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The so-called Hughes model

It is a macroscopic model for pedestrian flow with, as only
unknown the density of pedestrian n(t, x), which reads

∂tn(t, x) + div (a(t, x) n(t, x) f 2(n(t, x))) = 0,

where f (.)→ 0 as n approaches a critical value nc , for instance

f (n) = (nc − n)k+.

On the other hand, a = −∇φ where φ solves an eikonal equation

f (n(t, x)) |∇φ| = 1.
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The so-called Hughes model

It is a macroscopic model for pedestrian flow with, as only
unknown the density of pedestrian n(t, x), which reads

∂tn(t, x) + div (a(t, x) n(t, x) f 2(n(t, x)))−∆n = 0,

where f (.)→ 0 as n approaches a critical value nc , for instance

f (n) = (nc − n)k+.

On the other hand, a = −∇φ where φ solves an eikonal equation

f (n(t, x)) |∇φ| = 1.

Diffusion may be added in the transport.
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The so-called Hughes model

It is a macroscopic model for pedestrian flow with, as only
unknown the density of pedestrian n(t, x), which reads

∂tn(t, x) + div (a(t, x) n(t, x) f 2(n(t, x))) = 0,

where f (.)→ 0 as n approaches a critical value nc , for instance

f (n) = (nc − n)k+.

On the other hand, a = −∇φ where φ solves an eikonal equation

−∆φ+f (n(t, x)) |∇φ| = 1.

Diffusion may be added in the transport, in the eikonal Eq.
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The so-called Hughes model

It is a macroscopic model for pedestrian flow with, as only
unknown the density of pedestrian n(t, x), which reads

∂tn(t, x) + div (a(t, x) n(t, x) f 2(n(t, x)))−∆n = 0,

where f (.)→ 0 as n approaches a critical value nc , for instance

f (n) = (nc − n)k+.

On the other hand, a = −∇φ where φ solves an eikonal equation

−∆φ+f (n(t, x)) |∇φ| = 1.

Diffusion may be added in the transport, in the eikonal Eq., or in
both.
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Non linear continuity equations

The Classical, linear continuity equation reads

∂tn(t, x) + div (a(t, x) n(t, x)) = 0,

where the velocity field a is either given or is related to n through
another equation.
Recently new models were introduced in various settings (traffic
flow for cars or pedestrian, movement of bacteria/cells...) taking
local non linear effects into account

∂tn(t, x) + div (a(t, x)F (n(t, x))) = 0, t ∈ R+, x ∈ Rd

The function F is given and typically decreases as the density
increases. F models complicated, localized interactions between
individuals leading to a local reduction of the velocity when the
density is too large.
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Non linear continuity equations

The Classical, linear continuity equation reads

∂tn(t, x) + div (a(t, x) n(t, x)) = 0,

Recently new models were introduced in various settings (traffic
flow for cars or pedestrian, movement of bacteria/cells...) taking
local non linear effects into account

∂tn(t, x) + div (a(t, x)F (n(t, x))) = 0, t ∈ R+, x ∈ Rd

As before the field a is given or related to n.
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The eikonal equation

The natural interpretation of the eikonal equation

f (n(t, x)) |∇φ| = 1, x ∈ Ω,

φ = φ̄, x ∈ ∂Ω,

is that the individual at position x solves an optimization problem
to find their optimal trajectory X (s, x) and an exit time T given
the density of all other individuals at a given time:

X (s = t, x) = x , X (s = T , x) ∈ ∂Ω,

while X minimizes∫ T

t

(
|∂sX (s, x)|2

2
+

1

2 f 2(n(t,X (s, x)))

)
ds + φ̄(X (T , x)).
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Many “false” assumptions in the model

It is easy to criticize the model

• Assumes that individuals have perfect information on the
density

• Assumes that individuals only consider the position of other
individuals and not the direction they are going

• ...

However the big advantage of the model is that it is a relatively
simple macroscopic system on n, φ, which still takes interesting
and complex behaviors into account. Any more accurate model
would likely be much more complicated.
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Existence theory?

The key difficulty to obtain existence is to pass to the limit in the
terms ∇φ n f (n) and |∇φ|2. This usually requires compactness of
both ∇φ and n(t, x).
The 1− d case is special with many additional estimates, see
Amadori, Di Francesco, Markowich, Pietschmann, Wolfram...
In the more realistic 2− d case, some viscosity seems needed,
leading to

∂tn(t, x)− div (∇φ n(t, x) f 2(n(t, x))) = 0.

−∆φ+ f (n(t, x)) |∇φ| = 1, x ∈ Ω.

See for instance Ben Belgacem-J., or Colombo-Garavello-Mercier.
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Existence theory?

The key difficulty to obtain existence is to pass to the limit in the
terms ∇φ n f (n) and |∇φ|2. This usually requires compactness of
both ∇φ and n(t, x).
The 1− d case is special with many additional estimates, see
Amadori, Di Francesco, Markowich, Pietschmann, Wolfram...
In the more realistic 2− d case, some viscosity seems needed,
leading to

∂tn(t, x)− div (∇φ n(t, x) f 2(n(t, x))) = ∆n.

f (n(t, x)) |∇φ| = 1, x ∈ Ω,

which we focus on here.
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The main result
Consider an initial data n(t, x) uniformly bounded in L1 ∩ L∞;
smooth boundary conditions φ̄, n̄. Assume that there exists nc > 0
s.t. f (n) = 0 if n ≥ nc and that for some k ≥ 1,

C−1 (nc − n)k ≤ f (n) ≤ C (nc − n).

Theorem
Under the previous assumptions, there exists n ≤ nc s.t.
∇n ∈ L2

t,x , (n − nc)−1 ∈ Lpt,x for all p <∞; there exists φ s.t.

∇φ ∈ Lpt,x ∩ L2
tH

2/5−0
x for any p <∞, solution to

∂tn(t, x)− div (∇φ n(t, x) f 2(n(t, x))) = ∆n.

f (n(t, x)) |∇φ| = 1, x ∈ Ω,

with boundary conditions n̄ and φ̄.

Note that the notion of solution to the eikonal Eq. is not clear as
the r.h.s. is not continuous.
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Estimates on n, Part I

Consider any non linear convex function χ(n) and calculate

d

dt

∫
χ(n(t, x)) dx =−

∫
χ′′(n) |∇n|2 +

∫
χ′′∇n · ∇φ n f 2(n)

+ boundary conditions.

Recall that |∇φ| = 1/f (n) so that

d

dt

∫
χ(n(t, x)) dx ≤C − 1

2

∫
χ′′(n) |∇n|2

+ 2

∫
n≤nc

χ′′(n) f 2(n) n2 dx .
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Estimates on n, conclusion

• First take χ = (n − nc)2+0
+ and note that χ′′(n) n2 = 0 if

n ≤ nc . Conclude that n ≤ nc .

• Take χ = n2 and observe that χ′′(n) f 2 n is now uniformly
bounded. Conclude that ∇n ∈ L2

t,x .

• Take χ = (nc − n)−p for which

χ′′(n) f 2(n) n2 ≤ Cp

(nc − n)p
,

since f (n) ≤ C (nc − n)+.
This proves that (nc − n)−1 ∈ Lp for all p > 1.

• Observing that ∂tn ∈ L2
tH
−1
x lets us obtain compactness on n.
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The problem

Now focus on

1

2
|∇φ(t, x)|2 = R(t, x), x ∈ Ω,

φ = φ̄, x ∈ ∂Ω,

for a given right hand side R(t, x) ≥ c > 0 with R ∈ Lpt,x for all
p <∞ and ∇xR ∈ Lqt,x for all q < 2.
Since R is not continuous, in x or in t, the classical theory of
viscosity solutions does not apply.
Even obtaining the equation pointwise, requires some compactness
of ∇φ in x and in t...
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Compactness in x by kinetic formulation

Follow an idea introduced in J.-Perthame and define

χ(t, x , v) = Iv ·∇⊥φ≤0, v ∈ S1.

Calculate, formally, using the equation

v · ∇xχ =v · ∇2φ · v⊥ δv=±∇φ/|∇φ|

=± ∇φ√
R(t, x)

· ∇2φ · v⊥ δv=±∇φ/|∇φ|

=−± ∇R√
R(t, x)

· ∇
⊥φ

|∇φ|
δv=±∇φ/|∇φ|.
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Compactness in x : Conclusion

Therefore one obtains the kinetic equation

v · ∇xχ = ∂vm,

where m is bounded in Lpt,x for any p < 2 (and even in fact in
M1) and χ ∈ L2

t,x H
s
v for any s < 1/2.

By velocity averaging, one may deduce that the average of χ∫
S1

v χ(t, x , v) dv = c ∇φ ∈ L2
t H

s
x , s < 2/5.

Hence using the regularizing properties of the eikonal equation, we
obtain explicit compactness in x .
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Compactness in t, the problem of uniqueness

As time is only a parameter, the compactness in time is equivalent
to the uniqueness problem: For two solutions φ1, φ2 to

1

2
|∇φi (x)|2 = Ri (x), x ∈ Ω,

φi = φ̄, x ∈ ∂Ω,

estimate φ1 − φ2 in terms of ‖R1 − R2‖Lp for some p <∞
provided that the Ri are also in W 1,q for all q < 2.
For that we cannot use viscosity solutions but have to go back to
the optimal control formulation:

φi (x) = inf
X ,X (s=t,x)=x

∫ T

t

(
|∂sX (s, x)|2

2
+ Ri (X (s, x))

)
ds

+ φ̄(X (T , x)).
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Compactness in time, the regularity of the trajectory

Following Figalli-Mandorino, it is possible to show that for
R(x) ∈W 1,q with q > 1

• For a.e. x , there exists an optimal trajectory X .

• For a.e. x , X ∈W 2,q(R+, Ω) and one has ∂2
sX = ∇R(t,X ).

• The exit time can be estimated T ≤ C (φ(t, x)− φ̄(X (T , x))).

• For a.e. x , the total length of the trajectory is finite and in
average of length T ≤ C (φ(t, x)− φ̄(X (T , x))).
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The stability argument

Now consider again our two solutions φ1 and φ2. Take a point x
which is “typical” for φ1 and introduce the optimal trajectory X1

for φ1 at x . Then

φ2(x)− φ1(x) ≤ C

∫ T

t
(R2(X1(s, x))− R1(X1(s, x))) ds.

By the previous argument, the trajectory X1 is rectifiable and
R ∈W s,r (R2) has an L1

loc trace if s > 1/r . Thus

φ2(x)− φ1(x) ≤ CX1 ‖R2 − R1‖H1/2+0(Ω)

≤ CX1 (‖R2‖W 1,2−0 + ‖R1‖W 1,2−0)1/2+0 ‖R2 − R1‖1/2−0
L2(Ω)

.
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Compactness in time, conclusion

By integrating over x , one finally obtains∫
Ω
|∇φ(t, x)−∇φ(t ′, x)| dx ≤ Cn ‖n(t, .)− n(t ′, .)‖1/2−0

L2(Ω)
,

where the constant Cn depends in particular on the H1 norm of n
and the Lp norm of (nc − n)−1 for p large enough.
From the compactness of n, one then deduces the compactness in
time of ∇φ.
Note finally that this theory also provides a proper notion of
solution to the eikonal equation with uniqueness.
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Thank you!
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