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Introduction The Lions-Feireis| theory A new method for compactness

Compressible Fluid dynamics

The compressible Navier-Stokes system reads

Op + div (up) =0,
Ot(pu)+div(pu®u) — pAu— (N4 p) Vdivu = — Vp(p)

where Du = (Vu+VuT)/2.
written here in the barotropic case, in a bounded domain Q C R¢
with for instance Dirichlet boundary conditions

U’aQ =0.
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Compressible Fluid dynamics

The compressible Navier-Stokes system reads

Otp +div(up) =0,
Ot(pu) +div(pu® u) —div(u(0) Du)+ V(AO)divu) = —Vp(p,0)
Ot(p E(p,0) +div(puE)+div(pu) =div(S u) + div(k(0) V).

where Du = (Vu+VuT)/2.
Variants of course exist. Some mostly fit within the same theory:
e With temperature for the Navier-Stokes-Fourier system
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or were inaccessible

e With density dependent viscosity (see nevertheless
Bresch-Desjardins, Mellet-Vasseur...)
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Compressible Fluid dynamics

The compressible Navier-Stokes system reads

Otp + div(up) =0,
Ot(pu) +div(pu® u) —div(A(x) Du) + V(A(x)divu) = — Vp(p)

where Du = (Vu+VuT)/2.

Variants of course exist. Some mostly fit within the same theory:
e With temperature for the Navier-Stokes-Fourier system

or were inaccessible

e With density dependent viscosity (see nevertheless
Bresch-Desjardins, Mellet-Vasseur...)

e With non homogeneous viscosity given by a matrix A, or non
local p(p).
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Compressible Fluid dynamics

The compressible Navier-Stokes system reads

Otp + div(up) =0,
Oe(pu) +div(pu®u) — Au= —Vp(p)

Variants of course exist. Some mostly fit within the same theory:
e With temperature for the Navier-Stokes-Fourier system

or were inaccessible

e With density dependent viscosity (see nevertheless
Bresch-Desjardins, Mellet-Vasseur...)

e With non homogeneous viscosity given by a matrix A, or non

local p(p).
e With various type of pressure laws.
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Compressible Fluid dynamics

The compressible Navier-Stokes system reads

Op + div (up) =0,
Ot(pu) +div(pu®u) — Au= —Vp(p)

Variants of course exist. Some mostly fit within the same theory:
For simplicity this talk deals only with the first system.
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Compressible Fluid dynamics

The compressible Navier-Stokes system reads

Op + div (up) =0,
Ot(pu) +div(pu®u) — Au= —Vp(p)

Goal: Reuvisit the classical compactness theory by obtaining
quantitative regularity estimates.
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Other similar models

The same theory applies to many other models, for instance

Otp +div(up) =0,
— Au=-Vp(p) +S.

In some applications to biology, u = V¢ with ¢ the concentration
of some chemical (or a sum of chemicals) used by the biological
agents to interact.

Therefore, in those cases, p(p) should include repulsive and
attractive interactions.



Introduction The Lions-Feireis| theory A new method for compactness

What should the pressure law be?
It is a very old problem in physics...
e Ideal gas (Clapeyron 1834):

p=pb.

Van der Waals law (1873):
(p+ap®)(1—bp)=cpb.

Polynomial barotropic flows:

p=p(p), with often p=p7.

Virial equation of state (H. Kamerlingh Onnes 1901):
p=p0 (1+B(O)p+ CO)p*+...).
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What should the pressure law be?

It is a very old problem in physics...

e Thermodynamically the stability of the equilibrium is directly
connected to the monotonicity of p.

e Monotone laws are also required for hyperbolicity.
e However, many physical models have p non monotone.

e It is not clear why a thermodynamical assumption should
control the stability of solutions over bounded times.

e The same type of questions may be asked about the stress
tensors. For instance in some geophysical flows, one needs to
take

Ot(pu) +div(pu @ u) — pAu— pz 0,,u = —Vp(p),

with p, # 0 (see for instance Temam-Ziane).
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Which notion of solutions?

e Strong/classical solutions are of course the most convenient.
They provide uniqueness and they preserve the most physical
properties such as conservation of energy...

e However strong solutions only exist for short times, even in
dimension 2 (vacuum problem), or for small initial
pertubations of an equilibrium in some cases.

e Weak solutions can be global in time and also allow to work
with non smooth initial data with only a bound on the energy.
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State of the art: A priori estimates

Let us describe the available theory as developed first by P.L. Lions
and extended by E. Feireisl. Start with the a priori estimates
Conservation of mass

/p(t, x) dx = const.

Energy estimate For P(p) s.t. P'p— P = p(p),

[ (Pt + 3ou2) axt [ [ 1902 = const

Note that if C~1p7 < p < C p7 then P(p) ~ p".
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State of the art: A priori estimates

Let us describe the available theory as developed first by P.L. Lions
and extended by E. Feireisl. Start with the a priori estimates
Conservation of mass

/p(t, x) dx = const.

Energy estimate For P(p) s.t. P'p— P = p(p),

[ (Pt + 3ou2) axi [ [ 1902 = comst

Note that if C~1p7 < p < C p” then P(p) ~ p".
Pressure estimates

t
2
//pap(p)dxdth, a<gw—1.
0
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Compactness of p

Take a sequence py, uk of (approximate) solutions. uy is compact
in x and the only difficulty is the Compactness of py.

e P.L. Lions: Show that w — lim py log px = A = p log p with

w — limpk = p.

Otpk log pk + div (uk pk log pk) = —div ug pk.
But
div ug = p(px) + A1 div (¢ (pruk) + div (pk ux @ ug)).
So
w — lim py divu, = B + p A~ div (9:(pu) + div (pu @ v)),

where B = w — limpy p(pk)-
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Compactness of p

Take a sequence pyg, ui of (approximate) solutions.
Hence

DA+ div(uA) = =B — p A 0:(pu) + div(pu @ u)),
recalling B = w — limpy p(px). While for B = pw — limp(px),
dtp log p +div(up logp) = =B — p A7 (:(pu) + div (p u ® u)).

Thus A < p log p and then A = p log p provided B > B.
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Compactness of p

Take a sequence py, uk of (approximate) solutions.
e Only gives compactness at the limit: No regularity estimates on

Pk-
e The critical step is

w —lim py p(pk) = pw —lim p(pk),

which requires p increasing.
e Things are even more difficult with non-anisotropic stress tensors
because

div i = Lp(px) + LA div (9e(prur) + div (px ux @ ug)),

with L a non local operator of order 0, thus losing the pointwise
relation between div ux and p(pk).
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Existence of weak solutions

The previous method yields

Theorem P.L. Lions
Assume p'(p) ~ p?~! with v > 9/5 and p monotone.
Then there exists a weak solution to compressible Navier-Stokes.

While with refined techniques

Theorem E. Feireis/
Assume p'(p) ~ p?~! with v > 3/2 and p monotone.
Then there exists a weak solution to compressible Navier-Stokes.
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The idea

Propagate some explicit regularity on p by computing

|p(t, Yl
dx dy,
/ IX—yI + h)

for some k > d.
However this corresponds to a Sobolev like regularity on p which
cannot work. So instead...
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The idea

Propagate some explicit regularity on p by computing

P y)l
W(t,x,y)dxdy,
[ )

for some k > d.
Where the weight W solves the same transport equation

W + u(t,x) - VW + u(t,y) - V, W = —D,

for a well chosen penalization D.
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The idea

Propagate some explicit regularity on p by computing

P y)l
W(t, x,y)dxdy,
[ i)

for some k > d.
Where the weight W solves the same transport equation

W + u(t,x) - VW + u(t,y) - V, W = —D,

for a well chosen penalization D.
Then explain that W cannot be too small, too often to bound

LORLOIN
/(|x—y|+h) Py

in terms of h.
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A new result

The main improvements are: No monotonicity assumption on p,
explicit regularity.

Theorem
Assume that for v > 9/5

= <p(p) < Cp, |P(p)I<Cpt

Then there exists a weak solution to compressible Navier-Stokes.
Moreover the solution satisfies for any k > d

—(k—d)
[ )=o)y < O
p(x), p(y)>n (Ix = y|—|—h) | log h|+

for some p > 0.
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The new result in the anisotropic case

Theorem
Assume p(p) ~ p” with v > 7 and that A is smooth with

JAG) — il < .,

for some universal constant C.. Then there exists a weak solution
to the compressible Navier-Stokes

Otp + div(up) =0,
Ot(pu) +div(pu® u) — div(A(x) Du) — AVdivu = —Vp(p),

where Du = (Vu+Vu')/2.
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Sketch of the proof-Weighted norms Part 1
Denote dp = p(t,x) — p(t,y) and observe that
Oe|p| + div(u(t, x) [0p]?) + div, (u(t, y) [6p]?)
= 2 (dvu(x) — divu(y)) 50 (o) + ().
Recall
OW + u(t,x) - VW +u(t,y) - V,W = —-D,

and calculate

d 16p|? 1 [divu(x) —divu(y)
Y s e

(Ix—yl+hmk " 2
(- ¥) 1o / 0pP?
op|c W — —  _D.
L/v—yux ﬂ+h%H" Y+ Ay

6p (p(x) + p(y)) W
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Sketch of the proof-Weighted norms Part 2

Use the momentum equation to bound

|div u(x) — divu(y)| = |p(p(x)) = p(p(y)) + OK]
< C(P" M x)+ 0" Hy)) 6p + OK.

Hence

B 1/ div u(x) — divu(y)

2 (Ix = y| + h)*

p (p(x) + p(y))

[6p]? . y
<c/ g 0+ ) W OK.

Observe that if p(p) is increasing then dp(p(p(x)) — p(p(y))) = 0
and the corresponding terms do not need to be controlled.
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Sketch of the proof-Weighted norms Part 3

Use the classical inequality
u(x) = u(y)| < C(M[Vul(x) + M|V ul(y)) [x = yl,

with M the maximal operator. This implies

(X ) 2w
l/v—yrx—n+hwﬂm”

1601
<€ [ G (MIVl) + MIVul() W
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Sketch of the proof-Weighted norms conclusion

Summing up, one finds

d [9p]?
dt | (|x —y|+ h)k

961" 7(x) 4 sym —
g/(,x_yw(cww(mp (x) + sym.) W = D) <0,

if one takes

D = C(M|Vu|(x) + M[Vul(y) + p"(x) + p"(y)) W.
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Sketch of the proof-Weighted norms conclusion
Summing up, one finds

d [9p]?

dt ] (|x =yl + h)*
< [ Vi) + 5700 + 9m)w - D) <0,
if one takes
D = C(M|Vul|(x) + M|Vul(y) + p"(x) + p"(y)) W.
Instead we take W(x,y) = w(x) + w(y) with
D = C(MVul(x) + " (x)) w(x) + sym,

and things are much more complicated...
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Sketch of the proof-The compactness

Assume that one has

/(|x—’f/\p’+h)k (w(x) +w(y) < C+ ...,

with
Orw + u(x)-Vw = —=C (M|Vu|(x)+p7(x)) w(x), w(t=0)=1.

Now calculate

% p(x)[log w(x)[ dx = C /p(X)(M!VU!(X) +p(x))dx < C.
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Sketch of the proof-The compactness

Assume that one has

[ o ) W) < C

with

/p(x) |log w(x)|dx < C.
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Sketch of the proof-The compactness

Assume that one has

/(|x—’f/\p’+h)k (w(x) +w(y) < C+...,

with

/p(x) |log w(x)|dx < C.

That implies

[ c
(Ix —y| + h)k hk d\logh\
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Some of the additional difficulties

e All the estimates must be delocalized as one cannot control
M |V uk|(x) w(y) by M |Vug|(x)w(x). Instead one uses

e (x) — (y)] < c/

|z—x|<2|x—y|

e The penalization are more complicated as the current ones
would require p € L7, for instance

D = MNPt |divu| + M |Vu| + p7) w(x) + sym.
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Some of the additional difficulties-2

e Delocalization is achieved through square function or their
equivalent in Besov spaces. Thus one actually controls

p]
/(|X_y|+h0 (w(x) + w(y))

[90] dh
/hohkd/ =yl ho)r () ) 5

with the property that for a normalized convolution kernel K,

1
dh
/h 7 HK;,*U— Kh*u(. + hw)HLP § C||Ogh0’1/2 ||UHLP.
0
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Extension: Viscosity and numerical methods

e For numerical or construction purposes, it is interesting to

consider
Orp +div(pu) = e Ap.

e Some cases with temperature are identical, others are still
open for example the full virial.

e The result in the anisotropic case should certainly be
improved...
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