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Swarming

Three-zone models for swarms: [Reynolds '87] attraction
X alignment
@ Long range: Attraction
@ Short range: Repulsion

o Middle range: Alignment
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Agent-based models on swarming

@ Agent-based interaction dynamics (based on Newton's second law)
X,'ZV,', m\'/,-:F,-, iZl,---,N.
The interaction force F; depends on {XJ}JN:1 and {\/J}JN:1
. : 1
e Attractive/Repulsive force: Fi(t) = N Z VK(xi(t) — xi(t)).
J#i
L
e Alignment force: F; = N Z¢(|XJ —xi[)(vj — vj).
j=1
[Cucker-Smale '07, Motsch-Tadmor '11, Vicsek '95, ...]
Flocking: [xi(t) — x;(t)] < D, vi(t) =5 veo.

Unconditional flocking if/ ¢(r)dr = oco. [Ha-Liu '09]
1 B RICE
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Kinetic swarming models

@ Mean-field limit: Vlasov-type kinetic equations

1
Of + v - Vif + Evv (F(Hf)=0,

where f = f(t,x,v) is a probability measure in (x, v) space.
@ Nonlocal interaction forces:
FES(ex ) = [ [ 6lx = ). = (e, v )y

FAR(F)(t, x, v) / —VK(x — y)f(t,y, v.)dv.dy.

B RICE
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Kinetic flocking models

Bef +v - Vif +V, - (FCS(f)f) —0,

FES(F)(t,x,v) = / / B(1x — y) (Ve — V)F(t,y. va)dvady.

@ Derivation, global wellposedness and flocking [Ha-Tadmor '08]
@ Unconditional flocking: [Carrillo-Fornasier-Rosado-Toscani '10]
S(t) = sup Ix —y| <D < o0,
(x,v),(y,v*)Esuppf(t)
V(t) = sup lv— v =X 0.
(x,v),(y,v*)€suppf(t)
@ Motsch-Tadmor alignment force [T. '17]
o Global wellposedness when ¢ is singular [Mucha-Peszek '17] %YRICE
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Numerical treatments on concentration of velocity

Flocking asymptotics: lim f(t,x, V) = poo(Xx)dy—yp.
t—o00
Difficulty: solution becomes more and more singular as t — oc.

Numerical implementation:
@ Discontinuous Galerkin method. [T. '17]

Efficient, stable, suitable for non-flocking asymptotics as well.

@ Velocity scaling method [Rey-T. '16]
f(t,x,v) =w(t,x)"g(t,x,&) with £ =w(v —u).

[ vf(t,x,v)dv

u is the macroscopic velocity: u(t,x) Tt v)dv °

w is the scaling factor.
g is the rescaled profile.

Main idea: choose w wisely so that g is not singular.

B RICE
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Vlasov equation with attractive-repulsive potentials

Oef +v - Vyf +V, - (FAR(f)f) —0,

FAR (A)(t, x,v) / —V«<K(x — y)f(t,y, vi)dv.dy.

@ When K is the Newtonian potential, the system becomes
Vlasov-Poission equations in plasma physics.
Landau damping [Mouhot-Villani '11, Bedrossian-Masmoudi '15]

@ For less singular potential, global wellposedness theory is standard.

B RICE
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Hydrodynamic limits

@ Integrate f and vf in v, we obtain the macroscopic system.

8tp+v (pU) = 07
Ot(pu) + V- (pu® u) + VP = pF.

where

p:/fdv, pu:/vfdv, P:/(vfu)@)(vfu)fdv.

B RICE
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Euler-Alignment system

dep+ V- (pu) =0,
0pu) + V- (pu ) + VP = [ ollx = y1)(u(y) ~ ulx))olx)oly)ab.

o Formal derivation [Ha-Tadmor '08]

@ Rigorous derivation by imposing a closure on the pressure

P:/(v—u)@(v—u)fdv

v—u(x 2
@ Isothermal ansatz: f(x, v) :p(X)We_%
Ocf +v-Vuf + V. - (F(F)f) = %[VV (v = u)f) + Af].

B RICE
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Euler-Alignment system

Op+V - (pu) =0,
0pu) + V- (pu ) + VP = [ o(x — y1)(u(y) — ubx))o(x)oly)ab.

@ Formal derivation [Ha-Tadmor '08]

@ Rigorous derivation by imposing a closure on the pressure

P:/(v—u)@(v—u)fdv

lv—u(|®
@ Isothermal ansatz: f(x,v) = p(x)We* 2

P = plL [Karper-Mellet-Trivisa '15]
@ Mono-kinetic ansatz: f(x,v) = p(x)d,—u(x)-

Ouf v Vaf £, (F(H) = - [V~ (v~ 0)A)].  BIRICE
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Euler-Alignment system

Op+V - (pu) =0,
0pu) + V- (pu ) + VP = [ o(lx ~ y)(uy) ~ ulx))olx)oly)ab.

@ Formal derivation [Ha-Tadmor '08]

@ Rigorous derivation by imposing a closure on the pressure

P:/(v—u)@(v—u)fdv

V—u(x 2
@ Isothermal ansatz: f(x,v) = p(x)We‘M.
P = pl [Karper-Mellet-Trivisa '15]
@ Mono-kinetic ansatz: f(x,v) = p(x)dy—u(x)-
(%, v) = p(x)du=u(x) FRICE

P =10. (Pressureless) [Figalli-Kang '17]

Young Researchers Workshop 9 /22

Changhui Tan (Rice University) Kinetic swarming models



Pressureless Euler-Alignment system

O:tp+ V- (pu) =0,
Do+ u Vi = / 6(1x — yI)(uly) — u(x))p(y)dy-

o If ¢ =0, the system is known as pressureless Euler equations.
Finite time formation of singular shocks.

@ Alignment operator intends to regularize the system.

Question: Global regularity or finite time blowup?

B RICE
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#1 Nonlocal mean o(r)=>04+r)%a<l.

Oep+ V- (pu) =0,
Do+ 1 Vi = / 6(1x — yI)(uly) — u(x))p(y)dy-

@ Critical threshold phenomenon: regularity depends on initial data.

@ 1D: sharp critical threshold [Tadmor-T. '14, Carrillo-Choi-Tadmor-T. '16]
o If Ovug + @ * po > 0 for all x € R, then the system is globally regular.

o If there exists an x € R such that Oxup(x) + ¢ * po(x) < 0, then the
system forms a singular shock in finite time.

@ Extension to 2D and Motsch-Tadmor alignment operator
[Tadmor-T. '14, He-Tadmor '17]

@ Unconditional flocking when floo o(r)dr = co. [Tadmor-T. '14] @RICE
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#2 Fractional dissipation

Burgers equation with density-dependent fractional dissipation

Op+V - (pu) =0,
uy) — u(x)

Ou+u-Vu=c, X — y[re

p(y)dy.

@ Singular influence: enforcing strong alignment nearby.

@ Relationship to Burgers equation with fractional dissipation

- u(x

Oeutu-Vu=—(—0)*u= CY/ |x — y|n+a

B RICE
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1D fractional Burgers equation

Ot + udu = —(—A)?u,

Shock occurs in finite time

® o =0 Inviscid Burgers equation .
& g for generic initial data

Shock occurs in finite time

o <1 Supercritical regime .
P 3 for some smooth initial data

® a =1 Critical regime

Global strong solution exists

« > 1 Subcritical regime L
& for all smooth initial data

® o =2 Viscous Burgers equation

c.f. [Kiselev-Nazarov-Shterenberg '08] %YRICE
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1D fractional Burgers equation

Ot + udu = —(—A)?u,

Shock occurs in finite time

® o =0 Inviscid Burgers equation .
& g for generic initial data

Shock occurs in finite time

o <1 Supercritical regime .
P 3 for some smooth initial data

® a =1 Critical regime ]

| 2D critical quasi-geostrophic equation
a>1 Subcri [Kiselev-Nazarov-Volberg '07, Caffarelli-Vasseur '10,
Kiselev-Nazarov '10, Constantin-Vicol '12]

® o =2 Viscous Burgers equation |

c.f. [Kiselev-Nazarov-Shterenberg '08] %YRICE
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The comparison

Otp + Ox(pu) = 0, Otp + Ox(pu) = 0, p>0
Oru+ udgu = ca/ Md . Otu + udxu = co Mp(y)dy.
R |x —y[tte R |x =yt
® av=0 Finite time blowup @ a=0 Finite time blow up

2 E (@) [Hite dne b o a € (0,1) Global wellposedness
’ [Do-Kiselev-Ryzhik-T. '17]
o o

a € [1,2] Global wellposedness

a € [1,2] Global wellposedness
[Shvydkoy-Tadmor '17]

@ Blow up: singular shock dyu(x,t) — —oo, p(x,t) — +o0.

@ The growth of density enhances dissipation dynamically. Y RICE
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Extensions

Op+ V- (pu) =0,
Byutu- Vi = / 6(1x — y)(uly) — u(x))ply)dy.

@ General singular kernels:
Global regularity if fol o(r)dr = co. [Kiselev-T. '17]

e Existence of vacuum (pg > 0, but pg # 0):
Solution loses C* regularity in finite time. [T. '17]

B RICE
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Euler-Poisson-Alignment system

dep+V - (pu) =0,

Bout u- V= kYAt / o(1x — y)(uly) — u(x))p(y)dy.

k < 0 attractive k > 0 repulsive

¢ = 0 Euler-Poisson finite time blowup critical threshold
[Engelberg-Liu-Tadmor '01, - - -]

¢ bounded Lipshitz  finite time blowup critical threshold
[Carrillo-Choi-Tadmor-T. '16]

¢ singular global regularity  global regularity

[Kiselev-T. '17] BYRICE
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Zero inertia limit

o Euler-Alignment system is the hydrodynamic limit of
1
Of +v-Vxf+V, (F(f)f) = f[VV ((v— u)f)].

€

@ Zero inertia limit: total mass m = ¢ — 0. No extra terms involved.

1
Oife +v - Vife + ;Vv -(F(f)f.) =0,

@ Two systems that we concern:

@ [ARR] Attraction-Repulsion-Relaxation: F = FAR —v.
@ [ARA] Attraction-Repulsion-Alignment(3 zones): F = FAR 4+ FC.

FES(F)(tx,v) = / / B(1x — Y1) (Ve — V)F(t,y. va)dvadly

FAR(F)(t, x, v) :// —V.K(x — y)f(t,y, v..)dv.dy. ZRICE
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Formal derivation

o A formal derivation of the ¢ — 0 limit (f. — f):

V, - (F(f)f) =0

B RICE
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Formal derivation

o A formal derivation of the ¢ — 0 limit (f. — f):

/SD(V)VV -(F(f)f)dv =0.

B RICE
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Formal derivation

o A formal derivation of the ¢ — 0 limit (f. — f):
/V‘,w f)f dv =0.

o(v) =1 Op+ V- (pu)=0.
(V) =vi [ARR] u(x) = (K * p)(x),
[ARA] [ ¢(|x — y[)(u(x) — u(y))p(y)dy = =(V<K * p)(x).
o(v)=2%lv—ulx [ARR] [|v— ul?f(x,v)dv=0,
[ARA] (¢ * p)(x) [ |v — ul*f(x,v)dv = 0.
= f(t,x,v) = p(t,x) 5v:u(t,x)-

B RICE
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f(t,x,v) = p(t, x) dy—u(e,x)-
e For [ARR], the limiting system is the aggregation equation

Orp + Vi - ((=VxK % p)p) = 0.

Wellposedness: [Laurent '07, Bertozzi-Carrillo-Laurent '09, ...]
Rigorous passage to the limit: [Jabin '99, Fetecau-Sun '15]

B RICE
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f(t,x,v) = p(t, x) dy—u(e,x)-
e For [ARR], the limiting system is the aggregation equation

Orp + Vi - ((=VxK % p)p) = 0.
e For [ARA], the limiting system has an implicitly defined velocity u.
Oep+ Vi - (pu) =0,

/ o(1x — y1)(u(x) — u(y))p(y)dy = —(VaK * p)(x).

- ¢ is bounded Lipschitz [Fetecau-Sun-CT '16]
o Wellposedness under additional momentum conservation assumption

/p(t,x)u(t,x)dx:/po(x)uo(x)dx.
e Rigorous passage to the limit

f. 5 f, in P(R"xR").
B RICE
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f(t,x,v) = p(t, x) dy—u(e,x)-
e For [ARR], the limiting system is the aggregation equation
9ep + Vi - (VK x p)p) = 0.
e For [ARA], the limiting system has an implicitly defined velocity u.
Otp + Vi - (pu) =0,
[ ox = y)(w) = wlyply)dy = (VoK = ).

- ¢ is bounded Lipschitz [Fetecau-Sun-CT '16]

o Wellposedness under additional momentum conservation assumption
e Rigorous passage to the limit

- ¢ is singular [Poyato-Soler '17]  (See David's talk) % RICE
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Numerical treatment: asymptotic-preserving schemes

Asymptotic-preserving schemes [Jin '99]:

h
feh —0 fe
|e—>0 |e—>0
h—0
=

o Given f. — f, design a discretization £ for f, that converges to the
discretization " for f.

@ Asymptotic-preserving property: h does not depend on e.

@ Extremely powerful in solving kinetic systems with hydrodynamic
limits. B RICE
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When the limit is singular

h—0 h—0
ff ———— 1, g’ &
Te
e—0 e—0 e—0 e—0
T—l
h—0 € h—0
fh ~ f g’ —° . g

o In our case, f is singular: f(t,x,v) = p(t,x)d,—y(t.x)-
The discretization /' can not be accurate. So £/ is also not accurate
when € is small.

o ldea: Construct a family of invertible maps 7¢, so that g. = 7.f;
converges to a non-singular profile g.

e Main Difficulty: Find 7. that correctly captures the singularity.

@ Construction using velocity scaling method [Chertock-T.-Yan '17] %RICE
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Agent-based models Xi = Vi m—0 Xi = Vi
Microscopic scale mv; = F Fi({x},{v}) =0
N — oo

o m—0
Kinetic models O +v - Vif + 1V, - [F(F)f] =0 }7 N = oo

Mesoscopic scale

Hydrodynamics

Fluid models Op+ V- (pu) =0 Op+ V- (pu) =0
Macroscopic scale Be(pu)+V - (pu®u)+ VP = pF "F(x,u(x)) = 0"
Thanks for your attention!
B RICE
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