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STRUCTURE OF µ(t) ON CAUSTIC FIBER
Theorems and examples.

All the examples are constructed in 1 d with the free flow:

(y , ξ) 7→ Φt(y , ξ) = (y + tξ, ξ)

(y ,U in(y)) 7→ Ft(y) = y + tU in(y)
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Structure of µ(t) and ρ(t) outside caustic fiber, recall from
previous talk

Thm A: Assume Hamiltonian H satisfies condition (H) and that
momentum profile U in satisfies (SL+DU). Then
(a) for a.e. x ∈ RN and all t ∈ R, the set F−1

t ({x}) is finite

(b) the following conditions are equivalent

ρ(t)(Ct) = 0⇔ ρ(t)(RN \ Ct) = 1⇔ ρin = 0 a.e. on Zt

(c) under the equivalent conditions in (b), ρ(t)� L N and

ρ(t, x) :=
dρ(t)

dL N (x) =
∑

Ft(y)=x

ρin(y)

Jt(y)
for a.e. x ∈ RN

(d) under the equivalent conditions in (b)

µ(t, x , ·) =
∑

Ft(y)=x

ρin(y)

Jt(y)
δΞt(y ,U in(y)) for a.e. x ∈ RN
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Lebesgue decomposition of ρ(t)

Thm C: Assume Hamiltonian H satisfies condition (H) and that
momentum profile U in satisfies (SL+DU). Then
(a) for each t ∈ R, one has

supp(µ(t)) ⊂ Λt

(b) writing the Lebesgue decomposition of ρ(t) w.r.t. L N as

ρ(t) = ρa(t) + ρs(t) with ρa(t)� L N and ρs(t) ⊥ L N

then

ρa(t) = Ft#(ρin1PtL
N) and ρs(t) = Ft#(ρin1ZtL

N)
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Structure of µ(t), general case

Let µin
a and µin

s be the monokinetic measures with densities ρin1Pt

and ρin1Zt respectively and momentum profile U in:

µin
a (x , ·) := ρin(x)1Pt (x)δU in(x) , µin

s (x , ·) := ρin(x)1Zt (x)δU in(x)

Propagate these measures by Hamiltonian flow

µ(t) = µa(t) + µs(t) with µa(t) = Φt#µin
a and µs(t) = Φt#µin

s

•Structure of µa(t) and of ρa(t) = Π#µa(t) described by Thm A

•Structure of µs(t)? of ρs(t)?
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Atoms of ρs(t)

Thm D: Assume Hamiltonian H satisfies condition (H) and that
momentum profile U in satisfies (SL+DU). For each t ∈ R, let

At := {x s.t. L N(F−1
t ({x}) ∩ Zt) > 0}

(a) For each t ∈ R, one has At ⊂ Ct

(b) For each t > 0 the set At is at most countable
(c) Let ρin ∈ L1(RN) s.t. ρin > 0 a.e. on Zt ; then

ρ(t)({x}) > 0⇔ x ∈ At
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Remark

•If N = 1, if H(x , ξ) = 1
2ξ

2 and if U in is real analytic+sublinear
at infinity, then Ft = id + tU in is real analytic+proper. Therefore
F−1

t ({x}) is finite for all x ∈ R — even if x ∈ Ct .
•In particular, L N(F−1

t ({x})∩Zt) = 0 and therefore ρ(t)({x}) = 0
for all t ∈ R and all x ∈ R

In space dimension 1, and
for analytic flow+momentum profile

ρs(t) does not have atoms
•However, ρs(t) may have atoms even if the flow and the initial
momentum profiles are C∞.

Claude Bardos Propagation of Monokinetic Measures



Example A: Lip and C∞ case
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Lagrangian Λt at t = 0 for U in(y) =

{
−y/|y | if |y | > 1
−y if |y | ≤ 1
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Lagrangian Λt at t = 1. Here, A1 = {0} and
F−1

1 ({0}) ∩ Z1 = (−1, 1). Analogous picture if U in is regularized
near y = ±1.
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Example B: analytic case
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Lagrangian at times t = 0, 8, 16 for U in =inverse of
y 7→ −8y − 3y3. Here #F−1

t ({x}) ≤ 3 for all t and all x .
Therefore At = ∅ for all t.
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APPLICATIONS TO THE CLASSICAL LIMIT
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WKB method for Schrödinger’s equation

Classical limit of Schrödinger’s equation for x ∈ RN :

iε∂tψε + 1
2ε

2∆xψε = V (x)ψε , ψε(0, x) = ain(x)e iS in(x)/ε

WKB ansatz for wave function ψε

ψε(t, x) '
∑
n≥0

εnan(t, x)e iS(t,x)/ε

Explicit solution of Cauchy pbm for Schrödinger’s eqn when V ≡ 0

ψε(t, x) =
1

√
2πiε

N

∫
RN

e
i
ε

( |x−y|2
2t +S in(y))ain(y)dy

If V 6≡ 0, replace explicit solution with FIO parametrix (Laptev-Sigal)
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WKB after caustic onset for C 2 phase functions

Caustic fiber (case S in ∈ C 2): set Ft(y) := y + t∇S in(y) and
Jt(y) := | detDFt(y)|; since Ft ∈ C 1(RN ,RN), one has E = ∅ and

Ct := {critical values of Ft}

Thm (Maslov) for x /∈ Ct , ain ∈ C∞c (RN) and S in ∈ C∞(RN)

ψε(t, x) =
∑

Ft(y)=x

ain(y)√
Jt(y)

e
i
(

S in(y)
ε −#(σ(D2Ft(y))∩R∗+)

π
2

)
+ O(tε)

Thus ψε ' locally finite sum of WKB ansatz away from caustic fibers
Proof: apply stationary phase
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Classical limit for non C 2 phase functions

Assume initial phase function S in ∈ C 1(RN) with

∇2S in ∈ LN,1
loc (RN) and ∇S in(x) = o(|y |) as |y | → ∞

Let
H(x , ξ) = 1

2 |ξ|
2 + V (x)

with V ∈C∞b (RN) such that, for some α > N/2,

V (x)=o(|x |) and V−(x) = o(|x |−α) as |x | → ∞
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Thm E: Let ain ∈ L2(RN), θ, χ ∈ Cb(RN) with ‖ain‖L2 = 1, and

ψε(t, ·) := e i tε (
1
2 ε

2∆x−V (x))(aine iS in/ε) t ∈ R , ε > 0

(a) If θ = 0 on Ct then

lim
ε→0

∫
RN
θ(x)|ψε(t, x)|2dx =

∫
RN
θ(x)

∑
Ft(y)=x

|ain|21Pt

Jt
(y)dx

(b) If y ∈ Zt ⇒ χ̃t(y) := χ(Ξt(y ,∇S in(y))) = 0, then

lim
ε→0

∫
RN
χ(−εξ)|ψ̂ε(t, ξ)|2 dξ

(2π)N
=

∫
RN

∑
Ft(y)=x

χ̃(y)
|ain|21Pt

Jt
(y)dx
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Sketch of the proof of Thm E

1. That

|ψε(t, ·)|2 → ρ(t) while (2πε)−N |ψ̂ε(t, ·/ε)|2 →
∫
µ(t, dx , ·)

weakly in the sense of probability measures as ε → 0 follows from
[Lions-Paul, Rev. Mat. Iberoam., 1993], especially Theorem III.1.3
and Theorem IV.1.2. Notice that there is no mass loss at infinity
because µ(t) = Φt#µin is a probability measure for all t ∈ R

2. The formulas for the limits follow from our theorem (Theorem A,
previous talk) on the structure of µ(t).
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MORE EXAMPLES AND COUNTER-EXAMPLES
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On the definition of the caustic fiber, rough case

Example 1: set N = 1 with H(x , ξ) := 1
2ξ

2 and

U in(y) = y sin(ln |y |) for y 6= 0 , U in(0) = 0

so that Ft = idRN + tU in ∈ Lip(R) \ C 1(R) with E = {0}
For t < −1 one has

F−1
t ({0})∩ (−eπ, eπ) = {0}∪ {±yn(t) | n ≥ 0}∪ {±zn(t) | n ≥ 0} ,

where

yn(t) := earcsin(−1/t)−2πn , zn(t) := eπ−arcsin(−1/t)−2πn

Claude Bardos Propagation of Monokinetic Measures



On the other hand

F ′t(y) = 1 + t sin ln |y |+ t cos ln |y |

so that
|F ′t(yn(t))| = |F ′t(zn(t))| =

√
t2 − 1 6= 0 .

Hence 0 is not a critical value of the restriction of Ft to (−eπ, eπ),
and yet F−1

t ({0}) ∩ (−eπ, eπ) is infinite

Conclusion: if U in is not C 1, one cannot keep both the usual defi-
nition of the caustic fiber= {critical values of Ft} and the fact that
F−1

t ({x}) is finite for all x /∈ Ct

This is one reason for including the nondifferentiability set E in the
definition of the caustic fiber Ct
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Initial profile U in(y) = − tanh(y) sin(|y |10−n−1)

Claude Bardos Propagation of Monokinetic Measures



2.0e 25 1.5e 25 1.0e 25 5.0e 26 0.0e+00 5.0e 26 1.0e 25 1.5e 25 2.0e 25
2.0e 25

1.5e 25

1.0e 25

5.0e 26

0.0e+00

5.0e 26

1.0e 25

1.5e 25

2.0e 25

Initial profile U in(y) = − tanh(y) sin(|y |10−n−1), zoom near origin
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Lagrangian at time t = 0.5 for U in(y) = − tanh(y) sin(|y |10−n−1)
zoom near origin
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Lagrangian at time t = 1 for U in(y) = − tanh(y) sin(|y |10−n−1)
zoom near origin
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zoom near origin
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zoom near origin
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The singular component of ρ(t) can be diffuse

Example 2: set N = 1 and H(x , ξ) := 1
2ξ

2

Let K ⊂ (0, 1) \Q s.t. L 1(K ) ∈ (1
2 , 1) and Ω := (0, 1) \ K

U in(y) :=


0 if y < 0

L 1(Ω ∩ [0, y ])− y if y ∈ [0, 1]

L 1(Ω)− 1 if y > 1

One has Φt(x , ξ) := (x + tξ, ξ) so that Ft : y 7→ y + tU in(y). Then
(a) the map F1 : R 3 y 7→ y + U in(y) ∈ R is increasing and onto
(b) for each y ∈ (−∞, 0) ∪ Ω ∪ (1,∞), one has F ′1(y) = 1, while
F ′1(y) = 0 for a.e. y ∈ K
(c) for ρin := 1K/(L 1(K )), the measure ρ(1) := F1#(ρinL 1) ⊥
L 1 and

ρ(1)({x}) = 0 for all x ∈ R
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Example 3: set N = 1 and H(x , ξ) := 1
2ξ

2

Let K ⊂ [0, 1] =ternary Cantor set with Hausdorff dimension s = ln 2
ln 3

U in(z) := 10≤z≤1(H s([0, z ] ∩ K )− z)

(a) Momentum profile U in∈Cc(R)∩BV (R) but (U in)′ /∈L1,1(R)

One has Φt(x , ξ) := (x + tξ, ξ) so that Ft : y 7→ y + tU in(y). Then

(b) the map F1 ∈ C (R) and is increasing ⇒ F1 ∈ BVloc(R)
(c) the map F1 is not differentiable on K and differentiable on R\K

F ′1(y) = 0⇔ y ∈ [0, 1] \ K

(d) the caustic fiber is C1 = [0, 1] and L 1(C1) > 0
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If U in is less regular than in assumption (DU) — i.e. if DU in /∈ LN,1
loc

— it may happen that the caustic fiber is not Lebesgue negligeable

In this case, the propagated monokinetic measure may fail to be a.e.
equal to a finite sum of monokinetic measures

In fact, if (DU) is not satisfied, it can happen that Ft doesn’t map
Lebesgue-negligeable sets on Lebesgue-negligeable sets; then includ-
ing E (or any other Lebesgue-negligeable set) in the definition of the
caustic fiber Ct may result in L N(Ct) > 0

However this choice does not have any effect on the propagated
measure µ(t) since

µin(E × RN) =

∫
E
ρin(x)dx = 0
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If U in is less regular than in assumption (DU) — i.e. if DU in /∈ LN,1
loc

— it may happen that the caustic fiber is not Lebesgue negligeable

In this case, the propagated monokinetic measure may fail to be a.e.
equal to a finite sum of monokinetic measures

In fact, if (DU) is not satisfied, it can happen that Ft doesn’t map
Lebesgue-negligeable sets on Lebesgue-negligeable sets; then includ-
ing E (or any other Lebesgue-negligeable set) in the definition of the
caustic fiber Ct may result in L N(Ct) > 0

However this choice does not have any effect on the propagated
measure µ(t) since

µin(E × RN) =

∫
E
ρin(x)dx = 0
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On the Hausdorff dimension of Ct and supp(ρ(t))

Example 4:
Set N = 1 and H(x , ξ) := 1

2ξ
2 so that Φt(x , ξ) := (x + tξ, ξ). Then

for each s ∈ (0, 1), there exists

•a compact K (s) ⊂ [0, 1] s.t. H s(K (s)) = 1

•a momentum profile U in ∈ Lip(RN) & a probability density ρin s.t.

C1 = supp(F1#ρin) = K (s) where Ft(y) := y + tU in(y)
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On the Hausdorff dimension of supp(ρ(t)) (end)

Construction for s = ln 2
ln 3 , set K :=ternary Cantor set and

O := [0, 1] \ K =:
⋃

1≤k≤2m−1
m≥1

(am,k − 1
23
−m, am,k + 1

23
−m)

Ω :=
⋃

1≤k≤2m−1
m≥1

(am,k − 1
63
−m, am,k + 1

63
−m) =: [0, 1] \ K̃

Define

ρin = 3
21K̃ and U in(y) = 10≤y≤1(3L 1(Ω ∩ [0, y ])− y)
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θ =
1
3
, rm =

3−m

6
,

µ(1) =
1

1− θ
∑
m≥1

2m−1∑
k=1

(δam,k−rm ⊗ 1(−(1−θ)rm,0 + δam,k+rm ⊗ 1(0,(1−θ)rm))

ρ(1) =
1
2

1
1− 2θ

∑
m≥1

θm−1
2m−1∑
k=1

(δam,k−rm + δam,k+rm)

ρ(1) = denumerable convex combination of Dirac masses at 3-adic
rationals
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Conclusions

Our results on the Hamiltonian propagation of monokinetic measures
provide information on the classical limit of the Schrödinger equation
for WKB initial wave functions with L2 amplitudes and rough phase
functions (S in ∈ C 1(RN) but ∇2S in ∈ LN,1

loc \ C (RN))

Specifically, we obtain formulas for the position and momentum den-
sities in the classical limit, that are consistent with Maslov’s theory
in the case of smooth amplitudes and phase functions

Various examples show that our results are sharp — especially regard-
ing the regularity assumptions on the momentum profile, the “size”
of the caustic fiber, and the structure of the propagated measure on
the caustic fiber
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