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Introduction The Lions-Feireisl theory A new method for compactness

Compressible Fluid dynamics

The compressible Navier-Stokes system reads

∂tρ+ div (u ρ) = 0,

∂t(ρ u) + div (ρ u ⊗ u)− µ∆u − (λ+ µ)∇div u = −∇p(ρ)

where D u = (∇u +∇uT )/2.
written here in the barotropic case, in a bounded domain Ω ⊂ Rd

with for instance Dirichlet boundary conditions

u|∂Ω = 0.
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Compressible Fluid dynamics

The compressible Navier-Stokes system reads

∂tρ+ div (u ρ) = 0,

∂t(ρ u) + div (ρ u ⊗ u)− div (µ(θ) D u) +∇(λ(θ) div u) = −∇p(ρ, θ)

∂t(ρE (ρ, θ) + div (ρ u E ) + div (p u) = div (S u) + div (κ(θ)∇θ).

where D u = (∇u +∇uT )/2.
Variants of course exist. Some mostly fit within the same theory:
• With temperature for the Navier-Stokes-Fourier system
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∂t(ρ u) + div (ρ u ⊗ u)− div (µ(ρ) D u) +∇(λ(ρ) div u) = −∇p(ρ)

where D u = (∇u +∇uT )/2.
Variants of course exist. Some mostly fit within the same theory:
• With temperature for the Navier-Stokes-Fourier system
or were inaccessible
• With density dependent viscosity (see nevertheless
Bresch-Desjardins, Mellet-Vasseur...)
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Compressible Fluid dynamics

The compressible Navier-Stokes system reads

∂tρ+ div (u ρ) = 0,

∂t(ρ u) + div (ρ u ⊗ u)− div (A(x) D u) +∇(A(x) div u) = −∇p(ρ)

where D u = (∇u +∇uT )/2.
Variants of course exist. Some mostly fit within the same theory:
• With temperature for the Navier-Stokes-Fourier system
or were inaccessible
• With density dependent viscosity (see nevertheless
Bresch-Desjardins, Mellet-Vasseur...)
• With non homogeneous viscosity given by a matrix A, or non
local p(ρ).
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Compressible Fluid dynamics

The compressible Navier-Stokes system reads

∂tρ+ div (u ρ) = 0,

∂t(ρ u) + div (ρ u ⊗ u)−∆u = −∇p(ρ)

Variants of course exist. Some mostly fit within the same theory:
• With temperature for the Navier-Stokes-Fourier system
or were inaccessible
• With density dependent viscosity (see nevertheless
Bresch-Desjardins, Mellet-Vasseur...)
• With non homogeneous viscosity given by a matrix A, or non
local p(ρ).
• With various type of pressure laws.
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Compressible Fluid dynamics

The compressible Navier-Stokes system reads

∂tρ+ div (u ρ) = 0,

∂t(ρ u) + div (ρ u ⊗ u)−∆u = −∇p(ρ)

Variants of course exist. Some mostly fit within the same theory:
For simplicity this talk deals only with the first system.
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Compressible Fluid dynamics

The compressible Navier-Stokes system reads

∂tρ+ div (u ρ) = 0,

∂t(ρ u) + div (ρ u ⊗ u)−∆u = −∇p(ρ)

Goal: Revisit the classical compactness theory by obtaining
quantitative regularity estimates.
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Other similar models

The same theory applies to many other models, for instance

∂tρ+ div (u ρ) = 0,

−∆u = −∇p(ρ) + S .

In some applications to biology, u = ∇c with c the concentration
of some chemical (or a sum of chemicals) used by the biological
agents to interact.
Therefore, in those cases, p(ρ) should include repulsive and
attractive interactions.
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What should the pressure law be?
It is a very old problem in physics...

• Ideal gas (Clapeyron 1834):

p = ρ θ.

• Van der Waals law (1873):

(p + a ρ2) (1− b ρ) = c ρ θ.

• Polynomial barotropic flows:

p = p(ρ), with often p = ργ .

• Virial equation of state (H. Kamerlingh Onnes 1901):

p = ρ θ
(
1 + B(θ) ρ+ C (θ) ρ2 + . . .

)
.
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What should the pressure law be?

It is a very old problem in physics...

• Thermodynamically the stability of the equilibrium is directly
connected to the monotonicity of p.

• Monotone laws are also required for hyperbolicity.

• However, many physical models have p non monotone.

• It is not clear why a thermodynamical assumption should
control the stability of solutions over bounded times.

• The same type of questions may be asked about the stress
tensors. For instance in some geophysical flows, one needs to
take

∂t(ρ u) + div (ρ u ⊗ u)− µ∆u − µz ∂zzu = −∇p(ρ),

with µz 6= 0 (see for instance Temam-Ziane).
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Which notion of solutions?

• Strong/classical solutions are of course the most convenient.
They provide uniqueness and they preserve the most physical
properties such as conservation of energy...

• However strong solutions only exist for short times, even in
dimension 2 (vacuum problem), or for small initial
pertubations of an equilibrium in some cases.

• Weak solutions can be global in time and also allow to work
with non smooth initial data with only a bound on the energy.
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State of the art: A priori estimates

Let us describe the available theory as developed first by P.L. Lions
and extended by E. Feireisl. Start with the a priori estimates
Conservation of mass ∫

ρ(t, x) dx = const.

Energy estimate For P(ρ) s.t. P ′ ρ− P = p(ρ),∫ (
P(ρ(t, x)) +

1

2
ρ u2

)
dx +

∫ t

0

∫
|∇u|2 = const.

Note that if C−1ργ ≤ p ≤ C ργ then P(ρ) ∼ ργ .



Introduction The Lions-Feireisl theory A new method for compactness

State of the art: A priori estimates

Let us describe the available theory as developed first by P.L. Lions
and extended by E. Feireisl. Start with the a priori estimates
Conservation of mass ∫

ρ(t, x) dx = const.

Energy estimate For P(ρ) s.t. P ′ ρ− P = p(ρ),∫ (
P(ρ(t, x)) +

1

2
ρ u2

)
dx +

∫ t

0

∫
|∇u|2 = const.

Note that if C−1ργ ≤ p ≤ C ργ then P(ρ) ∼ ργ .
Pressure estimates∫ t

0

∫
ρa p(ρ) dx dt ≤ C , a <

2

d
γ − 1.
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Compactness of ρ

Take a sequence ρk , uk of (approximate) solutions. uk is compact
in x and the only difficulty is the Compactness of ρk .
• P.L. Lions: Show that w − lim ρk log ρk = A = ρ log ρ with
w − limρk = ρ.

∂tρk log ρk + div (uk ρk log ρk) = −div uk ρk .

But

div uk = p(ρk) + ∆−1 div (∂t(ρkuk) + div (ρk uk ⊗ uk)).

So

w − lim ρk div uk = B + ρ∆−1 div (∂t(ρu) + div (ρ u ⊗ u)),

where B = w − limρk p(ρk).
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Compactness of ρ

Take a sequence ρk , uk of (approximate) solutions.
Hence

∂tA + div (u A) = −B − ρ∆−1(∂t(ρu) + div (ρ u ⊗ u)),

recalling B = w − limρk p(ρk). While for B̃ = ρw − limp(ρk),

∂tρ log ρ+ div (u ρ log ρ) = −B̃ − ρ∆−1(∂t(ρu) + div (ρ u ⊗ u)).

Thus A ≤ ρ log ρ and then A = ρ log ρ provided B ≥ B̃.
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Compactness of ρ

Take a sequence ρk , uk of (approximate) solutions.
• Only gives compactness at the limit: No regularity estimates on
ρk .
• The critical step is

w − lim ρk p(ρk) ≥ ρw − lim p(ρk),

which requires p increasing.
• Things are even more difficult with non-anisotropic stress tensors
because

div uk = L p(ρk) + L ∆−1 div (∂t(ρkuk) + div (ρk uk ⊗ uk)),

with L a non local operator of order 0, thus losing the pointwise
relation between div uk and p(ρk).
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Existence of weak solutions

The previous method yields

Theorem P.L. Lions
Assume p′(ρ) ∼ ργ−1 with γ > 9/5 and p monotone.
Then there exists a weak solution to compressible Navier-Stokes.

While with refined techniques

Theorem E. Feireisl
Assume p′(ρ) ∼ ργ−1 with γ > 3/2 and p monotone.
Then there exists a weak solution to compressible Navier-Stokes.
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The idea

Propagate some explicit regularity on ρ by computing∫
|ρ(t, x)− ρ(t, y)|

(|x − y |+ h)k
dx dy ,

for some k ≥ d .
However this corresponds to a Sobolev like regularity on ρ which
cannot work. So instead...
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The idea

Propagate some explicit regularity on ρ by computing∫
|ρ(t, x)− ρ(t, y)|

(|x − y |+ h)k
W (t, x , y) dx dy ,

for some k ≥ d .
Where the weight W solves the same transport equation

∂tW + u(t, x) · ∇xW + u(t, y) · ∇yW = −D,

for a well chosen penalization D.
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The idea

Propagate some explicit regularity on ρ by computing∫
|ρ(t, x)− ρ(t, y)|

(|x − y |+ h)k
W (t, x , y) dx dy ,

for some k ≥ d .
Where the weight W solves the same transport equation

∂tW + u(t, x) · ∇xW + u(t, y) · ∇yW = −D,

for a well chosen penalization D.
Then explain that W cannot be too small, too often to bound∫

|ρ(x)− ρ(y)|
(|x − y |+ h)k

dx dy ,

in terms of h.
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A new result

The main improvements are: No monotonicity assumption on p,
explicit regularity.

Theorem
Assume that for γ > 9/5

ργ

C
≤ p(ρ) ≤ C ργ , |p′(ρ)| ≤ C ργ−1.

Then there exists a weak solution to compressible Navier-Stokes.
Moreover the solution satisfies for any k > d∫

ρ(x), ρ(y)>η

|ρ(x)− ρ(y)|
(|x − y |+ h)k

dx dy ≤ Cη
h−(k−d)

| log h|µ
,

for some µ > 0.
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The new result in the anisotropic case

Theorem
Assume p(ρ) ∼ ργ with γ > γ̄ and that A is smooth with

‖A(x)− µ I‖L∞ < µC∗,

for some universal constant C∗. Then there exists a weak solution
to the compressible Navier-Stokes

∂tρ+ div (u ρ) = 0,

∂t(ρ u) + div (ρ u ⊗ u)− div (A(x) D u)− λ∇div u = −∇p(ρ),

where D u = (∇u +∇uT )/2.
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Sketch of the proof-Weighted norms Part 1

Denote δρ = ρ(t, x)− ρ(t, y) and observe that

∂t |δρ|2 + div x(u(t, x) |δρ|2) + div y (u(t, y) |δρ|2)

= −1

2
(div u(x)− div u(y)) δρ (ρ(x) + ρ(y)).

Recall

∂tW + u(t, x) · ∇xW + u(t, y) · ∇yW = −D,

and calculate

d

dt

∫
|δρ|2

(|x − y |+ h)k
W = −1

2

∫
div u(x)− div u(y)

(|x − y |+ h)k
δρ (ρ(x) + ρ(y)) W

+

∫
(u(x)− u(y)) · (x − y)

|x − y | (|x − y |+ h)k+1
|δρ|2 W −

∫
|δρ|2

(|x − y |+ h)k
D.
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Sketch of the proof-Weighted norms Part 2

Use the momentum equation to bound

|div u(x)− div u(y)| = |p(ρ(x))− p(ρ(y)) + OK |
≤ C (ργ−1(x) + ργ−1(y)) δρ+ OK .

Hence

− 1

2

∫
div u(x)− div u(y)

(|x − y |+ h)k
δρ (ρ(x) + ρ(y))

≤ C

∫
|δρ|2

(|x − y |+ h)k
(ργ(x) + ργ(y)) W + OK .

Observe that if p(ρ) is increasing then δρ(p(ρ(x))− p(ρ(y))) ≥ 0
and the corresponding terms do not need to be controlled.
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Sketch of the proof-Weighted norms Part 3

Use the classical inequality

|u(x)− u(y)| ≤ C (M|∇u|(x) + M|∇u|(y)) |x − y |,

with M the maximal operator. This implies∫
(u(x)− u(y)) · (x − y)

|x − y | (|x − y |+ h)k+1
|δρ|2 W

≤ C

∫
|δρ|2

(|x − y |+ h)k
(M|∇u|(x) + M|∇u|(y)) W .
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Sketch of the proof-Weighted norms conclusion

Summing up, one finds

d

dt

∫
|δρ|2

(|x − y |+ h)k
W

≤
∫

|δρ|2

(|x − y |+ h)k
(C (M|∇u|(x) + ργ(x) + sym.) W − D) ≤ 0,

if one takes

D = C (M|∇u|(x) + M|∇u|(y) + ργ(x) + ργ(y)) W .
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Sketch of the proof-Weighted norms conclusion

Summing up, one finds

d

dt

∫
|δρ|2

(|x − y |+ h)k
W

≤
∫

|δρ|2

(|x − y |+ h)k
(C (M|∇u|(x) + ργ(x) + sym.) W − D) ≤ 0,

if one takes

D = C (M|∇u|(x) + M|∇u|(y) + ργ(x) + ργ(y)) W .

Instead we take W (x , y) = w(x) + w(y) with

D = C (M|∇u|(x) + ργ(x)) w(x) + sym,

and things are much more complicated...
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Sketch of the proof-The compactness

Assume that one has∫
|δρ|

(|x − y |+ h)k
(w(x) + w(y)) ≤ C + ...,

with

∂tw + u(x) ·∇w = −C (M|∇u|(x) + ργ(x)) w(x), w(t = 0) = 1.

Now calculate

d

dt

∫
ρ(x) | log w(x)| dx = C

∫
ρ(x) (M|∇u|(x) + ργ(x)) dx ≤ C .
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Sketch of the proof-The compactness

Assume that one has∫
|δρ|

(|x − y |+ h)k
(w(x) + w(y)) ≤ C + ...,

with ∫
ρ(x) | log w(x)| dx ≤ C .
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Sketch of the proof-The compactness

Assume that one has∫
|δρ|

(|x − y |+ h)k
(w(x) + w(y)) ≤ C + ...,

with ∫
ρ(x) | log w(x)| dx ≤ C .

That implies∫
|δρ|

(|x − y |+ h)k
≤ C

hk−d | log h|
+ ...
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Some of the additional difficulties

• All the estimates must be delocalized as one cannot control
M |∇uk |(x) w(y) by M |∇uk |(x) w(x). Instead one uses

|uk(x)− uk(y)| ≤ C

∫
|z−x |≤2 |x−y |

|∇uk(z)|
|z − x |d−1

dz + sym.

• The penalization are more complicated as the current ones
would require ρ ∈ Lγ+1, for instance

D = λ(ρp−1 |div u|+ M |∇u|+ ργ) w(x) + sym.
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Some of the additional difficulties-2

• Delocalization is achieved through square function or their
equivalent in Besov spaces. Thus one actually controls∫

|δρ|
(|x − y |+ h0)d

(w(x) + w(y))

∼
∫ 1

h0

hk−d
∫

|δρ|
(|x − y |+ h0)k

(w(x) + w(y))
dh

h
,

with the property that for a normalized convolution kernel Kh∫ 1

h0

dh

h
‖Kh ? u − Kh ? u(.+ hω)‖Lp ≤ C | log h0|1/2 ‖u‖Lp .
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Extension: Viscosity and numerical methods

• For numerical or construction purposes, it is interesting to
consider

∂tρ+ div (ρ u) = ε∆ρ.

• Some cases with temperature are identical, others are still
open for example the full virial.

• The result in the anisotropic case should certainly be
improved...
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