Planck [Filbet-Russo ’04], Granular gas [Filbet-Rey ’13]:

! =
p
Temperature.

Kinetic flocking models [Rey-CT ’16]:
Propose a new ! and prove that g(t, x , v) = g

0

(x , v) for spatially
“homogenous” system: @

t

f +r
v

· (FCS(f )f ) = 0.
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Spatially “Homogenous” system

@
t

f✏ +
1

✏
r

v

· (F (f✏)f✏) = 0.

Rewrite the system in terms of g✏

@
t

g✏ =

✓
@
t

!✏

!✏
+

1

✏
A✏

◆
r⇠ · (⇠g✏) +

1

!✏

✓
@
t

u✏ �
1

✏
B✏

◆
·r⇠g✏.

[ARR]: A✏(t, x) = 1, B✏(t, x) = �u✏(t, x)�
R
r

x

K(x � y)⇢✏(y)dy ,
[ARA]: A✏(t, x) =

R
�(|x � y |)⇢✏(t, y)dy ,

B✏(t, x) =
R
�(|x � y |)(u✏(t, y)� u✏(t, x))⇢✏(y)dy �

R
r

x

K(x � y)⇢✏(y)dy .

It is easy to check @
t

u✏ =
1

✏B✏(t, x).

Take !✏(t, x) = exp
⇣
�1

✏

R
t

0

A✏(s, x)ds
⌘
. Then @

t

g✏ = 0 !!

The exact scaling is valid for any initial configurations.
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Scaling on the full system

With free transport, the full system in terms of g✏ reads

@
t

g✏ + (u✏ + !✏⇠) ·rx

g✏

=

✓
@
t

!✏

!✏
+ (u✏ + !✏⇠) ·

r
x

!✏

!✏
+

1

✏
A✏

◆
r⇠ · (⇠g✏)

+
1

!✏

✓
@
t

u✏ + (u✏ + !✏⇠) ·rx

u✏ �
1

✏
B✏

◆
·r⇠g✏.

Exact scaling can not be expected:
1 The dynamics of u✏:

@
t

u✏ + u✏ ·rx

u✏ +
1

⇢✏
r

x

· (!2

✏P✏) =
1

✏
B✏, P✏ =

Z
⇠ ⌦ ⇠g✏(⇠)d⇠.

2 The choice of !✏:

@
t

!✏ + u✏ ·rx

!✏ +
1

✏
A✏!✏ = 0.
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x
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1
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r

x
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Design asymptotic-preserving scheme

Recall the main idea to overcome singular limit

f

h

✏ f✏

f

h

f

h ! 0

✏ ! 0 ✏ ! 0

h ! 0

g

h

✏
g✏

g

h

g

h ! 0

✏ ! 0 ✏ ! 0

h ! 0

T✏

T �1

✏

Two ingredients for the scheme to be asymptotic-preserving:

1

g✏ does not become singular as ✏ ! 0.

2 An asymptotic-preserving scheme on (g✏, u✏,!✏).
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Criterion for non-singular {g✏}

We call {g✏} is non-singular if g✏ neither concentrate nor spread out
in v , as ✏ approaches 0.

max
⇠

|g✏(t, x , ⇠)|  G , and supp
⇠

g✏(t, x , ⇠) ⇢ B

R

(0).

for all (t, x). G ,R are independent with respect to ✏.

Goal: Prove that under our choice of transformation T✏, the rescaled
family of solutions {g✏} is non-singular.
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Spatial oscillation

Recall the dynamics of g✏:

@
t

g✏ + (u✏ + !✏⇠) ·rx

g✏

= (⇠ ·r
x

!✏)r⇠ · (⇠g✏)

+ ((⇠ ·r
x

)u✏) ·r⇠g✏ �
1

⇢✏!✏

�
r

x

· (!2

✏P✏)
�
·r⇠g✏,

One major di�culty is to control the spacial derivatives
r

x

g✏,rx

!✏,rx

u✏ and r
x

P✏ uniformly in ✏.

Take u✏ as an example. Recall its dynamics

@
t

u✏ + u✏ ·rx

u✏ +
1

⇢✏
r

x

· (!2

✏P✏) =
1

✏
B✏.

Changhui Tan (Rice University) AP scheme with singular limit Ki-Net Conference, 2017.3 20 / 28



Spatial oscillation

One major di�culty is to control the spacial derivatives
r

x

g✏,rx

!✏,rx

u✏ and r
x

P✏ uniformly in ✏.

Take u✏ as an example. Recall its dynamics

@
t

u✏ + u✏ ·rx

u✏ +
1

⇢✏
r

x

· (!2

✏P✏) =
1

✏
B✏.

1 Without pressure (P✏ ⌘ 0): sup
0✏✏

0

kr
x

u✏kL1  C .[Tadmor-CT ’14]

2 Limiting system (u✏ ! u): kr
x

uk
L

1  C .[Fetecau-Sun-CT ’16]

3 Note that u✏ ! u weak-? in measure. Therefore, the bound on the
limiting system does not imply uniform bound on kr

x

u✏kL1 .
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Non-oscillatory assumptions

We assume that the solution does not have spatial oscillations:

|r
x

g✏(t, x , ⇠)| C

1

g✏(t, x , ⇠),

|r
x

u✏(t, x)| C

2

.

The assumptions imply non-oscillatory bound for other quantities:

|r
x

⇢✏(t, x)| C

1

⇢✏(t, x),

|r
x

P✏(t, x)| C

1

P✏(t, x),

kr
x

!✏(t, ·)k
L

1 C

1

(eC2

t � 1)

C

2

✏
exp

⇣
�c

✏
t

⌘
.
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Non-oscillatory implies non-singular

Theorem ([Chertock-CT-Yan ’17])

Let (g✏, u✏,!✏) be the solution of the rescaled dynamics.

Assume the solution satisfies the non-oscillatory conditions.

Then, there exists a time T = T (g0) > 0 such that g✏(t) is non-singular
for all t 2 [0,T ].

If the solution is not oscillatory in spatial variable, the proposed
transformation based on velocity scaling resolves the singularity in the
original limit.

The non-oscillatory conditions can be verified numerically.
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Asymptotic-preserving scheme for the rescaled system

For (u✏,!✏), the sti↵ term is linear. Use standard IMEX scheme.

@
t

u✏ + u✏ ·rx

u✏ +
1

⇢✏
r

x

· (!2

✏P✏) =
1

✏
B✏,

@
t

!✏ + u✏ ·rx

!✏ +
1

✏
A✏!✏ = 0.

For g✏, there is no explicit dependence on ✏. Use explicit schemes.

@
t

g✏+r
x

· ((u✏ + !✏⇠)g✏)

=r⇠ ·
✓

(⇠ ·r
x

!✏)⇠ + (⇠ ·r
x

)u✏ �
1

⇢✏!✏

�
r

x

· (!2

✏P✏)
�◆

g✏

�
.

We use finite volume method, e.g. upwind.
Some corrections are introduced to ensure

R
vg✏(t, x , v)dv = 0.

(Follow from [Rey-Tan ’16])
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Validation of non-oscillatory assumptions

Plots of max
x

|r
x

u✏(t, x)|, max
x

|r
x

⇢✏(t, x)/⇢✏(t, x)| and
max

x

|r
x

P✏(t, x)/⇢✏(t, x)| for t 2 [0, 1] and di↵erent choices of ✏.

0 0.2 0.4 0.6 0.8 1
0
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max |∇ u|

0 0.2 0.4 0.6 0.8 1
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time

max |∇ρ / ρ|
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3.5

time

max |∇P/ρ|

 

 

ε = 1e−0

ε = 1e−−1

ε = 1e−−2

ε = 1e−−3

ε = 1e−−4

Initial condition:
g

0(x , ⇠) = ⇢0(x)M(⇠),

⇢0(x) = 1 + e

�20(x�1)

2

+ e

�20(x+1)

2

,
u

0(x) = 0,

!0(x) = 1.
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Consistency test

Comparison between solving f✏ and (g✏, u✏,!✏) for ✏ = 1.
Snapshots of (⇢, u) at t = 0, 0.3, 0.7.

−3 −2 −1 0 1 2 3
0.5

1

1.5

2

2.5

x

ρ

t = 0

t = 0.3

t = 0.7

−2 0 2
−0.1

−0.05

0

0.05

0.1

0.15

x

u

t = 0

t = 0.3

t = 0.7

Snapshots of g at t = 0.7.
f

x

v

−3 −2 −1 0 1 2 3

−5

0

5

g

x

ξ

−3 −2 −1 0 1 2 3

−5

0

5

For t large or ✏ small, f✏(t) is singular and the direct scheme fails.
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Asymptotic-preserving test

Snapshots of (⇢✏, u✏) at t = 1 for di↵erent ✏. When ✏ becomes small, the
profile approaches the limiting system.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

x

ρ

 

 ε = 1e−0
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limiting system
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Questions?

f

h

✏ f✏

f

h

f

h ! 0

✏ ! 0 ✏ ! 0

h ! 0

g

h

✏
g✏

g

h

g

h ! 0

✏ ! 0 ✏ ! 0

h ! 0

T✏

T �1

✏

Thanks for your attention!
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