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Swarming

Three-zone models for swarms: [Reynolds ’87]

Long range: Attraction

Short range: Repulsion

Middle range: Alignment

attraction

alignment

repulsion
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Agent-based models on swarming

Agent-based interaction dynamics (based on Newton’s second law)

ẋ

i

= v

i

, mv̇

i

= F

i

, i = 1, · · · ,N.

The interaction force F

i

depends on {x
j

}N
j=1

and {v
j

}N
j=1

.

Attractive/Repulsive force: F
i

(t) = � 1

N

X

j 6=i

rK (x
j

(t)� x

i

(t)).

Alignment force: F
i

=
1

N

NX

j=1

�(|x
j

� x

i

|)(v
j

� v

i

).

[Cucker-Smale ’07, Motsch-Tadmor ’11, Vicsek ’95, ...]

Flocking: |x
i

(t)� x

j

(t)|  D, v

i

(t)
t!1�! v1.

Unconditional flocking if

Z 1

1

�(r)dr = 1. [Ha-Liu ’09]

Changhui Tan (Rice University) Kinetic swarming models Young Researchers Workshop 3 / 22



Kinetic swarming models

Mean-field limit: Vlasov-type kinetic equations

@
t

f + v ·r
x

f +
1

m

r
v

· (F (f )f ) = 0,

where f = f (t, x , v) is a probability measure in (x , v) space.

Nonlocal interaction forces:

F

CS(f )(t, x , v) =

ZZ
�(|x � y |)(v⇤ � v)f (t, y , v⇤)dv⇤dy

F

AR(f )(t, x , v) =

ZZ
�r

x

K (x � y)f (t, y , v⇤)dv⇤dy .
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Kinetic flocking models

@
t

f + v ·r
x

f +r
v

·
⇣
F

CS(f )f
⌘
= 0,

F

CS(f )(t, x , v) =

ZZ
�(|x � y |)(v⇤ � v)f (t, y , v⇤)dv⇤dy .

Derivation, global wellposedness and flocking [Ha-Tadmor ’08]

Unconditional flocking: [Carrillo-Fornasier-Rosado-Toscani ’10]

S(t) := sup
(x,v),(y ,v⇤

)2suppf (t)

|x � y |  D < 1,

V (t) := sup
(x,v),(y ,v⇤

)2suppf (t)

|v � v

⇤| t!1�! 0.

Motsch-Tadmor alignment force [T. ’17]

Global wellposedness when � is singular [Mucha-Peszek ’17]
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Numerical treatments on concentration of velocity

Flocking asymptotics: lim
t!1

f (t, x , v) = ⇢1(x)�
v=v̄

.

Di�culty: solution becomes more and more singular as t ! 1.

Numerical implementation:

1 Discontinuous Galerkin method. [T. ’17]

E�cient, stable, suitable for non-flocking asymptotics as well.

2 Velocity scaling method [Rey-T. ’16]

f (t, x , v) = !(t, x)ng(t, x , ⇠) with ⇠ = !(v � u).

u is the macroscopic velocity: u(t, x) =
R
vf (t,x,v)dvR
f (t,x,v)dv

.

! is the scaling factor.
g is the rescaled profile.

Main idea: choose ! wisely so that g is not singular.
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Vlasov equation with attractive-repulsive potentials

@
t

f + v ·r
x

f +r
v

·
⇣
F

AR(f )f
⌘
= 0,

F

AR(f )(t, x , v) =

ZZ
�r

x

K(x � y)f (t, y , v⇤)dv⇤dy .

When K is the Newtonian potential, the system becomes
Vlasov-Poission equations in plasma physics.
Landau damping [Mouhot-Villani ’11, Bedrossian-Masmoudi ’15]

For less singular potential, global wellposedness theory is standard.
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Hydrodynamic limits

@
t

f + v ·r
x

f +r
v

· (F (f )f ) = 0

Integrate f and vf in v , we obtain the macroscopic system.

@
t

⇢+r · (⇢u) = 0,

@
t

(⇢u) +r · (⇢u ⌦ u) +rP = ⇢F .

where

⇢ =

Z
f dv , ⇢u =

Z
vf dv , P =

Z
(v � u)⌦ (v � u)f dv .
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Euler-Alignment system

@
t

⇢+r · (⇢u) = 0,

@
t

(⇢u) +r · (⇢u ⌦ u) +rP =

Z
�(|x � y |)(u(y)� u(x))⇢(x)⇢(y)dy .

Formal derivation [Ha-Tadmor ’08]

Rigorous derivation by imposing a closure on the pressure

P =

Z
(v � u)⌦ (v � u)f dv

1 Isothermal ansatz: f (x , v) = ⇢(x) 1

(2⇡)n/2
e

� |v�u(x)|2
2 .

@
t

f + v ·r
x

f +r
v

· (F (f )f ) = 1
✏

⇥
r

v

· ((v � u)f ) +�
v

f

⇤
.

2 Mono-kinetic ansatz: f (x , v) = ⇢(x)�
v=u(x)

.
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e
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P = ⇢I. [Karper-Mellet-Trivisa ’15]

2 Mono-kinetic ansatz: f (x , v) = ⇢(x)�
v=u(x)

.

@
t

f + v ·r
x

f +r
v

· (F (f )f ) = 1
✏

⇥
r

v

· ((v � u)f )
⇤
.
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Euler-Alignment system

@
t

⇢+r · (⇢u) = 0,

@
t

(⇢u) +r · (⇢u ⌦ u) +rP =

Z
�(|x � y |)(u(y)� u(x))⇢(x)⇢(y)dy .

Formal derivation [Ha-Tadmor ’08]

Rigorous derivation by imposing a closure on the pressure

P =

Z
(v � u)⌦ (v � u)f dv

1 Isothermal ansatz: f (x , v) = ⇢(x) 1

(2⇡)n/2
e

� |v�u(x)|2
2 .

P = ⇢I. [Karper-Mellet-Trivisa ’15]

2 Mono-kinetic ansatz: f (x , v) = ⇢(x)�
v=u(x)

.

P = 0. (Pressureless) [Figalli-Kang ’17]
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Pressureless Euler-Alignment system

@
t

⇢+r · (⇢u) = 0,

@
t

u + u ·ru =

Z
�(|x � y |)(u(y)� u(x))⇢(y)dy .

If � ⌘ 0, the system is known as pressureless Euler equations.
Finite time formation of singular shocks.

Alignment operator intends to regularize the system.

Question: Global regularity or finite time blowup?
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#1 Nonlocal mean �(r) = (1 + r)�↵,↵ < 1.

@
t

⇢+r · (⇢u) = 0,

@
t

u + u ·ru =

Z
�(|x � y |)(u(y)� u(x))⇢(y)dy .

Critical threshold phenomenon: regularity depends on initial data.

1D: sharp critical threshold [Tadmor-T. ’14, Carrillo-Choi-Tadmor-T. ’16]

If @
x

u

0

+ � ⇤ ⇢
0

� 0 for all x 2 R, then the system is globally regular.

If there exists an x 2 R such that @
x

u

0

(x) + � ⇤ ⇢
0

(x) < 0, then the
system forms a singular shock in finite time.

Extension to 2D and Motsch-Tadmor alignment operator
[Tadmor-T. ’14, He-Tadmor ’17]

Unconditional flocking when
R1
1

�(r)dr = 1. [Tadmor-T. ’14]

Changhui Tan (Rice University) Kinetic swarming models Young Researchers Workshop 11 / 22



#2 Fractional dissipation �(r) = c↵r
�(n+↵),↵ > 0.

Burgers equation with density-dependent fractional dissipation

@
t

⇢+r · (⇢u) = 0,

@
t

u + u ·ru = c↵

Z
u(y)� u(x)

|x � y |n+↵
⇢(y)dy .

Singular influence: enforcing strong alignment nearby.

Relationship to Burgers equation with fractional dissipation

@
t

u + u ·ru = �(��)↵/2u = c↵

Z
u(y)� u(x)

|x � y |n+↵
dy .
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1D fractional Burgers equation

@
t

u + u@
x

u = �(��)↵/2u.

↵

↵ = 0 Inviscid Burgers equation
Shock occurs in finite time
for generic initial data

↵ = 2 Viscous Burgers equation

↵ > 1 Subcritical regime Global strong solution exists
for all smooth initial data

↵ < 1 Supercritical regime Shock occurs in finite time
for some smooth initial data

↵ = 1 Critical regime

c.f. [Kiselev-Nazarov-Shterenberg ’08]
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1D fractional Burgers equation

@
t

u + u@
x

u = �(��)↵/2u.

↵

↵ = 0 Inviscid Burgers equation
Shock occurs in finite time
for generic initial data

↵ = 2 Viscous Burgers equation

↵ > 1 Subcritical regime Global strong solution exists
for all smooth initial data

↵ < 1 Supercritical regime Shock occurs in finite time
for some smooth initial data

↵ = 1 Critical regime

2D critical quasi-geostrophic equation
[Kiselev-Nazarov-Volberg ’07, Ca↵arelli-Vasseur ’10,
Kiselev-Nazarov ’10, Constantin-Vicol ’12]

c.f. [Kiselev-Nazarov-Shterenberg ’08]
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The comparison

↵ 2 [1, 2] Global wellposedness

↵ = 0 Finite time blow up

↵ 2 (0, 1) Finite time blow up

↵ = 0 Finite time blow up

↵ 2 [1, 2] Global wellposedness

[Shvydkoy-Tadmor ’17]

↵ 2 (0, 1) Global wellposedness

[Do-Kiselev-Ryzhik-T. ’17]

@
t

⇢+ @
x

(⇢u) = 0,

@
t

u + u@
x

u = c↵

Z

R

u(y)� u(x)

|x � y |1+↵
dy .

@
t

⇢+ @
x

(⇢u) = 0, ⇢ > 0

@
t

u + u@
x

u = c↵

Z

R

u(y)� u(x)

|x � y |1+↵
⇢(y)dy .

Blow up: singular shock @
x

u(x , t) ! �1, ⇢(x , t) ! +1.

The growth of density enhances dissipation dynamically.

Changhui Tan (Rice University) Kinetic swarming models Young Researchers Workshop 14 / 22



Extensions

@
t

⇢+r · (⇢u) = 0,

@
t

u + u ·ru =

Z
�(|x � y |)(u(y)� u(x))⇢(y)dy .

General singular kernels:

Global regularity if
R
1

0

�(r)dr = 1. [Kiselev-T. ’17]

Existence of vacuum (⇢
0

� 0, but ⇢
0

6> 0):

Solution loses C↵ regularity in finite time. [T. ’17]
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Euler-Poisson-Alignment system

@
t

⇢+r · (⇢u) = 0,

@
t

u + u ·ru = kr��1⇢+

Z
�(|x � y |)(u(y)� u(x))⇢(y)dy .

k < 0 attractive k > 0 repulsive

� = 0 Euler-Poisson finite time blowup critical threshold

[Engelberg-Liu-Tadmor ’01, · · · ]

� bounded Lipshitz finite time blowup critical threshold

[Carrillo-Choi-Tadmor-T. ’16]

� singular global regularity global regularity

[Kiselev-T. ’17]
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Zero inertia limit

Euler-Alignment system is the hydrodynamic limit of

@
t

f + v ·r
x

f +r
v

· (F (f )f ) = 1

✏

⇥
r

v

· ((v � u)f )
⇤
.

Zero inertia limit: total mass m = ✏ ! 0. No extra terms involved.

@
t

f✏ + v ·r
x

f✏ +
1

✏
r

v

· (F (f✏)f✏) = 0,

Two systems that we concern:

1 [ARR] Attraction-Repulsion-Relaxation: F = F

AR � v .

2 [ARA] Attraction-Repulsion-Alignment(3 zones): F = F

AR + F

CS .

F

CS(f )(t, x , v) =

ZZ
�(|x � y |)(v⇤ � v)f (t, y , v⇤)dv⇤dy

F

AR(f )(t, x , v) =

ZZ
�r

x

K(x � y)f (t, y , v⇤)dv⇤dy .
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Formal derivation

A formal derivation of the ✏ ! 0 limit (f✏ ! f ):

r
v

· (F (f )f ) = 0

'(v) = 1: @
t

⇢+r
x

· (⇢u) = 0.

'(v) = v : [ARR] u(x) = �(r
x

K ⇤ ⇢)(x),
[ARA]

R
�(|x � y |)(u(x)� u(y))⇢(y)dy = �(r

x

K ⇤ ⇢)(x).

'(v) = 1

2

|v � u|2: [ARR]
R
|v � u|2f (x , v)dv = 0,

[ARA] (� ⇤ ⇢)(x)
R
|v � u|2f (x , v)dv = 0.

) f (t, x , v) = ⇢(t, x) �
v=u(t,x).
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Formal derivation
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v
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x
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x
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Formal derivation

A formal derivation of the ✏ ! 0 limit (f✏ ! f ):
Z

r
v

'(v) · F (f )f dv = 0.

'(v) = 1: @
t

⇢+r
x

· (⇢u) = 0.

'(v) = v : [ARR] u(x) = �(r
x

K ⇤ ⇢)(x),
[ARA]

R
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x
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2

|v � u|2: [ARR]
R
|v � u|2f (x , v)dv = 0,

[ARA] (� ⇤ ⇢)(x)
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Limiting system

f (t, x , v) = ⇢(t, x) �
v=u(t,x).

For [ARR], the limiting system is the aggregation equation

@
t

⇢+r
x

· ((�r
x

K ⇤ ⇢)⇢) = 0.

Wellposedness: [Laurent ’07, Bertozzi-Carrillo-Laurent ’09, ...]

Rigorous passage to the limit: [Jabin ’99, Fetecau-Sun ’15]

For [ARA], the limiting system has an implicitly defined velocity u.

@
t

⇢+r
x

· (⇢u) = 0,
Z

�(|x � y |)(u(x)� u(y))⇢(y)dy = �(r
x

K ⇤ ⇢)(x).

- � is bounded Lipschitz [Fetecau-Sun-CT ’16]

Wellposedness under additional momentum conservation assumption
Z

⇢(t, x)u(t, x)dx =

Z
⇢
0

(x)u
0

(x)dx .

Rigorous passage to the limit

f✏
⇤
* f , in P(Rn ⇥ Rn).

- � is singular [Poyato-Soler ’17] (See David’s talk)
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Numerical treatment: asymptotic-preserving schemes

Asymptotic-preserving schemes [Jin ’99]:

f h✏ f✏

f h f

h ! 0

✏ ! 0 ✏ ! 0

h ! 0

Given f✏ ! f , design a discretization f

h

✏ for f✏ that converges to the
discretization f

h for f .

Asymptotic-preserving property: h does not depend on ✏.

Extremely powerful in solving kinetic systems with hydrodynamic
limits.
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When the limit is singular

f h✏ f✏

f h f

h ! 0

✏ ! 0 ✏ ! 0

h ! 0

gh

✏
g✏

gh g

h ! 0

✏ ! 0 ✏ ! 0

h ! 0

T✏

T �1

✏

In our case, f is singular: f (t, x , v) = ⇢(t, x)�
v=u(t,x).

The discretization f

h can not be accurate. So f

h

✏ is also not accurate
when ✏ is small.

Idea: Construct a family of invertible maps T✏, so that g✏ = T✏f✏
converges to a non-singular profile g .

Main Di�culty: Find T✏ that correctly captures the singularity.

Construction using velocity scaling method [Chertock-T.-Yan ’17]
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Summary

Agent-based models
Microscopic scale

ẋ

i

= v

i

mv̇

i

= F

i

Kinetic models
Mesoscopic scale

@
t

f + v · r
x

f + 1

m

r
v

· [F (f )f ] = 0

N ! 1

Fluid models
Macroscopic scale

@
t

⇢ + r · (⇢u) = 0
@
t

(⇢u)+r·(⇢u⌦u)+rP = ⇢F

Hydrodynamics

ẋ

i

= v

i

F

i

({x
j

}, {v
j

}) = 0
m ! 0

@
t

⇢ + r · (⇢u) = 0
”F (x , u(x)) = 0”

N ! 1
m ! 0

Thanks for your attention!
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