Introduction	Governing PDEs	Macro-trap	Depletion	Epilogue

Bose-Einstein Condensation: Bound State of Periodic Microstructure

Dionisios Margetis

Department of Mathematics & IPST & CSCAMM, University of Maryland, College Park

Workshop on **Quantum Systems: A Mathematical Journey...** CSCAMM University of Maryland, College Park MD Wednesday May 15, 2013

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Introduction
 Focus
 Governing PDEs
 Macro-trap
 Depletion
 Epilogue

 •0000
 000
 0000
 0000
 000
 00
 00

(Simplistic) Schematic of BEC concept in atomic gas

Non-interacting particles in a box (T: temperature) [Ketterle, '99]:

High T: "billiard balls"

Low T: Evident wave-like behavior: "wave packets"

 $\begin{array}{l} \textbf{T=T_c: BEC onset} \\ \text{``Matter wave overlap''} \\ \Delta x \sim d \end{array}$

T=0: BE condensate "Giant matter wave"

Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
••••	000		00000	00	00
Main them	e				

Evolution of *N* Boson particles of repulsive interactions, $N \gg 1$:

$$H = \sum_{j=1}^{N} [-\triangle_j + V_e(x_j)] + \sum_{j < l} \underbrace{\mathcal{V}(x_j, x_l)}_{pos., symm.} : \text{Hamiltonian } (\hbar = 2m = 1)$$

Usually: $\mathcal{V}(x_i, x_j) \approx 8\pi a \,\delta(x_i - x_j);$

a: scattering length; here a > 0

What macroscopic description, *mean field limit*, emerges?
 What are plausible corrections to this limit, N ≫ 1?
 Our focus: (2) formally; lowest bound state with microstructure

Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
••••	000		00000	00	00
Main them	e				

Evolution of *N* Boson particles of repulsive interactions, $N \gg 1$:

$$H = \sum_{j=1}^{N} [-\Delta_j + V_e(x_j)] + \sum_{j < l} \underbrace{\mathcal{V}(x_j, x_l)}_{pos., symm.} : \text{Hamiltonian} \ (\hbar = 2m = 1)$$

Usually: $\mathcal{V}(x_i, x_j) \approx 8\pi a \, \delta(x_i - x_j);$

a: scattering length; here a > 0

What macroscopic description, *mean field limit*, emerges?
 What are plausible corrections to this limit, N ≫ 1?
 Our focus: (2) formally; lowest bound state with microstructure

Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
••••	000		00000	00	00
Main them	e				

Evolution of *N* Boson particles of repulsive interactions, $N \gg 1$:

$$H = \sum_{j=1}^{N} [-\Delta_j + V_e(x_j)] + \sum_{j < l} \underbrace{\mathcal{V}(x_j, x_l)}_{pos., symm.} : \text{Hamiltonian} \ (\hbar = 2m = 1)$$

Usually: $\mathcal{V}(x_i, x_j) \approx 8\pi a \, \delta(x_i - x_j);$

a: scattering length; here a > 0

What macroscopic description, *mean field limit*, emerges?
 What are plausible corrections to this limit, N ≫ 1?
 Our focus: (2) formally; lowest bound state *with* microstructure

N weakly interacting particles in periodic box $(N \gg 1)$

- Macroscopic 1-particle state: zero momentum ("condensate")
- Many-bound ground state: Atoms are primarily scattered from 0 momentum to pairs of opposite momenta ("pair excitation")

▲□▶▲□▶▲□▶▲□▶ □ のQで

The condensate is partially depleted

N weakly interacting particles in periodic box ($N \gg 1$)

- Macroscopic 1-particle state: zero momentum ("condensate")
- Many-bound ground state: Atoms are primarily scattered from 0 momentum to pairs of opposite momenta ("pair excitation")

▲□▶▲□▶▲□▶▲□▶ □ のQで

The condensate is partially depleted

N weakly interacting particles in periodic box ($N \gg 1$)

- Macroscopic 1-particle state: zero momentum ("condensate")
- Many-bound ground state: Atoms are primarily scattered from 0 momentum to pairs of opposite momenta ("pair excitation")

▲□▶▲□▶▲□▶▲□▶ □ のQで

The condensate is partially depleted

Heuristically by Wu, 1961; Gross, 1961; Pitaevskii, 1961; rigorously by Yau *et al.*, 2006-07

Tensor product of 1-particle states (BEC signature)

Approximate *N*-body wave function for Boson gas (zeroth order):

$$\breve{\Psi}_N(t,\vec{x})\approx\breve{\Psi}_N^0[\check{\Phi}](t,\vec{x})=\prod_{j=1}^N\underbrace{\check{\Phi}(t,x_j)}_{condensate};\quad \vec{x}=(x_1,\ldots,x_N)\in\mathbb{R}^{3N}$$

• For constant sc. length and certain assumptions on interactions: $i\partial_t \check{\Phi}(t,x) = [-\triangle + V_e(x) + 8\pi a |\check{\Phi}|^2] \check{\Phi}(t,x)$ (Gross-Pitaevskii Eq)

• Lowest bound (ground) state: $\check{\Psi}_N(t, \vec{x}) = e^{-iE_N t} \Psi_N(\vec{x}); \check{\Phi}(t, x) = e^{-i\mu t} \Phi(x) \ (\Phi : \mathbb{R}^3 \to \mathbb{R})$

Heuristically by Wu, 1961; Gross, 1961; Pitaevskii, 1961; rigorously by Yau *et al.*, 2006-07

Tensor product of 1-particle states (BEC signature)

Approximate *N*-body wave function for Boson gas (zeroth order):

$$\breve{\Psi}_N(t, \vec{x}) \approx \breve{\Psi}_N^0[\check{\Phi}](t, \vec{x}) = \prod_{j=1}^N \underbrace{\check{\Phi}(t, x_j)}_{condensate}; \quad \vec{x} = (x_1, \ldots, x_N) \in \mathbb{R}^{3N}$$

• For constant sc. length and certain assumptions on interactions: $i\partial_t \check{\Phi}(t,x) = [-\Delta + V_e(x) + 8\pi a |\check{\Phi}|^2] \check{\Phi}(t,x)$ (Gross-Pitaevskii Eq)

(日)

• Lowest bound (ground) state: $\check{\Psi}_N(t, \vec{x}) = e^{-iE_N t} \Psi_N(\vec{x}); \check{\Phi}(t, x) = e^{-i\mu t} \Phi(x) \ (\Phi : \mathbb{R}^3 \to \mathbb{R})$

Heuristically by Wu, 1961; Gross, 1961; Pitaevskii, 1961; rigorously by Yau *et al.*, 2006-07

Tensor product of 1-particle states (BEC signature)

Approximate *N*-body wave function for Boson gas (zeroth order):

$$\breve{\Psi}_N(t, \vec{x}) \approx \breve{\Psi}_N^0[\check{\Phi}](t, \vec{x}) = \prod_{j=1}^N \underbrace{\check{\Phi}(t, x_j)}_{condensate}; \quad \vec{x} = (x_1, \ldots, x_N) \in \mathbb{R}^{3N}$$

• For constant sc. length and certain assumptions on interactions: $i\partial_t \check{\Phi}(t,x) = [-\triangle + V_e(x) + 8\pi a |\check{\Phi}|^2] \check{\Phi}(t,x)$ (Gross-Pitaevskii Eq)

• Lowest bound (ground) state: $\check{\Psi}_N(t,\vec{x}) = e^{-iE_N t} \Psi_N(\vec{x}); \check{\Phi}(t,x) = e^{-i\mu t} \Phi(x) \ (\Phi : \mathbb{R}^3 \to \mathbb{R})$

Review.	Beyond	GPE: Pair exc	vitation IWu	19611	
Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
○○○○●	000		00000	00	00

(Uncontrolled) Ansatz:

$$\breve{\Psi}_N(t,\vec{x}) \propto \underbrace{e^{\mathcal{P}[\breve{K}]}}_{I+\mathcal{P}+\cdots} \breve{\Psi}_N^0[\breve{\Phi}](t,\vec{x})$$

• $\mathcal{P}[\check{K}] = \mathcal{P}_N$: operator that describes scattering of atoms *in pairs*; $\check{K} = \check{K}(t, x, y)$ is **pair collision kernel** ("pair excitation function")

- $\check{K}(t, x, y)$ is not known a priori; obeys integro-PDE.
- \mathcal{P} induces partial depletion to condensate (Φ)
- $\check{K}(t, x, y) = \check{K}(t, y, x)$ (without loss of generality)

• For bound states: $\check{K}(t, x, y) = e^{-i2\mu t}K(x, y);$ $K(x, y) = \mathcal{O}(1/|x - y|)$ as $|x - y| \to 0.$

Review:	Bevond (GPE: Pair exc	citation [Wu	. 19611	
Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
○○○○●	000		00000	00	00

(Uncontrolled) Ansatz:

$$\check{\Psi}_N(t,\vec{x}) \propto \underbrace{e^{\mathcal{P}[\breve{K}]}}_{I+\mathcal{P}+\cdots} \check{\Psi}_N^0[\check{\Phi}](t,\vec{x})$$

• $\mathcal{P}[\check{K}] = \mathcal{P}_N$: operator that describes scattering of atoms *in pairs*; $\check{K} = \check{K}(t, x, y)$ is **pair collision kernel** ("pair excitation function")

- $\check{K}(t, x, y)$ is not known a priori; obeys integro-PDE.
- \mathcal{P} induces partial depletion to condensate (Φ)
- $\check{K}(t, x, y) = \check{K}(t, y, x)$ (without loss of generality)

• For bound states: $\check{K}(t, x, y) = e^{-i2\mu t}K(x, y);$ $K(x, y) = \mathcal{O}(1/|x - y|)$ as $|x - y| \to 0.$

Review:	Bevond (GPE: Pair exc	citation [Wu	. 19611	
Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
○○○○●	000		00000	00	00

(Uncontrolled) Ansatz:

$$\breve{\Psi}_N(t,\vec{x}) \propto \underbrace{e^{\mathcal{P}[\breve{k}]}}_{I+\mathcal{P}+\cdots} \breve{\Psi}_N^0[\check{\Phi}](t,\vec{x})$$

• $\mathcal{P}[\check{K}] = \mathcal{P}_N$: operator that describes scattering of atoms *in pairs*; $\check{K} = \check{K}(t, x, y)$ is **pair collision kernel** ("pair excitation function")

- $\check{K}(t, x, y)$ is not known a priori; obeys integro-PDE.
- \mathcal{P} induces partial depletion to condensate (Φ)
- $\check{K}(t, x, y) = \check{K}(t, y, x)$ (without loss of generality)

• For bound states: $\check{K}(t, x, y) = e^{-i2\mu t}K(x, y);$ $K(x, y) = \mathcal{O}(1/|x - y|)$ as $|x - y| \to 0.$

Review:	Beyond	GPE: Pair exc	citation [Wu	. 19611	
Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
○○○○●	000		00000	00	00

(Uncontrolled) Ansatz:

$$\breve{\Psi}_N(t,\vec{x}) \propto \underbrace{e^{\mathcal{P}[\breve{k}]}}_{I+\mathcal{P}+\cdots} \breve{\Psi}_N^0[\check{\Phi}](t,\vec{x})$$

• $\mathcal{P}[\check{K}] = \mathcal{P}_N$: operator that describes scattering of atoms *in pairs*; $\check{K} = \check{K}(t, x, y)$ is **pair collision kernel** ("pair excitation function")

- $\check{K}(t, x, y)$ is not known a priori; obeys integro-PDE.
- \mathcal{P} induces partial depletion to condensate (Φ)
- $\check{K}(t, x, y) = \check{K}(t, y, x)$ (without loss of generality)
- For bound states: $\check{K}(t, x, y) = e^{-i2\mu t}K(x, y)$; $K(x, y) = \mathcal{O}(1/|x - y|)$ as $|x - y| \to 0$.

Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	●○○		00000	00	00
In this talk					

$$H = \sum_{j=1}^{N} \left[-\Delta_j + V_e(x_j) \right] + \frac{1}{2} \sum_{i \neq j} \mathcal{V}(x_i, x_j) ; \ V_e > 0, \text{ smooth } ; V_e(x) \to \infty |x| \to \infty$$

$$\mathcal{V}(x_i, x_j) = g^{\epsilon}(x_i)\delta(x_i - x_j); \ g^{\epsilon}(x) := 8\pi a^{\epsilon} a^{\epsilon}(x) = g_0[1 + A(x/\epsilon)] > 0$$

- For lowest bound state: derive PDEs for Φ , K.
- Apply: classical homogenization up to two orders in ε;
- (singular) perturbations for slowly varying **trap**, $V_e(x) = U(\check{\epsilon}x)$.
- Describe **depletion** of Φ . Will show

(Fraction at Φ) $\xi \sim 1 - c \int_{\Re_0} \mathrm{d}x \, [\mu_0^0 - U(x)]^{3/2} + \epsilon^2 f[U] \, \|A\|_{H^{-1}_{av}}^2$

Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	●○○		00000	00	00
In this talk					

$$H = \sum_{j=1}^{N} \left[-\Delta_j + V_e(x_j) \right] + \frac{1}{2} \sum_{i \neq j} \mathcal{V}(x_i, x_j) ; \ V_e > 0, \text{ smooth } ; V_e(x) \to \infty |x| \to \infty$$

$$\mathcal{V}(x_i, x_j) = g^{\epsilon}(x_i)\delta(x_i - x_j); \ g^{\epsilon}(x) := 8\pi a^{\epsilon} a^{\epsilon}(x) = g_0[1 + A(x/\epsilon)] > 0$$

• For lowest bound state: derive PDEs for Φ , *K*.

- Apply: classical homogenization up to two orders in ϵ ;
- (singular) perturbations for slowly varying **trap**, $V_e(x) = U(\check{\epsilon}x)$.
- Describe **depletion** of Φ . Will show

(Fraction at Φ) $\xi \sim 1 - c \int_{\mathfrak{R}_0} \mathrm{d}x \left[\underbrace{\mu_0^0}_{-} - U(x) \right]^{3/2} + \epsilon^2 f[U] \|A\|_{H^{-1}_{av}}^2$

Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	●○○		00000	00	00
In this talk					

$$H = \sum_{j=1}^{N} \left[-\Delta_j + V_e(x_j) \right] + \frac{1}{2} \sum_{i \neq j} \mathcal{V}(x_i, x_j) ; \ V_e > 0, \text{ smooth } ; V_e(x) \to \infty |x| \to \infty$$

$$\mathcal{V}(x_i, x_j) = g^{\epsilon}(x_i)\delta(x_i - x_j); \ g^{\epsilon}(x) := 8\pi \ a^{\epsilon}(x) = g_0[1 + \overbrace{A(x/\epsilon)}^{1 - \text{periodic;}}] > 0$$

- For lowest bound state: derive PDEs for Φ , *K*.
- Apply: classical homogenization up to two orders in ε;
- (singular) perturbations for slowly varying **trap**, $V_e(x) = U(\check{\epsilon}x)$.
- Describe **depletion** of Φ . Will show

(Fraction at Φ) $\xi \sim 1 - c \int_{\mathfrak{R}_0} \mathrm{d}x \, [\underline{\mu_0^0} - U(x)]^{3/2} + \epsilon^2 f[U] \, ||A||_{H^{-1}_{dv}}^2$

Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	●○○		00000	00	00
In this talk:					

$$H = \sum_{j=1}^{N} \left[-\Delta_j + V_e(x_j) \right] + \frac{1}{2} \sum_{i \neq j} \mathcal{V}(x_i, x_j) ; \ V_e > 0, \text{ smooth } ; V_e(x) \to \infty |x| \to \infty$$

$$\mathcal{V}(x_i, x_j) = g^{\epsilon}(x_i)\delta(x_i - x_j); \ g^{\epsilon}(x) := 8\pi \ a^{\epsilon}(x) = g_0[1 + \overbrace{A(x/\epsilon)}^{1 - \text{periodic;}}] > 0$$

- For lowest bound state: derive PDEs for Φ , *K*.
- Apply: classical homogenization up to two orders in ε;
- (singular) perturbations for slowly varying trap, $V_e(x) = U(\check{\epsilon}x)$.
- Describe **depletion** of Φ . Will show

(Fraction at Φ) $\xi \sim 1 - c \int_{\Re_0} dx \left[\mu_0^0 - U(x) \right]^{3/2} + \epsilon^2 f[U] \|A\|_{H^{-1}_{av}}^2$

Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	●○○		00000	00	00
In this talk:					

$$H = \sum_{j=1}^{N} \left[-\Delta_j + V_e(x_j) \right] + \frac{1}{2} \sum_{i \neq j} \mathcal{V}(x_i, x_j) ; \ V_e > 0, \text{ smooth } ; V_e(x) \to \infty |x| \to \infty$$

$$\mathcal{V}(x_i, x_j) = g^{\epsilon}(x_i)\delta(x_i - x_j); \ g^{\epsilon}(x) := 8\pi \ a^{\epsilon}(x) = g_0[1 + \overbrace{A(x/\epsilon)}^{1 - \text{periodic;}}] > 0$$

- For lowest bound state: derive PDEs for Φ , *K*.
- Apply: classical homogenization up to two orders in ε;
- (singular) perturbations for slowly varying trap, $V_e(x) = U(\check{\epsilon}x)$.
- Describe **depletion** of Φ . Will show:

(Fraction at Φ) $\xi \sim 1 - c \int_{\mathfrak{R}_0} dx \left[\underbrace{\mu_0^0}_0 - U(x) \right]^{3/2} + \epsilon^2 f[U] \|A\|_{H^{-1}_{av}}^2$ μ_0^0 : lowest chem. pot./particle; $H^{-1}_{av} = \{f \in H^{-1}(\mathbb{T}^3) \mid \langle f \rangle = 0\}$

Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	●○○		00000	00	00
In this talk	:				

$$H = \sum_{j=1}^{N} \left[-\Delta_j + V_e(x_j) \right] + \frac{1}{2} \sum_{i \neq j} \mathcal{V}(x_i, x_j) ; \ V_e > 0, \text{ smooth } ; V_e(x) \to \infty |x| \to \infty$$

$$\mathcal{V}(x_i, x_j) = g^{\epsilon}(x_i)\delta(x_i - x_j); \ g^{\epsilon}(x) := 8\pi \ a^{\epsilon}(x) = g_0[1 + \overbrace{A(x/\epsilon)}^{1 - \text{periodic;}}] > 0$$

- For lowest bound state: derive PDEs for Φ , *K*.
- Apply: classical homogenization up to two orders in ε;
- (singular) perturbations for slowly varying **trap**, $V_e(x) = U(\check{\epsilon}x)$.
- Describe **depletion** of Φ . Will show:

(Fraction at Φ) $\xi \sim 1 - c \int_{\Re_0} \mathrm{d}x \, [\underline{\mu_0^0} - U(x)]^{3/2} + \epsilon^2 f[U] \, ||A||_{H_{av}^{-1}}^2$

- Experimental efforts to study quantum depletion in atomic gases [Cornell, Ensher, Wieman, 1999; Ketterle, Durfee, Stamper-Kurn, 1999; Xu et al., 2006].
- Modification of interactions in atomic gas, e.g., by controlling scattering length via external fields [Claussen et al., 2003; Cornish et al., 2000; Inouye et al., 1998; Stenger et al., 1998; Xu et al., 2006]
- Related theoretical work on bound states for *focusing* (attractive interactions) NLS by Fibich, Sivan and Weinstein [2006] via classical homogenization

Motivatio	on Cond	lensate denlet	ion		
Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	○○●		00000	00	00

Quantum depletion of ²³Na BECondensate [Xu et al, 2006]

Depletion seems to be enhanced by manipulation of ext. potential

イロト 不得 とうほう イヨン

э.

Introduction
occocFocus
occocGoverning PDEs
occocMacro-trap
occocDepletion
occocEpilogue
occResults: I. Consistency of pair excitation hypothesis with
many-body dynamicsmany-body dynamicsmany-body dynamics

Proposition 1 [DM, 2012] (Lowest bound state; varying sc. length)

The condensate wave function obeys:

$$\mathcal{L}[\Phi]\Phi(x) := [-\Delta_x + V_e(x) + g(x)\Phi^2 - \underbrace{\mu}_{\text{lowest}}]\Phi(x) = 0; \quad N^{-1} \|\Phi\|_{L^2(\mathbb{R}^3)}^2 = 1$$

The pair collision kernel K(x, y) satisfies

▲□▶▲□▶▲□▶▲□▶ □ のQで

Addendum:	Flements of	bosonic Fock space	$\mathbb{R} - \mathbb{C} \oplus \mathbb{A}$	$(I^2(\mathbb{R}^3))^{\otimes_s n}$	
Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	000		00000	00	00

• Elements of \mathbb{F} : $v = \{v^{(n)}\}_{n\geq 0}$ where $v^{(0)} \in \mathbb{C}$, $v^{(n)} \in L^2_s(\mathbb{R}^{3n})$ are symm. in x_1, \ldots, x_n . Hilbert space structure: $\langle v, \chi \rangle_{\mathbb{F}} = \sum_{n\geq 0} \int_{\mathbb{R}^{3n}} v^{(n)}(x) \chi^{(n)*}(x) dx$.

Creation (annihilation) operator a_f^* (a_f): creates (destroys) particle at state f:

$$(a_{f}^{*}v)^{(n)}(\vec{x}_{n}) = n^{-1/2} \sum_{j=1}^{n} f(x_{j})v^{(n-1)}(x_{1}, \dots, x_{j-1}, x_{j+1}, \dots, x_{n}),$$

$$(a_{f}v)^{(n)}(\vec{x}_{n}) = \sqrt{n+1} \int_{\mathbb{R}^{3}} dx_{0}f^{*}(x_{0})v^{(n+1)}(x_{0}, \vec{x}_{n}), \quad \vec{x}_{n} := (x_{1}, \dots, x_{n})$$

$$\Rightarrow [a_{f}, a_{f}^{*}] = a_{f}a_{f}^{*} - a_{f}^{*}a_{f} = 1$$

• Operator-valued distributions, $\psi^*(x)$ and $\psi(x), x \in \mathbb{R}^3$:

$$a_{f}^{*} := \int dx f(x) \psi^{*}(x) , \qquad a_{f} := \int dx f^{*}(x) \psi(x)$$
$$\Rightarrow [\psi(x), \psi^{*}(y)] = \delta(x - y)\mathbf{1} , \ [\psi^{*}(x), \psi^{*}(y)] = [\psi(x), \psi(y)] = 0$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへ⊙

Addendum:	Flements of	bosonic Fock space	$\mathbb{R} - \mathbb{C} \oplus \mathbb{A}$	$(I^2(\mathbb{R}^3))^{\otimes_s n}$	
Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	000		00000	00	00

• Elements of \mathbb{F} : $v = \{v^{(n)}\}_{n\geq 0}$ where $v^{(0)} \in \mathbb{C}$, $v^{(n)} \in L^2_s(\mathbb{R}^{3n})$ are symm. in x_1, \ldots, x_n . Hilbert space structure: $\langle v, \chi \rangle_{\mathbb{F}} = \sum_{n\geq 0} \int_{\mathbb{R}^{3n}} v^{(n)}(x) \chi^{(n)*}(x) dx$.

Creation (annihilation) operator a_f^* (a_f): creates (destroys) particle at state f:

$$(a_{f}^{*}v)^{(n)}(\vec{x}_{n}) = n^{-1/2} \sum_{j=1}^{n} f(x_{j})v^{(n-1)}(x_{1}, \dots, x_{j-1}, x_{j+1}, \dots, x_{n}),$$

$$(a_{f}v)^{(n)}(\vec{x}_{n}) = \sqrt{n+1} \int_{\mathbb{R}^{3}} dx_{0}f^{*}(x_{0})v^{(n+1)}(x_{0}, \vec{x}_{n}), \quad \vec{x}_{n} := (x_{1}, \dots, x_{n})$$

$$\Rightarrow [a_{f}, a_{f}^{*}] = a_{f}a_{f}^{*} - a_{f}^{*}a_{f} = 1$$

• Operator-valued distributions, $\psi^*(x)$ and $\psi(x), x \in \mathbb{R}^3$:

$$a_{f}^{*} := \int dx f(x) \psi^{*}(x) , \qquad a_{f} := \int dx f^{*}(x) \psi(x)$$
$$\Rightarrow [\psi(x), \psi^{*}(y)] = \delta(x - y)\mathbf{1} , \ [\psi^{*}(x), \psi^{*}(y)] = [\psi(x), \psi(y)] = 0$$

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

Addendum:	Flements of	bosonic Fock space	$\mathbb{R} - \mathbb{C} \oplus \mathbb{A}$	$(I^2(\mathbb{R}^3))^{\otimes_s n}$	
Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	000		00000	00	00

• Elements of \mathbb{F} : $v = \{v^{(n)}\}_{n\geq 0}$ where $v^{(0)} \in \mathbb{C}$, $v^{(n)} \in L^2_s(\mathbb{R}^{3n})$ are symm. in x_1, \ldots, x_n . Hilbert space structure: $\langle v, \chi \rangle_{\mathbb{F}} = \sum_{n\geq 0} \int_{\mathbb{R}^{3n}} v^{(n)}(x) \chi^{(n)*}(x) dx$.

Creation (annihilation) operator a_f^* (a_f): creates (destroys) particle at state f:

$$(a_{f}^{*}v)^{(n)}(\vec{x}_{n}) = n^{-1/2} \sum_{j=1}^{n} f(x_{j})v^{(n-1)}(x_{1}, \dots, x_{j-1}, x_{j+1}, \dots, x_{n}),$$

$$(a_{f}v)^{(n)}(\vec{x}_{n}) = \sqrt{n+1} \int_{\mathbb{R}^{3}} dx_{0}f^{*}(x_{0})v^{(n+1)}(x_{0}, \vec{x}_{n}), \quad \vec{x}_{n} := (x_{1}, \dots, x_{n})$$

$$\Rightarrow [a_{f}, a_{f}^{*}] = a_{f}a_{f}^{*} - a_{f}^{*}a_{f} = 1$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

• Operator-valued distributions, $\psi^*(x)$ and $\psi(x), x \in \mathbb{R}^3$:

$$a_{f}^{*} := \int dx f(x) \psi^{*}(x), \qquad a_{f} := \int dx f^{*}(x) \psi(x)$$
$$\Rightarrow [\psi(x), \psi^{*}(y)] = \delta(x - y)\mathbf{1}, \ [\psi^{*}(x), \psi^{*}(y)] = [\psi(x), \psi(y)] = 0$$

Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	000	00●000000	00000	00	00
Sketch of (formal) p	roof of Propo	sition 1		

$$\mathcal{H} = \int \mathrm{d}x \,\psi^*(x) [-\Delta_x + V_e(x)] \psi(x) + \frac{1}{2} \int \mathrm{d}x \,\mathrm{d}y \,\psi^*(x) \,\psi^*(y) \underbrace{\mathcal{V}(x,y)}_{\mathcal{V}(x,y)} \psi(y) \psi(x)$$

())())

• Perturbation scheme: Field operator splitting:

$$\psi(x) = N^{-1/2} \underbrace{\Phi(x)a_{\Phi}}_{\text{condensate}} + \underbrace{\psi_{1}(x)}_{\langle \Psi_{N}, \mathcal{N}_{1}\Psi_{N}\rangle_{\mathbb{F}} \ll N}; (\Phi, \psi_{1}) = 0, \ \mathcal{N}_{1} = \int \psi_{1}^{*}(x)\psi_{1}(x) \, \mathrm{d}x$$

• *N*-body Schrödinger eq. and pair excitation ansatz [Wu, 1961]:

$$\mathcal{H}\Psi_N = E_N \Psi_N \; ; \; \Psi_N \propto e^{\mathcal{P}[K]} \quad \underbrace{\Psi_N^0[\Phi]}_{N[\Phi]} \quad \in \mathbb{F}; \quad N = \langle \Psi_N, \int \psi^*(x)\psi(x)\Psi_N \rangle$$

• Pair excitation operator:

tensor prod. of Φ

$$\mathcal{P}[K] = (2N)^{-1} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \mathrm{d}x \, \mathrm{d}y \underbrace{\psi_1^*(x)\psi_1^*(y)}_{creates \, 2 \, part.@ \, states \, \perp \, \Phi} K(x, y) \underbrace{a_{\Phi}^2}_{annih. 2 \, part.@ \, states \, \perp \, \Phi}$$

• Scheme: keep up to terms quadratic in ψ_1 , ψ_1^* in \mathcal{H} Enforce Schr. eq. $\Box_{3,3}$

Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	000	00●000000	00000	00	00
Sketch of (formal) p	roof of Propo	sition 1		

$$\mathcal{H} = \int \mathrm{d}x \,\psi^*(x) [-\Delta_x + V_e(x)] \psi(x) + \frac{1}{2} \int \mathrm{d}x \,\mathrm{d}y \,\psi^*(x) \,\psi^*(y) \underbrace{\mathcal{V}(x,y)}_{\mathcal{V}(x,y)} \psi(y) \psi(x)$$

() ~ (

^

• Perturbation scheme: Field operator **splitting**:

$$\psi(x) = N^{-1/2} \underbrace{\Phi(x)a_{\Phi}}_{\text{condensate}} + \underbrace{\psi_{1}(x)}_{\langle \Psi_{N}, N_{1}\Psi_{N}\rangle_{F}\ll N}; (\Phi, \psi_{1}) = 0, \ \mathcal{N}_{1} = \int \psi_{1}^{*}(x)\psi_{1}(x)\,dx$$
• N-body Schrödinger eq. and pair excitation ansatz [Wu, 1961]:

$$\mathcal{H}\Psi_{N} = E_{N}\Psi_{N}; \ \Psi_{N} \propto e^{\mathcal{P}[K]} \underbrace{\Psi_{N}^{0}[\Phi]}_{\langle \Psi_{N}^{0}[\Phi]} \in \mathbb{F}; \quad N = \langle \Psi_{N}, \int \psi^{*}(x)\psi(x)\Psi_{N} \rangle$$
• Pair excitation operator:

$$\mathcal{P}[K] = (2N)^{-1} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} dx \,dy \underbrace{\psi_{1}^{*}(x)\psi_{1}^{*}(y)}_{creates 2 part.@ states \perp \Phi} K(x, y) \underbrace{a_{\Phi}^{2}}_{annih. 2 part.@ \Phi}$$
• Scheme: keep up to terms quadratic in ψ_{1}, ψ_{1}^{*} in \mathcal{H}_{B} Enforce. Schr. eq. $\Box_{2} \to 0$

Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	000	00●000000	00000	00	00
Sketch of (formal) p	roof of Propo	sition 1		

$$\mathcal{H} = \int \mathrm{d}x \,\psi^*(x) [-\Delta_x + V_e(x)] \psi(x) + \frac{1}{2} \int \mathrm{d}x \,\mathrm{d}y \,\psi^*(x) \,\psi^*(y) \underbrace{\mathcal{V}(x,y)}_{\mathcal{V}(x,y)} \psi(y) \psi(x)$$

())())

• Perturbation scheme: Field operator splitting:

$$\psi(x) = N^{-1/2} \underbrace{\Phi(x)a_{\Phi}}_{\text{condensate}} + \underbrace{\psi_{1}(x)}_{\langle \Psi_{N}, \mathcal{N}_{1}\Psi_{N}\rangle_{\mathbb{F}} \ll N}; (\Phi, \psi_{1}) = 0, \ \mathcal{N}_{1} = \int \psi_{1}^{*}(x)\psi_{1}(x) \, \mathrm{d}x$$

• *N*-body Schrödinger eq. and pair excitation ansatz [Wu, 1961]:

$$\mathcal{H}\Psi_N = E_N \Psi_N; \ \Psi_N \propto e^{\mathcal{P}[K]} \quad \underbrace{\Psi_N^0[\Phi]}_{N} \in \mathbb{F}; \quad N = \langle \Psi_N, \int \psi^*(x)\psi(x)\Psi_N \rangle$$

• Pair excitation operator:

tensor prod. of Φ

$$\mathcal{P}[\mathbf{K}] = (2N)^{-1} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \mathrm{d}x \, \mathrm{d}y \underbrace{\psi_1^*(x)\psi_1^*(y)}_{creates \, 2 \, part. @\, states \, \perp \, \Phi} \underbrace{\mathbf{K}(x, y)}_{annih. \, 2 \, part. @\, \Phi} \underbrace{a_{\Phi}^2}_{annih. \, 2 \, part. @\, \Phi}$$

• Scheme: keep up to terms quadratic in ψ_1 , ψ_1^* in \mathcal{H}_1 Enforce Schr, eq. \Box_{222}

Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	000	00●000000	00000	00	00
Sketch of (formal) p	roof of Propo	sition 1		

$$\mathcal{H} = \int \mathrm{d}x \,\psi^*(x) [-\Delta_x + V_e(x)] \psi(x) + \frac{1}{2} \int \mathrm{d}x \,\mathrm{d}y \,\psi^*(x) \,\psi^*(y) \underbrace{\mathcal{V}(x,y)}_{\mathcal{V}(x,y)} \psi(y) \psi(x)$$

• Perturbation scheme: Field operator splitting:

$$\psi(x) = N^{-1/2} \underbrace{\Phi(x)a_{\Phi}}_{\text{condensate}} + \underbrace{\psi_1(x)}_{\langle \Psi_N, \mathcal{N}_1 \Psi_N \rangle_{\mathbb{F}} \ll N}; (\Phi, \psi_1) = 0, \ \mathcal{N}_1 = \int \psi_1^*(x)\psi_1(x) \, \mathrm{d}x$$

• *N*-body Schrödinger eq. and pair excitation ansatz [Wu, 1961]:

$$\mathcal{H}\Psi_N = E_N \Psi_N; \ \Psi_N \propto e^{\mathcal{P}[K]} \quad \underbrace{\Psi_N^0[\Phi]}_{N} \in \mathbb{F}; \quad N = \langle \Psi_N, \int \psi^*(x)\psi(x)\Psi_N \rangle$$

• Pair excitation operator:

tensor prod. of Φ

$$\mathcal{P}[\mathbf{K}] = (2N)^{-1} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} dx \, dy \underbrace{\psi_1^*(x)\psi_1^*(y)}_{creates \, 2 \, part. @ \, states \, \perp \, \Phi} \mathbf{K}(x, y) \underbrace{a_{\Phi}^2}_{annih. 2 \, part. @ \, \Phi}$$

• Scheme: keep up to terms quadratic in ψ_1, ψ_1^* in \mathcal{H} . Enforce Schr. eq.

Introduction COOCO Focus COOCO COOCO COOCO COOCO COOCO COOCO COOCO Results: II. Homogenization

Governing (elliptic) PDEs:

$$\begin{aligned} \mathcal{L}_{x}[\Phi^{\epsilon}]\Phi^{\epsilon} &:= [-\triangle_{x} + V_{e}(x) + g^{\epsilon}(x)(\Phi^{\epsilon})^{2} - \mu^{\epsilon}]\Phi^{\epsilon}(x) = 0, \quad N^{-1} \|\Phi^{\epsilon}\|_{L^{2}}^{2} = 1 \\ &\{\mathcal{L}_{x}[\Phi^{\epsilon}] + \mathcal{L}_{y}[\Phi^{\epsilon}] + [g^{\epsilon}(x)\Phi^{\epsilon}(x)^{2} + g^{\epsilon}(y)\Phi^{\epsilon}(y)^{2}]\}K^{\epsilon}(x,y) \\ &+ \int \mathrm{d}z \, g^{\epsilon}(z)\Phi^{\epsilon}(z)^{2} \, K^{\epsilon}(x,z) \, K^{\epsilon}(y,z) = -g^{\epsilon}(x)\Phi^{\epsilon}(x)^{2}\delta(x-y) \,. \end{aligned}$$

Periodic microstructure:

$$g^{\epsilon}(x) = g_0[1 + A(x/\epsilon)].$$

Seek (formally) two-scale expansions for $\Phi^{\epsilon}(x)$, $K^{\epsilon}(x, y)$:

 $\Phi^{\epsilon}(x) = \Phi_0(x, \tilde{x}) + \epsilon \Phi_1(x, \tilde{x}) + \epsilon^2 \Phi_2(x, \tilde{x}) + \dots, \quad \tilde{x} = x/\epsilon;$

 $K^{\epsilon}(x, y) = K_0(x, y, \tilde{x}, \tilde{y}) + \epsilon K_1(x, y, \tilde{x}, \tilde{y}) + \epsilon^2 K_2(x, y, \tilde{x}, \tilde{y}) + \dots$ Accordingly, write $\mu^{\epsilon} = \mu_0 + \epsilon \mu_1 + \epsilon^2 \mu_2 + \dots$

Introduction COOCO Focus COOCO COOCO COOCO COOCO COOCO COOCO COOCO Results: II. Homogenization

Governing (elliptic) PDEs:

$$\begin{aligned} \mathcal{L}_{x}[\Phi^{\epsilon}]\Phi^{\epsilon} &:= [-\triangle_{x} + V_{e}(x) + g^{\epsilon}(x)(\Phi^{\epsilon})^{2} - \mu^{\epsilon}]\Phi^{\epsilon}(x) = 0, \quad N^{-1} \|\Phi^{\epsilon}\|_{L^{2}}^{2} = 1 \\ &\{\mathcal{L}_{x}[\Phi^{\epsilon}] + \mathcal{L}_{y}[\Phi^{\epsilon}] + [g^{\epsilon}(x)\Phi^{\epsilon}(x)^{2} + g^{\epsilon}(y)\Phi^{\epsilon}(y)^{2}]\}K^{\epsilon}(x,y) \\ &+ \int \mathrm{d}z \, g^{\epsilon}(z)\Phi^{\epsilon}(z)^{2} \, K^{\epsilon}(x,z) \, K^{\epsilon}(y,z) = -g^{\epsilon}(x)\Phi^{\epsilon}(x)^{2}\delta(x-y) \,. \end{aligned}$$

Periodic microstructure:

$$g^{\epsilon}(x) = g_0[1 + A(x/\epsilon)].$$

Seek (formally) two-scale expansions for $\Phi^{\epsilon}(x)$, $K^{\epsilon}(x, y)$:

 $\Phi^{\epsilon}(x) = \Phi_0(x, \tilde{x}) + \epsilon \Phi_1(x, \tilde{x}) + \epsilon^2 \Phi_2(x, \tilde{x}) + \dots, \quad \tilde{x} = x/\epsilon;$

 $K^{\epsilon}(x,y) = K_0(x,y,\tilde{x},\tilde{y}) + \epsilon K_1(x,y,\tilde{x},\tilde{y}) + \epsilon^2 K_2(x,y,\tilde{x},\tilde{y}) + \dots$

Accordingly, write $\mu^{\epsilon} = \mu_0 + \epsilon \mu_1 + \epsilon^2 \mu_2 + \dots$

・ロト・日本・ヨト・ヨー シック

Introduction COOCO Focus COOCO COOCO COOCO COOCO COOCO COOCO COOCO Results: II. Homogenization

Governing (elliptic) PDEs:

$$\begin{aligned} \mathcal{L}_{x}[\Phi^{\epsilon}]\Phi^{\epsilon} &:= [-\triangle_{x} + V_{e}(x) + g^{\epsilon}(x)(\Phi^{\epsilon})^{2} - \mu^{\epsilon}]\Phi^{\epsilon}(x) = 0, \quad N^{-1} \|\Phi^{\epsilon}\|_{L^{2}}^{2} = 1 \\ &\{\mathcal{L}_{x}[\Phi^{\epsilon}] + \mathcal{L}_{y}[\Phi^{\epsilon}] + [g^{\epsilon}(x)\Phi^{\epsilon}(x)^{2} + g^{\epsilon}(y)\Phi^{\epsilon}(y)^{2}]\}K^{\epsilon}(x,y) \\ &+ \int \mathrm{d}z \, g^{\epsilon}(z)\Phi^{\epsilon}(z)^{2} \, K^{\epsilon}(x,z) \, K^{\epsilon}(y,z) = -g^{\epsilon}(x)\Phi^{\epsilon}(x)^{2}\delta(x-y) \,. \end{aligned}$$

Periodic microstructure:

$$g^{\epsilon}(x) = g_0[1 + A(x/\epsilon)].$$

Seek (formally) two-scale expansions for $\Phi^{\epsilon}(x)$, $K^{\epsilon}(x, y)$:

$$\Phi^{\epsilon}(x) = \Phi_0(x, \tilde{x}) + \epsilon \Phi_1(x, \tilde{x}) + \epsilon^2 \Phi_2(x, \tilde{x}) + \dots, \quad \tilde{x} = x/\epsilon;$$

 $K^{\epsilon}(x, y) = K_0(x, y, \tilde{x}, \tilde{y}) + \epsilon K_1(x, y, \tilde{x}, \tilde{y}) + \epsilon^2 K_2(x, y, \tilde{x}, \tilde{y}) + \dots$ Accordingly, write $\mu^{\epsilon} = \mu_0 + \epsilon \mu_1 + \epsilon^2 \mu_2 + \dots$

Results. II	Homoge	nization (Con	tinued)		
Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	000		00000	00	00

Proposition 2.1 [DM, 2012] (Classical period. homogen. for Φ^{ϵ}) The coefficients of two-scale expansion for Φ^{ϵ} read $\Phi_0(x, \tilde{x}) = f_0(x), \quad \Phi_1(x, \tilde{x}) = 0,$ $\Phi_2(x, \tilde{x}) = g_0 f_0(x)^3 \left[\triangle_x^{-1} A(\tilde{x}) \right] + f_2(x);$ $\mathcal{L}_{0,x}[f_0]f_0 := [-\triangle_x + V_e(x) + g_0f_0(x)^2 - \mu_0]f_0(x) = 0, N^{-1}||f_0||_{L^2}^2 = 1$ $\mathcal{L}_{2,x}f_2 := [\mathcal{L}_{0,x}[f_0] + 2g_0f_0(x)^2]f_2(x) = 3g_0^2f_0^5||A||_{H^{-1}}^2 + \mu_2f_0, \ \langle f_0, f_2 \rangle = 0;$

Results: II	Homoge	nization (Con	tinued)		
Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	000		00000	00	00

Proposition 2.1 [DM, 2012] (Classical period. homogen. for Φ^{ϵ}) The coefficients of two-scale expansion for Φ^{ϵ} read $\Phi_0(x, \tilde{x}) = f_0(x), \quad \Phi_1(x, \tilde{x}) = 0,$ $\Phi_2(x, \tilde{x}) = g_0 f_0(x)^3 \left[\triangle_x^{-1} A(\tilde{x}) \right] + f_2(x);$ $\mathcal{L}_{0,x}[f_0]f_0 := [-\Delta_x + V_e(x) + g_0f_0(x)^2 - \mu_0]f_0(x) = 0, N^{-1}||f_0||_{L^2}^2 = 1,$ $\mathcal{L}_{2,x}f_2 := [\mathcal{L}_{0,x}[f_0] + 2g_0f_0(x)^2]f_2(x) = 3g_0^2f_0^5||A||_{H^{-1}}^2 + \mu_2f_0, \ \langle f_0, f_2 \rangle = 0;$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●
Results: II	Homoge	nization (Con	tinued)		
Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	000		00000	00	00

Proposition 2.1 [DM, 2012] (Classical period. homogen. for Φ^{ϵ}) The coefficients of two-scale expansion for Φ^{ϵ} read $\Phi_0(x, \tilde{x}) = f_0(x), \quad \Phi_1(x, \tilde{x}) = 0,$ $\Phi_2(x, \tilde{x}) = g_0 f_0(x)^3 \left[\triangle_x^{-1} A(\tilde{x}) \right] + f_2(x);$ $\mathcal{L}_{0,x}[f_0]f_0 := [-\Delta_x + V_e(x) + g_0f_0(x)^2 - \mu_0]f_0(x) = 0, N^{-1}||f_0||_{L^2}^2 = 1,$ $\mathcal{L}_{2,x}f_2 := [\mathcal{L}_{0,x}[f_0] + 2g_0f_0(x)^2]f_2(x) = 3g_0^2f_0^5||A||_{H^{-1}}^2 + \mu_2f_0, \ \langle f_0, f_2 \rangle = 0;$ $\mu_0 = \zeta_0 + \zeta_{\Delta 0} + \zeta_{e0}, \ \mu_1 = 0, \ \mu_2 = -3g_0^2 \|A\|_{H^{-1}_{av}}^2 \frac{\langle f_0, \mathcal{L}_2^{-1} f_0^5 \rangle}{\langle f_0, \mathcal{L}_2^{-1} f_0 \rangle};$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 → 釣ぬ⊙

Results: II	Homoge	nization (Con	tinued)		
Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	000		00000	00	00

Proposition 2.1 [DM, 2012] (Classical period. homogen. for Φ^{ϵ}) The coefficients of two-scale expansion for Φ^{ϵ} read $\Phi_0(x, \tilde{x}) = f_0(x), \quad \Phi_1(x, \tilde{x}) = 0,$ $\Phi_2(x, \tilde{x}) = g_0 f_0(x)^3 \left[\triangle_x^{-1} A(\tilde{x}) \right] + f_2(x);$ $\mathcal{L}_{0,x}[f_0]f_0 := [-\Delta_x + V_e(x) + g_0f_0(x)^2 - \mu_0]f_0(x) = 0, N^{-1}||f_0||_{L^2}^2 = 1,$ $\mathcal{L}_{2,x}f_2 := [\mathcal{L}_{0,x}[f_0] + 2g_0f_0(x)^2]f_2(x) = 3g_0^2f_0^5||A||_{H^{-1}}^2 + \mu_2f_0, \ \langle f_0, f_2 \rangle = 0;$ $\mu_0 = \zeta_0 + \zeta_{\Delta 0} + \zeta_{e0}, \ \mu_1 = 0, \ \mu_2 = -3g_0^2 \|A\|_{H^{-1}_{av}}^2 \frac{\langle f_0, \mathcal{L}_2^{-1} f_0^5 \rangle}{\langle f_0, \mathcal{L}_2^{-1} f_0^- \rangle};$ where $\zeta_0 = g_0 N^{-1} \|f_0^2\|_{L^2}^2$, $\zeta_{\Delta 0} = N^{-1} \|\nabla f_0\|_{L^2}^2$, $\zeta_{e0} = N^{-1} \langle f_0, V_e f_0 \rangle$.

Results. II	Home	ogenization (C	(ont)		
Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	000		00000	00	00

Coefficients in two-scale expansion for K^{ϵ} :

$$\begin{split} & K_0(x, y, \tilde{x}, \tilde{y}) = \kappa_0(x, y), \quad K_1(x, y, \tilde{x}, \tilde{y}) = 0, \\ & K_2(x, y, \tilde{x}, \tilde{y}) = 2g_0[(\Delta_{\tilde{x}}^{-1}A(\tilde{x}))f_0(x)^2 + (\Delta_{\tilde{y}}^{-1}A(\tilde{y}))f_0(y)^2]\kappa_0 + \kappa_2(x, y); \end{split}$$

$$\begin{split} \mathcal{L}_{(xy)}\kappa_0 &:= \{\mathcal{L}_{0,x}[f_0] + \mathcal{L}_{0,y}[f_0] + g_0[f_0(x)^2 + f_0(y)^2]\}\kappa_0(x,y) \\ &= -\mathcal{C}[f_0^2;\kappa_0]\kappa_0(x,y) + B_0(x,y) ; \quad B_0(x,y) = -g_0f_0(x)^2\delta(x-y) ; \\ \mathcal{L}_{(xy)}\kappa_2 &= -2\mathcal{C}[f_0^2;\kappa_0]\kappa_2(x,y) + B_2[f_0,f_2](x,y) ; \end{split}$$

 $\mathcal{C}[f;\kappa]\ell(x,y) := \frac{1}{2}g_0 \int \mathrm{d}z f(z) \left[\kappa(x,z)\ell(y,z) + \ell(x,z)\kappa(y,z)\right],$

$$B_{2}(x, y) = 2g_{0}[3g_{0}||A||^{2}_{H_{av}^{-1}}f_{0}(x)^{4} - f_{0}(x)f_{2}(x)] \delta(x - y) + \{2Z_{2} + 9g_{0}^{2}||A||^{2}_{H_{av}^{-1}}[f_{0}(x)^{4} + f_{0}(y)^{4}] - 4g_{0}[f_{0}(x)f_{2}(x) + f_{0}(y)f_{2}(y)]\}\kappa_{0} - 2C[f_{0}f_{2}, \kappa_{0}]\kappa_{0} + 6g_{0}||A||^{2}_{H_{av}^{-1}}C[f_{0}^{4}, \kappa_{0}]\kappa_{0}, Z_{2} = N^{-1}g_{0}[2\langle f_{0}^{3}, f_{2} \rangle - 3g_{0}||A||^{2}_{H^{-1}}||f_{0}^{3}||^{2}_{L^{2}}].$$

Results. II	Homoge	nization (Con	t)		
Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	000		00000	00	00

Coefficients in two-scale expansion for K^{ϵ} :

$$\begin{split} & K_0(x, y, \tilde{x}, \tilde{y}) = \kappa_0(x, y), \quad K_1(x, y, \tilde{x}, \tilde{y}) = 0, \\ & K_2(x, y, \tilde{x}, \tilde{y}) = 2g_0[(\Delta_{\tilde{x}}^{-1}A(\tilde{x}))f_0(x)^2 + (\Delta_{\tilde{y}}^{-1}A(\tilde{y}))f_0(y)^2]\kappa_0 + \kappa_2(x, y); \\ & \mathcal{L}_{(xy)}\kappa_0 := \{\mathcal{L}_{0,x}[f_0] + \mathcal{L}_{0,y}[f_0] + g_0[f_0(x)^2 + f_0(y)^2]\}\kappa_0(x, y) \\ & = -\mathcal{C}[f_0^2; \kappa_0]\kappa_0(x, y) + B_0(x, y); \quad B_0(x, y) = -g_0f_0(x)^2\delta(x - y); \\ & \mathcal{L}_{(xy)}\kappa_2 = -2\mathcal{C}[f_0^2; \kappa_0]\kappa_2(x, y) + B_2[f_0, f_2](x, y); \end{split}$$

 $\mathcal{C}[f;\kappa]\ell(x,y) := \frac{1}{2}g_0 \int \mathrm{d}z f(z) \left[\kappa(x,z)\ell(y,z) + \ell(x,z)\kappa(y,z)\right],$

$$B_{2}(x,y) = 2g_{0}[3g_{0}||A||^{2}_{H^{-1}_{av}}f_{0}(x)^{4} - f_{0}(x)f_{2}(x)] \delta(x-y) + \{2Z_{2} + 9g_{0}^{2}||A||^{2}_{H^{-1}_{av}}[f_{0}(x)^{4} + f_{0}(y)^{4}] - 4g_{0}[f_{0}(x)f_{2}(x) + f_{0}(y)f_{2}(y)]\}\kappa_{0} - 2C[f_{0}f_{2}, \kappa_{0}]\kappa_{0} + 6g_{0}||A||^{2}_{H^{-1}_{av}}C[f_{0}^{4}, \kappa_{0}]\kappa_{0}, Z_{2} = N^{-1}g_{0}[2\langle f_{0}^{3}, f_{2} \rangle - 3g_{0}||A||^{2}_{H^{-1}}||f_{0}^{3}||^{2}_{L^{2}}].$$

	000 T T	• • • • • • • • • • • • • • • • • • • •	00000	00	00
Results: II.	. Homo	genization (C	Cont.)		

Coefficients in two-scale expansion for K^{ϵ} :

$$\begin{split} & K_0(x, y, \tilde{x}, \tilde{y}) = \kappa_0(x, y), \quad K_1(x, y, \tilde{x}, \tilde{y}) = 0, \\ & K_2(x, y, \tilde{x}, \tilde{y}) = 2g_0[(\Delta_{\tilde{x}}^{-1}A(\tilde{x}))f_0(x)^2 + (\Delta_{\tilde{y}}^{-1}A(\tilde{y}))f_0(y)^2]\kappa_0 + \kappa_2(x, y); \\ & \mathcal{L}_{(xy)}\kappa_0 := \{\mathcal{L}_{0,x}[f_0] + \mathcal{L}_{0,y}[f_0] + g_0[f_0(x)^2 + f_0(y)^2]\}\kappa_0(x, y) \\ & = -\mathcal{C}[f_0^2; \kappa_0]\kappa_0(x, y) + B_0(x, y); \quad B_0(x, y) = -g_0f_0(x)^2\delta(x - y); \\ & \mathcal{L}_{(xy)}\kappa_2 = -2\mathcal{C}[f_0^2; \kappa_0]\kappa_2(x, y) + B_2[f_0, f_2](x, y); \end{split}$$

 $\mathcal{C}[f;\kappa]\ell(x,y) := \frac{1}{2}g_0 \int \mathrm{d}z f(z) \left[\kappa(x,z)\ell(y,z) + \ell(x,z)\kappa(y,z)\right],$

$$B_{2}(x,y) = 2g_{0}[3g_{0}||A||^{2}_{H_{av}^{-1}}f_{0}(x)^{4} - f_{0}(x)f_{2}(x)] \delta(x-y) + \{2Z_{2} + 9g_{0}^{2}||A||^{2}_{H_{av}^{-1}}[f_{0}(x)^{4} + f_{0}(y)^{4}] - 4g_{0}[f_{0}(x)f_{2}(x) + f_{0}(y)f_{2}(y)]\}\kappa_{0} - 2C[f_{0}f_{2}, \kappa_{0}]\kappa_{0} + 6g_{0}||A||^{2}_{H_{av}^{-1}}C[f_{0}^{4}, \kappa_{0}]\kappa_{0}, Z_{2} = N^{-1}g_{0}[2\langle f_{0}^{3}, f_{2} \rangle - 3g_{0}||A||^{2}_{H^{-1}}||f_{0}^{3}||^{2}_{L^{2}}].$$

Results II	Homog	enization (C	ont)		
Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	000		00000	00	00

Coefficients in two-scale expansion for K^{ϵ} :

$$\begin{split} & K_0(x, y, \tilde{x}, \tilde{y}) = \kappa_0(x, y), \quad K_1(x, y, \tilde{x}, \tilde{y}) = 0, \\ & K_2(x, y, \tilde{x}, \tilde{y}) = 2g_0[(\Delta_{\tilde{x}}^{-1}A(\tilde{x}))f_0(x)^2 + (\Delta_{\tilde{y}}^{-1}A(\tilde{y}))f_0(y)^2]\kappa_0 + \kappa_2(x, y); \\ & \mathcal{L}_{(xy)}\kappa_0 := \{\mathcal{L}_{0,x}[f_0] + \mathcal{L}_{0,y}[f_0] + g_0[f_0(x)^2 + f_0(y)^2]\}\kappa_0(x, y) \\ & = -\mathcal{C}[f_0^2; \kappa_0]\kappa_0(x, y) + B_0(x, y); \quad B_0(x, y) = -g_0f_0(x)^2\delta(x - y); \\ & \mathcal{L}_{(xy)}\kappa_2 = -2\mathcal{C}[f_0^2; \kappa_0]\kappa_2(x, y) + B_2[f_0, f_2](x, y); \\ & \mathcal{C}[f; \kappa]\ell(x, y) := \frac{1}{2}g_0\int dz f(z) \left[\kappa(x, z)\ell(y, z) + \ell(x, z)\kappa(y, z)\right], \end{split}$$

 $B_{2}(x,y) = 2g_{0}[3g_{0}||A||^{2}_{H^{-1}_{av}}f_{0}(x)^{4} - f_{0}(x)f_{2}(x)] \delta(x-y) + \{2Z_{2} + 9g_{0}^{2}||A||^{2}_{H^{-1}_{av}}[f_{0}(x)^{4} + f_{0}(y)^{4}] - 4g_{0}[f_{0}(x)f_{2}(x) + f_{0}(y)f_{2}(y)]\}\kappa_{0}$ $- 2C[f_{0}f_{2}, \kappa_{0}]\kappa_{0} + 6g_{0}||A||^{2}_{H^{-1}_{av}}C[f_{0}^{4}, \kappa_{0}]\kappa_{0},$ $Z_{2} = N^{-1}g_{0}[2\langle f_{0}^{3}, f_{2} \rangle - 3g_{0}||A||^{2}_{H^{-1}}||f_{0}^{3}||^{2}_{L^{2}}].$

	000 T T	• • • • • • • • • • • • • • • • • • • •	00000	00	00
Results: II.	. Homo	genization (C	Cont.)		

Coefficients in two-scale expansion for K^{ϵ} :

 $K_0(x, y, \tilde{x}, \tilde{y}) = \kappa_0(x, y), \quad K_1(x, y, \tilde{x}, \tilde{y}) = 0,$ $K_2(x, y, \tilde{x}, \tilde{y}) = 2g_0[(\Delta_{\tilde{x}}^{-1}A(\tilde{x}))f_0(x)^2 + (\Delta_{\tilde{y}}^{-1}A(\tilde{y}))f_0(y)^2]\kappa_0 + \kappa_2(x, y);$ $\mathcal{L}_{(xy)}\kappa_0 := \{\mathcal{L}_{0,x}[f_0] + \mathcal{L}_{0,y}[f_0] + g_0[f_0(x)^2 + f_0(y)^2]\}\kappa_0(x,y)$ $= -\mathcal{C}[f_0^2; \kappa_0]\kappa_0(x, y) + B_0(x, y); \quad B_0(x, y) = -g_0f_0(x)^2\delta(x - y);$ $\mathcal{L}_{(xv)}\kappa_2 = -2\mathcal{C}[f_0^2;\kappa_0]\kappa_2(x,y) + B_2[f_0,f_2](x,y);$ $\mathcal{C}[f;\kappa]\ell(x,y) := \frac{1}{2}g_0 \int \mathrm{d}z f(z) \left[\kappa(x,z)\ell(y,z) + \ell(x,z)\kappa(y,z)\right],$ $B_2(x,y) = 2g_0 [3g_0 ||A||_{H_m^{-1}}^2 f_0(x)^4 - f_0(x)f_2(x)] \,\delta(x-y) + \{2Z_2\}$ $+9g_0^2 ||A||_{H^{-1}}^2 [f_0(x)^4 + f_0(y)^4] - 4g_0 [f_0(x)f_2(x) + f_0(y)f_2(y)] \} \kappa_0$

$$-2\mathcal{C}[f_0f_2,\kappa_0]\kappa_0+6g_0\,||A||^2_{H^{-1}_{av}}\,\mathcal{C}[f_0^4,\kappa_0]\kappa_0,$$

$$Z_2 = N^{-1}g_0 \left[2\langle f_0^3, f_2 \rangle - 3g_0 \|A\|_{H^{-1}_{av}}^2 \|f_0^3\|_{L^2}^2 \right] \,.$$

Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	000		00000	00	00
Remarks of	n (formal) proof of Pro	position 2		

- Need "compatibility condition" on terms up to O(ε⁴) (see Lemma 1 below) [Bensoussan, Lions, Papanicolaou, 1978].
- **Difficulty:** Nonlocal term in PDE for *K* (see Lemmas 2, 3).

• Two-scale convergence is **not** addressed.

(Formal) Proof of Proposition 2: Useful lemmas

By substitution of expansions in PDEs, obtain cascade of equations:

 $-\Delta_{\tilde{x}}u=S(\tilde{x})$

Lemma 1 (Implication of Fredholm alternative)

The equation $-\Delta_{\tilde{x}}u = S(\tilde{x})$, where $S(\tilde{x})$ is (1-)periodic, admits a (1-)periodic solution $u(\tilde{x})$ only if $\langle S \rangle = 0$ (**compatibility condition**). Then, $u(\tilde{x}) = (-\Delta_{\tilde{x}})^{-1}S(\tilde{x}) + c$.

In nonlocal term for *K*, some averaging is needed:

Lemma 2 (Asymptotics for nonlocal term. Part I.)

If $P(\tilde{x})$ is 1-periodic with $P \in L^{\infty}(\mathbb{R}^d)$ and $\langle P \rangle = 0$, and $h \in W^{m,1}(\mathbb{R}^d)$ with vanishing derivatives at ∞ , then

$$\int_{\mathbb{R}^d} P\left(\frac{x}{\epsilon}\right) h(x) \, \mathrm{d}x = \mathcal{O}(\epsilon^m) \; ; \; m = 1, \; 2, \; \dots \; (\epsilon \downarrow 0)$$

Introduction COOR Solution Coor So

By substitution of expansions in PDEs, obtain cascade of equations:

 $-\Delta_{\tilde{x}}u=S(\tilde{x})$

Lemma 1 (Implication of Fredholm alternative)

The equation $-\Delta_{\tilde{x}}u = S(\tilde{x})$, where $S(\tilde{x})$ is (1-)periodic, admits a (1-)periodic solution $u(\tilde{x})$ only if $\langle S \rangle = 0$ (**compatibility condition**). Then, $u(\tilde{x}) = (-\Delta_{\tilde{x}})^{-1}S(\tilde{x}) + c$.

In nonlocal term for *K*, some averaging is needed:

Lemma 2 (Asymptotics for nonlocal term. Part I.)

If $P(\tilde{x})$ is 1-periodic with $P \in L^{\infty}(\mathbb{R}^d)$ and $\langle P \rangle = 0$, and $h \in W^{m,1}(\mathbb{R}^d)$ with vanishing derivatives at ∞ , then

$$\int_{\mathbb{R}^d} P\left(\frac{x}{\epsilon}\right) h(x) \, \mathrm{d}x = \mathcal{O}(\epsilon^m) \; ; \; m = 1, \; 2, \; \dots \; (\epsilon \downarrow 0)$$

Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	000		00000	00	00
A few us	seful lem	mas (cont.)			

Lemma 3 (Refinement of Lemma 2 via Fourier Transform)

Consider the 1-periodic *P* where $P \in L^2(\mathbb{T}^d)$ and $\langle P \rangle = 0$, and $h \in L^2(\mathbb{R}^d)$. Suppose $e^{i\lambda \cdot x_0} \hat{h}(\lambda) = c_1 \lambda^{-2s} + o(|\lambda|^{-2s})$ as $|\lambda| \to \infty$, $\lambda \in \mathbb{R}^d$, for some s > d/4, $x_0 \neq 0$. Then,

$$\int_{\mathbb{R}^d} P\left(\frac{x}{\epsilon}\right) h(x) \, \mathrm{d}x = c_1 \, \epsilon^{2s} \left[(-\Delta)^{-s} P \right] (x_0/\epsilon) + o(\epsilon^{2s}) \quad \text{as } \epsilon \downarrow 0 \; .$$

(日)

In the above, $P(\tilde{x}) \equiv \partial_{\tilde{x}}^{-\alpha} A(\tilde{x})$.

Introduction	Focus	Governing PDEs	Macro-trap	Depletion	Epilogue
00000	000		00000	00	00
A few us	seful lem	mas (cont.)			

Lemma 3 (Refinement of Lemma 2 via Fourier Transform)

Consider the 1-periodic *P* where $P \in L^2(\mathbb{T}^d)$ and $\langle P \rangle = 0$, and $h \in L^2(\mathbb{R}^d)$. Suppose $e^{i\lambda \cdot x_0} \hat{h}(\lambda) = c_1 \lambda^{-2s} + o(|\lambda|^{-2s})$ as $|\lambda| \to \infty$, $\lambda \in \mathbb{R}^d$, for some s > d/4, $x_0 \neq 0$. Then,

$$\int_{\mathbb{R}^d} P\left(\frac{x}{\epsilon}\right) h(x) \, \mathrm{d}x = c_1 \, \epsilon^{2s} \left[(-\Delta)^{-s} P \right] (x_0/\epsilon) + o(\epsilon^{2s}) \quad \text{as } \epsilon \downarrow 0 \; .$$

(日)

In the above, $P(\tilde{x}) \equiv \partial_{\tilde{x}}^{-\alpha} A(\tilde{x})$.

Assume $V_e(x) = U(\check{\epsilon}x)$, $\check{\epsilon} \ll \epsilon$. Apply heuristics for Φ_n via boundary layer theory

I. Zeroth-order homog. soln., $f_0(x)$. $x \mapsto \breve{x} = \breve{\epsilon}x$, $\phi_0(\breve{x}) := f_0(\breve{x}/\breve{\epsilon})$,

$$[-\breve{\epsilon}^2 riangle_x^2 + U(x) + g_0 \phi_0^2 - \mu_0] \phi_0(x) = 0; \quad \int \phi_0(x)^2 \, \mathrm{d}x = \breve{\epsilon}^3 N = 1$$

• Outer solution (for $\check{\epsilon} = 0$), $\phi_0(x) \sim \phi_0^0(x)$:

$$\phi_0^0(x)=\left\{egin{array}{cc} g_0^{-1/2}\sqrt{\mu_0^0-U(x)} & x\in\mathfrak{R}_0^\delta\ 0 & x\in\mathfrak{R}_0^{\mathrm{c},\delta} \end{array}
ight.$$

$$\begin{split} \mathfrak{R}_0^{\delta} &:= \mathfrak{R}_0 \setminus \mathfrak{B}(\partial \mathfrak{R}_0, \delta), \, \mathfrak{R}_0^{c} = \mathbb{R}^3 \setminus \mathfrak{R}_0; \, \mathfrak{R}_0 := \{ x \in \mathbb{R}^3 \, | \, U(x) < \mu_0^0 \} \\ \mu_0 \sim \mu_0^0 = |\mathfrak{R}_0|^{-1} g_0 + \langle U \rangle_0 \, ; \quad \langle U \rangle_0 := |\mathfrak{R}_0|^{-1} \int\limits_{\mathfrak{R}_0} U(x) \, \mathrm{d}x \\ \mathfrak{R}_0 &:= |\mathfrak{R}_0|^{-1} \int\limits_{\mathfrak{R}_0} \mathcal{R}_0 = |\mathfrak{R}_0|^{-1} \int \int \mathcal{R}_0 = |\mathfrak{R}_0|^{-1} \int \int\limits_{\mathfrak{R}_0} \mathcal{R}_0 = |\mathfrak{R}_0|^{-1} \int \int \mathcal{R}_0 = |\mathfrak{R}_0|^{-1} \int \mathcal{R}_0 = |\mathfrak$$

Assume $V_e(x) = U(\check{\epsilon}x)$, $\check{\epsilon} \ll \epsilon$. Apply heuristics for Φ_n via boundary layer theory

I. Zeroth-order homog. soln., $f_0(x)$. $x \mapsto \breve{x} = \breve{\epsilon}x$, $\phi_0(\breve{x}) := f_0(\breve{x}/\breve{\epsilon})$,

$$[-\breve{\epsilon}^2 \triangle_x^2 + U(x) + g_0 \phi_0^2 - \mu_0] \phi_0(x) = 0; \quad \int \phi_0(x)^2 \, \mathrm{d}x = \breve{\epsilon}^3 N = 1$$

• Outer solution (for $\check{\epsilon} = 0$), $\phi_0(x) \sim \phi_0^0(x)$:

$$\phi_0^0(x)=\left\{egin{array}{cc} g_0^{-1/2}\sqrt{\mu_0^0-U(x)} & x\in\mathfrak{R}_0^\delta\ 0 & x\in\mathfrak{R}_0^{\mathrm{c},\delta} \end{array}
ight.$$

$$\begin{split} \mathfrak{R}_0^{\delta} &:= \mathfrak{R}_0 \setminus \mathfrak{B}(\partial \mathfrak{R}_0, \delta), \, \mathfrak{R}_0^c = \mathbb{R}^3 \setminus \mathfrak{R}_0; \, \mathfrak{R}_0 := \{ x \in \mathbb{R}^3 \, | \, U(x) < \mu_0^0 \} \\ \mu_0 \sim \mu_0^0 = |\mathfrak{R}_0|^{-1} g_0 + \langle U \rangle_0 \, ; \quad \langle U \rangle_0 := |\mathfrak{R}_0|^{-1} \int\limits_{\mathfrak{R}_0} U(x) \, \mathrm{d}x \\ \mathfrak{R}_0 &:= |\mathfrak{R}_0|^{-1} \int\limits_{\mathfrak{R}_0} \mathcal{R}_0 = |\mathfrak{R}_0|^{-1} \int \int \mathcal{R}_0 = |\mathfrak{R}_0|^{-1} \int \int \mathcal{R}_0 = |\mathfrak{R}_0|^{-1} \int$$

Assume $V_e(x) = U(\check{\epsilon}x)$, $\check{\epsilon} \ll \epsilon$. Apply heuristics for Φ_n via boundary layer theory

I. Zeroth-order homog. soln., $f_0(x)$. $x \mapsto \breve{x} = \breve{\epsilon}x$, $\phi_0(\breve{x}) := f_0(\breve{x}/\breve{\epsilon})$,

$$[-\breve{\epsilon}^2 \triangle_x^2 + U(x) + g_0 \phi_0^2 - \mu_0] \phi_0(x) = 0; \quad \int \phi_0(x)^2 \, \mathrm{d}x = \breve{\epsilon}^3 N = 1$$

• Outer solution (for $\check{\epsilon} = 0$), $\phi_0(x) \sim \phi_0^0(x)$:

$$\phi_0^0(x)=\left\{egin{array}{cc} g_0^{-1/2}\sqrt{\mu_0^0-U(x)} & x\in\mathfrak{R}_0^\delta\ 0 & x\in\mathfrak{R}_0^{\mathrm{c},\delta} \end{array}
ight.$$

$$\begin{split} \mathfrak{R}_0^{\delta} &:= \mathfrak{R}_0 \setminus \mathfrak{B}(\partial \mathfrak{R}_0, \delta), \, \mathfrak{R}_0^c = \mathbb{R}^3 \setminus \mathfrak{R}_0; \, \mathfrak{R}_0 := \{ x \in \mathbb{R}^3 \, | \, U(x) < \mu_0^0 \} \\ \mu_0 \sim \mu_0^0 = |\mathfrak{R}_0|^{-1} g_0 + \langle U \rangle_0 \, ; \quad \langle U \rangle_0 := |\mathfrak{R}_0|^{-1} \int\limits_{\mathfrak{R}_0} U(x) \, \mathrm{d}x \\ \mathfrak{R}_0 &:= |\mathfrak{R}_0|^{-1} \int\limits_{\mathfrak{R}_0} \mathcal{R}_0 = |\mathfrak{R}_0|^{-1} \int \int \mathcal{R}_0 = |\mathfrak{R}_0|^{-1} \int \int \mathcal{R}_0 = |\mathfrak{R}_0|^{-1} \int$$

Assume $V_e(x) = U(\check{\epsilon}x)$, $\check{\epsilon} \ll \epsilon$. Apply heuristics for Φ_n via boundary layer theory

I. Zeroth-order homog. soln., $f_0(x)$. $x \mapsto \breve{x} = \breve{\epsilon}x$, $\phi_0(\breve{x}) := f_0(\breve{x}/\breve{\epsilon})$,

$$[-\breve{\epsilon}^2 \triangle_x^2 + U(x) + g_0 \phi_0^2 - \mu_0] \phi_0(x) = 0; \quad \int \phi_0(x)^2 \, \mathrm{d}x = \breve{\epsilon}^3 N = 1$$

• Outer solution (for $\check{\epsilon} = 0$), $\phi_0(x) \sim \phi_0^0(x)$:

$$\phi_0^0(x) = \left\{ egin{array}{cc} g_0^{-1/2} \sqrt{\mu_0^0 - U(x)} & x \in \mathfrak{R}_0^\delta \ 0 & x \in \mathfrak{R}_0^{\mathrm{c},\delta} \end{array}
ight.;$$

 $\mathfrak{R}_0^{\delta} := \mathfrak{R}_0 \setminus \mathfrak{B}(\partial \mathfrak{R}_0, \delta), \mathfrak{R}_0^{\mathsf{c}} = \mathbb{R}^3 \setminus \mathfrak{R}_0; \mathfrak{R}_0 := \{x \in \mathbb{R}^3 \mid U(x) < \mu_0^0\}$ $\mu_0 \sim \mu_0^0 = |\mathfrak{R}_0|^{-1}g_0 + \langle U \rangle_0; \quad \langle U \rangle_0 := |\mathfrak{R}_0|^{-1} \int \limits_{\mathfrak{R}_0} U(x) \, \mathrm{d}x$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆○◆

Assume $V_e(x) = U(\check{\epsilon}x)$, $\check{\epsilon} \ll \epsilon$. Apply heuristics for Φ_n via boundary layer theory

I. Zeroth-order homog. soln., $f_0(x)$. $x \mapsto \breve{x} = \breve{\epsilon}x$, $\phi_0(\breve{x}) := f_0(\breve{x}/\breve{\epsilon})$,

$$[-\breve{\epsilon}^2 \triangle_x^2 + U(x) + g_0 \phi_0^2 - \mu_0] \phi_0(x) = 0; \quad \int \phi_0(x)^2 \, \mathrm{d}x = \breve{\epsilon}^3 N = 1$$

• Outer solution (for $\check{\epsilon} = 0$), $\phi_0(x) \sim \phi_0^0(x)$:

$$\phi_0^0(x) = \left\{ egin{array}{cc} g_0^{-1/2} \sqrt{\mu_0^0 - U(x)} & x \in \mathfrak{R}_0^\delta \ 0 & x \in \mathfrak{R}_0^{c,\delta} \end{array}
ight.;$$

 $egin{aligned} \mathfrak{R}_0^\delta &:= \mathfrak{R}_0 \setminus \mathfrak{B}(\partial\mathfrak{R}_0, \delta), \, \mathfrak{R}_0^c = \mathbb{R}^3 \setminus \mathfrak{R}_0; \, \mathfrak{R}_0 &:= \{x \in \mathbb{R}^3 \mid U(x) < \mu_0^0\} \ \mu_0 &\sim \mu_0^0 = |\mathfrak{R}_0|^{-1}g_0 + \langle U
angle_0; \quad \langle U
angle_0 &:= |\mathfrak{R}_0|^{-1} \int\limits_{\mathfrak{R}_0} U(x) \, \mathrm{d}x \end{aligned}$

▲□▶▲□▶▲□▶▲□▶ □ のQで

 ϕ_0^0 is not H_{loc}^1 near $\partial \mathfrak{R}_0$: Boundary layer

• Inner solution (near $\partial \mathfrak{R}_0$), $\phi_0^{in}(\eta)$:

By
$$U(x) = U(x_{bd}) + \Upsilon \nu \cdot (x - x_{bd}) + o(|x - x_{bd}|)$$
, fixed $x_{bd} \in \partial \mathfrak{R}_0$:
 $[-\partial_{\eta}^2 + \eta + (\phi_0^{in})^2] \phi_0^{in} = 0$; $\eta := \left(\frac{\Upsilon}{\breve{\epsilon}^2}\right)^{1/3} \nu \cdot (x - x_{bd})$, $\phi_0^{in} := \frac{g_0^{1/2}}{(\breve{\epsilon}\Upsilon)^{1/3}} \phi_0$

Apply matching $\phi_0^{in} \to 0$ as $\eta \to \infty$; $\phi_0^{in} \sim \sqrt{-\eta}$ as $\eta \to -\infty$ $\Rightarrow \phi_0^{in}(\eta) = P_{II}(\eta)$: case of 2nd Painlevé transcendent [DM, '00]

▲□▶▲□▶▲□▶▲□▶ □ のQで

II. Next-order homogenized soln.,

- $\Phi_2(x,\tilde{x}) = g_0 f_0(x)^3 \left[\triangle_{\tilde{x}}^{-1} A(\tilde{x}) \right] + f_2(x); \, \phi_2(x) := f_2(x/\check{\epsilon})$
- Outer solution, $\phi_2^0(x)$:

$$\begin{split} \phi_2^0(x) &= g_0^{-1/2} \{ \frac{3}{2} [\mu_0^0 - U(x)]^{3/2} \|A\|_{H^{-1}_{av}}^2 + \frac{1}{2} \mu_2^0 [\mu_0^0 - U(x)]^{-1/2} \} \\ \text{if } x \in \mathfrak{R}_0^\delta; \phi_2^0(x) &= 0 \text{ if } x \in \mathfrak{R}_0^{c,\delta}. \end{split}$$

$$\mu_2 \sim \mu_2^0 = -3 ||A||_{H^{-1}_{av}}^2 |\Re_0|^{-1} \int\limits_{\Re_0} [\mu_0^0 - U(x)]^2 \, \mathrm{d}x$$

・ロト・日本・日本・日本・日本・日本

II. Next-order homogenized soln.,

- $\Phi_2(x,\tilde{x}) = g_0 f_0(x)^3 \left[\triangle_{\tilde{x}}^{-1} A(\tilde{x}) \right] + f_2(x); \, \phi_2(x) := f_2(x/\check{\epsilon})$
- Outer solution, $\phi_2^0(x)$:

$$\phi_{2}^{0}(x) = g_{0}^{-1/2} \{ \frac{3}{2} [\mu_{0}^{0} - U(x)]^{3/2} \|A\|_{H^{-1}_{av}}^{2} + \frac{1}{2} \mu_{2}^{0} [\mu_{0}^{0} - U(x)]^{-1/2} \}$$

if $x \in \mathfrak{R}_{0}^{\delta}$; $\phi_{2}^{0}(x) = 0$ if $x \in \mathfrak{R}_{0}^{c,\delta}$.

$$\mu_2 \sim \mu_2^0 = -3 ||A||^2_{H^{-1}_{av}} |\Re_0|^{-1} \int\limits_{\Re_0} [\mu_0^0 - U(x)]^2 \,\mathrm{d}x$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Boundary layer near $\partial \Re_0$

• Inner solution (near $\partial \mathfrak{R}_0$), $\phi_2^{in}(\eta)$

$$[\partial_\eta^2 - \eta - 3 P_{II}(\eta)^2] \phi_2^{in}(\eta) = P_{II}(\eta) \, ; \quad \phi_2^{in} := -(\mu_2^0)^{-1} g_0^{1/2} (U_o \check{\epsilon})^{1/3} \phi_2 \, ,$$

where by **matching** with outer solution: $\phi_2^{in}(\eta) \to 0$ as $\eta \to \infty$, $\phi_2^{in}(\eta) \sim -\frac{1}{2}(-\eta)^{-1/2}$ as $\eta \to -\infty$. $\Rightarrow \phi_2^{in}(\eta) = P'_{II}(\eta)$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Boundary layer near $\partial \Re_0$

• Inner solution (near $\partial \mathfrak{R}_0$), $\phi_2^{in}(\eta)$

$$[\partial_\eta^2 - \eta - 3 P_{II}(\eta)^2] \phi_2^{in}(\eta) = P_{II}(\eta) \, ; \quad \phi_2^{in} := -(\mu_2^0)^{-1} g_0^{1/2} (U_o ec{\epsilon})^{1/3} \phi_2 \, ,$$

where by **matching** with outer solution: $\phi_2^{in}(\eta) \to 0$ as $\eta \to \infty$, $\phi_2^{in}(\eta) \sim -\frac{1}{2}(-\eta)^{-1/2}$ as $\eta \to -\infty$. $\Rightarrow \phi_2^{in}(\eta) = P'_{II}(\eta)$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Because of $\delta(x - y)$ -forcing, *K* depends on x - y if $V_e \approx \text{const.}$ Transform to center of mass: $(x, y) \mapsto (x_{\#}, X) = (x - y, \frac{x+y}{2})$ Apply FT in $x_{\#}$; boundary-layer theory in *X*.

I. Zeroth-order homg. kernel, $\kappa_0(x, y)$: Let $X \mapsto \check{X} = \check{\epsilon}X$: slow; $x_{\#} = \mathcal{O}(1)$; define $\mathfrak{K}_0(x_{\#}, \check{X}) := \kappa_0(\check{X}/\check{\epsilon} + x_{\#}/2, \check{X}/\check{\epsilon} - x_{\#}/2)$. Apply FT in $x_{\#}$; dual variable is $\lambda \in \mathbb{R}^3$.

Outer solution, $\mathfrak{K}_0^0(x_{\#}, X)$.

$$\widehat{\mathfrak{K}}^{0}_{0}(\lambda,X) = rac{-\lambda^{2}-\lambda_{0}(X)^{2}+\sqrt{[\lambda^{2}+\lambda_{0}(X)^{2}]^{2}-g_{0}^{2}\phi_{0}^{0}(X)^{4}}}{g_{0}\phi_{0}^{0}(X)^{2}}\,;$$

 $\lambda_0(X)^2 := U(X) + 2g_0\phi_0^0(X)^2 - \mu_0^0; X \in \mathbb{R}^3 \setminus \mathfrak{B}(\partial \mathfrak{R}_0, \delta),$ $\delta = \mathcal{O}(\tilde{\epsilon}^{2/3}).$ **Inversion**: Lommel's fcns. **Inner solution**, $X \in \mathfrak{B}(\partial \mathfrak{R}_0, \delta)$. Obtain ODE near $\partial \mathfrak{R}_0; \lambda$ is parameter [DM, 2012]

Because of $\delta(x - y)$ -forcing, *K* depends on x - y if $V_e \approx \text{const.}$ Transform to center of mass: $(x, y) \mapsto (x_{\#}, X) = (x - y, \frac{x+y}{2})$ Apply FT in $x_{\#}$; boundary-layer theory in *X*.

I. Zeroth-order homg. kernel, $\kappa_0(x, y)$: Let $X \mapsto \check{X} = \check{\epsilon}X$: slow; $x_{\#} = \mathcal{O}(1)$; define $\mathfrak{K}_0(x_{\#}, \check{X}) := \kappa_0(\check{X}/\check{\epsilon} + x_{\#}/2, \check{X}/\check{\epsilon} - x_{\#}/2)$. Apply FT in $x_{\#}$; dual variable is $\lambda \in \mathbb{R}^3$.

Outer solution, $\mathfrak{K}_0^0(x_{\#}, X)$.

$$\widehat{\mathfrak{K}}^{0}_{0}(\lambda,X) = rac{-\lambda^{2} - \lambda_{0}(X)^{2} + \sqrt{[\lambda^{2} + \lambda_{0}(X)^{2}]^{2} - g_{0}^{2} \phi_{0}^{0}(X)^{4}}}{g_{0} \phi_{0}^{0}(X)^{2}}$$
 ;

$$egin{aligned} \lambda_0(X)^2 &:= U(X) + 2g_0\phi_0^0(X)^2 - \mu_0^0; X \in \mathbb{R}^3 \setminus \mathfrak{B}(\partial\mathfrak{R}_0, \delta), \ \delta &= \mathcal{O}(\epsilon^{2/3}). \end{aligned}$$

Inversion: Lommel's fcns.

Inner solution, $X \in \mathfrak{B}(\partial \mathfrak{R}_0, \delta)$. Obtain ODE near $\partial \mathfrak{R}_0$; λ is parameter [DM, 2012]

Because of $\delta(x - y)$ -forcing, *K* depends on x - y if $V_e \approx \text{const.}$ Transform to center of mass: $(x, y) \mapsto (x_{\#}, X) = (x - y, \frac{x+y}{2})$ Apply FT in $x_{\#}$; boundary-layer theory in *X*.

I. Zeroth-order homg. kernel, $\kappa_0(x, y)$: Let $X \mapsto \check{X} = \check{\epsilon}X$: slow; $x_{\#} = \mathcal{O}(1)$; define $\mathfrak{K}_0(x_{\#}, \check{X}) := \kappa_0(\check{X}/\check{\epsilon} + x_{\#}/2, \check{X}/\check{\epsilon} - x_{\#}/2)$. Apply FT in $x_{\#}$; dual variable is $\lambda \in \mathbb{R}^3$.

Outer solution, $\mathfrak{K}_0^0(x_{\#}, X)$.

$$\widehat{\mathfrak{K}}^{0}_{0}(\lambda,X) = rac{-\lambda^{2}-\lambda_{0}(X)^{2}+\sqrt{[\lambda^{2}+\lambda_{0}(X)^{2}]^{2}-g_{0}^{2}m{\phi}^{0}_{0}(X)^{4}}}{g_{0}m{\phi}^{0}_{0}(X)^{2}}$$
 ;

 $\lambda_0(X)^2 := U(X) + 2g_0\phi_0^0(X)^2 - \mu_0^0; X \in \mathbb{R}^3 \setminus \mathfrak{B}(\partial \mathfrak{R}_0, \delta),$ $\delta = \mathcal{O}(\epsilon^{2/3}).$ **Inversion**: Lommel's fcns. Inner solution, $X \in \mathfrak{B}(\partial \mathfrak{R}_0, \delta)$. Obtain ODE near $\partial \mathfrak{R}_0; \lambda$ is parameter [DM, 2012]

Fraction of particles **out** of Φ (depletion fraction) [Wu, 1961; DM, 2011]:

$$\xi_{
m sc}^{\epsilon} = \langle \Psi_N^{\epsilon}, (\psi_1^*\psi_1/N)\Psi_N^{\epsilon}
angle_{\mathbb{F}} = N^{-1} {
m tr} \mathcal{W}^{\epsilon}; \quad 0 < \xi_{
m sc}^{\epsilon} \ll 1;$$

 $\mathcal{W}^{\epsilon} := \mathcal{W}_{1}^{\epsilon} (1 - \mathcal{W}_{1}^{\epsilon})^{-1}, \mathcal{W}_{1}^{\epsilon} := \mathcal{K}^{\epsilon*} \mathcal{K}^{\epsilon}, \text{ and } \mathcal{K}^{\epsilon} \text{ has repr. } \mathcal{K}^{\epsilon}(x, y).$

Proposition 3 (Depletion fraction under slowly varying trap) [DM, 2012] If $g(x) = g_0[1 + A(x/\epsilon)]$ and $V_e(x) = U(\check{\epsilon}x)$, the depletion fraction is $\xi_{sc} \sim \frac{\sqrt{2}}{12\pi^2} \int_{\Re_0} dx [\mu_0^0 - U(x)]^{3/2}$ $-\epsilon^2 \frac{3\sqrt{2}}{8\pi^2} ||A||^2_{H^{-1}_{av}} \int_{\Re_0} \{g_0^2 \phi_0^0(x)^4$ $+ |\Re_0|^{-1} ||g_0(\phi_0^0)^2||^2_{L^2}\} [g_0 \phi_0^0(x)^2]^{1/2} dx$ as $\epsilon, \check{\epsilon} \downarrow 0, \check{\epsilon}/\epsilon \downarrow 0$.

イロト 不得 トイヨト イヨト ニヨー

Fraction of particles **out** of Φ (depletion fraction) [Wu, 1961; DM, 2011]:

$$\xi_{\rm sc}^{\epsilon} = \langle \Psi_N^{\epsilon}, (\psi_1^*\psi_1/N)\Psi_N^{\epsilon}\rangle_{\mathbb{F}} = N^{-1} {\rm tr} \mathcal{W}^{\epsilon} ; \quad 0 < \xi_{\rm sc}^{\epsilon} \ll 1;$$

 $\mathcal{W}^{\epsilon} := \mathcal{W}_{1}^{\epsilon} (1 - \mathcal{W}_{1}^{\epsilon})^{-1}, \mathcal{W}_{1}^{\epsilon} := \mathcal{K}^{\epsilon*} \mathcal{K}^{\epsilon}, \text{ and } \mathcal{K}^{\epsilon} \text{ has repr. } \mathcal{K}^{\epsilon}(x, y).$

Proposition 3 (Depletion fraction under slowly varying trap) [DM, 2012] If $g(x) = g_0[1 + A(x/\epsilon)]$ and $V_e(x) = U(\check{\epsilon}x)$, the depletion fraction is $\xi_{sc} \sim \frac{\sqrt{2}}{12\pi^2} \int_{\mathfrak{R}_0} dx \, [\mu_0^0 - U(x)]^{3/2}$ $-\epsilon^2 \frac{3\sqrt{2}}{8\pi^2} ||A||^2_{H_{av}^{-1}} \int_{\mathfrak{R}_0} \{g_0^2 \phi_0^0(x)^4$ $+ |\mathfrak{R}_0|^{-1} ||g_0(\phi_0^0)^2||^2_{L^2}\} [g_0 \phi_0^0(x)^2]^{1/2} dx$ as $\epsilon, \, \check{\epsilon} \downarrow 0, \, \check{\epsilon}/\epsilon \downarrow 0$.

イロト 不得 トイヨト イヨト ニヨー

Fraction of particles **out** of Φ (depletion fraction) [Wu, 1961; DM, 2011]:

$$\xi_{\rm sc}^{\epsilon} = \langle \Psi_N^{\epsilon}, (\psi_1^*\psi_1/N)\Psi_N^{\epsilon}\rangle_{\mathbb{F}} = N^{-1} {\rm tr} \mathcal{W}^{\epsilon} ; \quad 0 < \xi_{\rm sc}^{\epsilon} \ll 1;$$

 $\mathcal{W}^{\epsilon} := \mathcal{W}^{\epsilon}_{1}(1 - \mathcal{W}^{\epsilon}_{1})^{-1}, \mathcal{W}^{\epsilon}_{1} := \mathcal{K}^{\epsilon*}\mathcal{K}^{\epsilon}, \text{ and } \mathcal{K}^{\epsilon} \text{ has repr. } K^{\epsilon}(x, y).$

Proposition 3 (Depletion fraction under slowly varying trap) [DM, 2012] If $g(x) = g_0[1 + A(x/\epsilon)]$ and $V_e(x) = U(\check{\epsilon}x)$, the depletion fraction is $\xi_{sc} \sim \frac{\sqrt{2}}{12\pi^2} \int_{\mathfrak{R}_0} dx \, [\mu_0^0 - U(x)]^{3/2}$ $-\epsilon^2 \frac{3\sqrt{2}}{8\pi^2} ||A||^2_{H^{-1}_{av}} \int_{\mathfrak{R}_0} \{g_0^2 \phi_0^0(x)^4$ $+ |\mathfrak{R}_0|^{-1} ||g_0(\phi_0^0)^2||^2_{L^2}\} [g_0 \phi_0^0(x)^2]^{1/2} dx$ as $\epsilon, \check{\epsilon} \downarrow 0, \check{\epsilon}/\epsilon \downarrow 0$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Fraction of particles **out** of Φ (depletion fraction) [Wu, 1961; DM, 2011]:

$$\xi_{\rm sc}^{\epsilon} = \langle \Psi_N^{\epsilon}, (\psi_1^*\psi_1/N)\Psi_N^{\epsilon} \rangle_{\mathbb{F}} = N^{-1} {\rm tr} \mathcal{W}^{\epsilon} ; \quad 0 < \xi_{\rm sc}^{\epsilon} \ll 1;$$

 $\mathcal{W}^{\epsilon} := \mathcal{W}_{1}^{\epsilon}(1 - \mathcal{W}_{1}^{\epsilon})^{-1}, \mathcal{W}_{1}^{\epsilon} := \mathcal{K}^{\epsilon*}\mathcal{K}^{\epsilon}, \text{ and } \mathcal{K}^{\epsilon} \text{ has repr. } K^{\epsilon}(x, y).$

Proposition 3 (Depletion fraction under slowly varying trap) [DM, 2012] If $g(x) = g_0[1 + A(x/\epsilon)]$ and $V_e(x) = U(\xi x)$, the depletion fraction is

$$\begin{split} \xi_{\rm sc} &\sim \quad \frac{\sqrt{2}}{12\pi^2} \int_{\mathfrak{R}_0} \mathrm{d}x \, [\mu_0^0 - U(x)]^{3/2} \\ &- \varepsilon^2 \frac{3\sqrt{2}}{8\pi^2} ||A||_{H^{-1}_{av}}^2 \int_{\mathfrak{R}_0} \left\{ g_0^2 \phi_0^0(x)^4 \right. \\ &+ |\mathfrak{R}_0|^{-1} ||g_0(\phi_0^0)^2||_{L^2}^2 \left\} [g_0 \phi_0^0(x)^2]^{1/2} \, \mathrm{d}x \quad \mathrm{as} \ \epsilon, \ \check{\epsilon} \downarrow 0, \ \check{\epsilon}/\epsilon \downarrow 0 \, . \end{split}$$

Fraction of particles **out** of Φ (depletion fraction) [Wu, 1961; DM, 2011]:

$$\xi_{\rm sc}^{\epsilon} = \langle \Psi_N^{\epsilon}, (\psi_1^*\psi_1/N)\Psi_N^{\epsilon} \rangle_{\mathbb{F}} = N^{-1} {\rm tr} \mathcal{W}^{\epsilon} ; \quad 0 < \xi_{\rm sc}^{\epsilon} \ll 1;$$

 $\mathcal{W}^{\epsilon} := \mathcal{W}^{\epsilon}_{1}(1 - \mathcal{W}^{\epsilon}_{1})^{-1}, \mathcal{W}^{\epsilon}_{1} := \mathcal{K}^{\epsilon*}\mathcal{K}^{\epsilon}, \text{ and } \mathcal{K}^{\epsilon} \text{ has repr. } K^{\epsilon}(x, y).$

Proposition 3 (Depletion fraction under slowly varying trap) [DM, 2012] If $g(x) = g_0[1 + A(x/\epsilon)]$ and $V_e(x) = U(\check{\epsilon}x)$, the depletion fraction is

$$\begin{split} \xi_{\rm sc} &\sim \quad \frac{\sqrt{2}}{12\pi^2} \int_{\mathfrak{R}_0} \mathrm{d}x \, [\mu_0^0 - U(x)]^{3/2} \\ &- \epsilon^2 \frac{3\sqrt{2}}{8\pi^2} ||A||_{H^{-1}_{av}}^2 \int_{\mathfrak{R}_0} \left\{ g_0^2 \phi_0^0(x)^4 \right. \\ &+ |\mathfrak{R}_0|^{-1} ||g_0(\phi_0^0)^2||_{L^2}^2 \left\} [g_0 \phi_0^0(x)^2]^{1/2} \, \mathrm{d}x \quad \mathrm{as} \ \epsilon, \ \check{\epsilon} \downarrow 0, \check{\epsilon}/\epsilon \downarrow 0 \, . \end{split}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Interplay of external potential and spatial variation of scattering length.
- Depletion fraction, ξ_{sc} , can be enhanced via external potential.
- For fixed ϵ : Spatial (periodic) variation of scattering length causes *reduction* of the ξ_{sc} solely due to pair excitation.
- Decreasing oscillations of scattering length (i.e., increasing ε) can cause decrease of ξ_{sc}.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

00000	000 D 1'	•	00000	00	•0
Ephogue	e: Pendin	g issues			

• Rigorous analysis/justification for many-body wave function of pair excitation?

On the basis of recent work [Grillakis, Machedon, DM, 2010] for $V_e = 0$, one may expect (with a trap):

 $\|\Psi_{N,\mathrm{ex}} - \Psi_{N,\mathrm{pair}}\|_{L^2(\mathbb{R}^{3N})} \le C(t)N^{-1/2},$

C(t): bounded locally in time.

- In our program, subscale ε of scattering length is assumed. What may be the physical origin of such ε? Derivation of spatial variation of a, as an emergent concept when N → ∞?
- Within our approximation scheme, pair excitation does *not* act back on NLS for Φ.

Modified equation of motion for Φ via pair excitation?

00000	000	000000000	00000	00	0
Epilogue:	Pendin	gissues			

• Rigorous analysis/justification for many-body wave function of pair excitation?

On the basis of recent work [Grillakis, Machedon, DM, 2010] for $V_e = 0$, one may expect (with a trap):

 $\|\Psi_{N,\mathrm{ex}} - \Psi_{N,\mathrm{pair}}\|_{L^2(\mathbb{R}^{3N})} \leq C(t)N^{-1/2},$

C(t): bounded locally in time.

- In our program, subscale ε of scattering length is assumed. What may be the physical origin of such ε? Derivation of spatial variation of a, as an emergent concept when N → ∞?
- Within our approximation scheme, pair excitation does *not* act back on NLS for Φ.
 Multiful constitution function for Φ.

Modified equation of motion for Φ via pair excitation?

00000	000	000000000	00000	00	0
Epilogue:	Pendin	gissues			

• Rigorous analysis/justification for many-body wave function of pair excitation?

On the basis of recent work [Grillakis, Machedon, DM, 2010] for $V_e = 0$, one may expect (with a trap):

 $\|\Psi_{N,\mathrm{ex}} - \Psi_{N,\mathrm{pair}}\|_{L^2(\mathbb{R}^{3N})} \leq C(t)N^{-1/2},$

C(t): bounded locally in time.

- In our program, subscale ε of scattering length is assumed. What may be the physical origin of such ε? Derivation of spatial variation of a, as an emergent concept when N→∞?
- Within our approximation scheme, pair excitation does *not* act back on NLS for Φ.
 Modified equation of motion for Φ via pair excitation?

• What is the appropriate macroscopic description for finite but "small" temperatures (below the phase transition point)?

Complication: Particles are distributed over thermally excited states. In addition to Φ and *K*, one must use $\{\phi_j\}_{j=1}^{\infty}$, 1-particle excitation wave functions.

Coupled PDEs for $\Phi(x)$, $\phi_j(x)$ (j = 1, 2, ...):

 $\mu\Phi(x) = [-\triangle + V_e(x) + \nu g(x)|\Phi(x)|^2 + 2g(x)\varrho_n(x)]\Phi(x),$

 $\mu_{j}\phi_{j}(x) = [-\triangle + V_{e}(x) + 2\nu g(x)|\Phi(x)|^{2} + 2g(x)\varrho_{n}(x)]\phi_{j}(x)$ $- \Phi(x)N^{-1}\int dy \,\Phi(y)\nu g(y)|\Phi(y)|^{2}\phi_{j}(y);$

where $\rho_n(x) = N^{-1} \sum_j |\phi_j(x)|^2 n_j^0$, and ν : fraction at condensate

Introduction Focus Governing PDEs Macro-trap Depletion Coordinate Coordinate

• What is the appropriate macroscopic description for finite but "small" temperatures (below the phase transition point)? **Complication:** Particles are distributed over thermally excited states. In addition to Φ and K, one must use $\{\phi_j\}_{j=1}^{\infty}$, 1-particle excitation wave functions.

Coupled PDEs for $\Phi(x)$, $\phi_j(x)$ (j = 1, 2, ...):

 $\mu\Phi(x) = [-\triangle + V_e(x) + \nu g(x)|\Phi(x)|^2 + 2g(x)\varrho_n(x)]\Phi(x),$

 $\mu_{j}\phi_{j}(x) = [-\triangle + V_{e}(x) + 2\nu g(x)|\Phi(x)|^{2} + 2g(x)\varrho_{n}(x)]\phi_{j}(x)$ $- \Phi(x)N^{-1}\int dy \,\Phi(y)\nu g(y)|\Phi(y)|^{2}\phi_{j}(y);$

where $\rho_n(x) = N^{-1} \sum_j |\phi_j(x)|^2 n_j^0$, and ν : fraction at condensate
What is the appropriate macroscopic description for finite but "small" temperatures (below the phase transition point)?
 Complication: Particles are distributed over thermally excited states. In addition to Φ and *K*, one must use {φ_j}_{j=1}[∞], 1-particle excitation wave functions.

Coupled PDEs for $\Phi(x)$, $\phi_j(x)$ (j = 1, 2, ...):

$$\mu\Phi(x) = [-\triangle + V_e(x) + \nu g(x)|\Phi(x)|^2 + 2g(x)\varrho_n(x)]\Phi(x),$$

$$egin{aligned} &\mu_j\phi_j(x) = [-igtriangleq + V_e(x) + 2
ug(x)|\Phi(x)|^2 + 2g(x)arrho_n(x)]\phi_j(x) \ &- \Phi(x)N^{-1}\int dy\,\Phi(y)
ug(y)|\Phi(y)|^2\phi_j(y); \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ □ ● ●

where $\rho_n(x) = N^{-1} \sum_j |\phi_j(x)|^2 n_j^0$, and ν : fraction at condensate