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(Simplistic) Schematic of BEC concept in atomic gas

Non-interacting particles in a box (7: temperature) [Ketterle, *99]:
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Main theme

Evolution of N Boson particles of repulsive interactions, N > 1:

wave fcn
——

HYN(1,X) = i8,Yn(1,%);  ¥n(1,-) € L2(R)

N
H= Z[—Aj + Ve(x;)] + Z V(xj,x;) : Hamiltonian (h = 2m = 1)
J=1 i<l pOS.,symm.

Usually: V(x;,x;) ~ 8mad(x; — xj) ;

a: scattering length; here a > 0
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N
H= Z[—Aj + Ve(x;)] + Z V(xj,x;) : Hamiltonian (h = 2m = 1)
J=1 i<l pOS.,symm.

Usually: V(x;,x;) ~ 8mad(x; — xj) ;
a: scattering length; here a > 0

1. What macroscopic description, mean field limit, emerges?
2. What are plausible corrections to this limit, N > 1?
Our focus: (2) formally; lowest bound state with microstructure
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Review: Periodic case [Lee, Huang, Yang, 1957]

N weakly interacting particles in periodic box (N > 1)

@ Macroscopic 1-particle state: zero momentum (“condensate’)

@ Many-bound ground state: Atoms are primarily scattered from O
momentum to pairs of opposite momenta (“pair excitation’)

The condensate is partially depleted
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Review: Non-periodic case: Mean field limit

Heuristically by Wu, 1961; Gross, 1961; Pitaevskii, 1961; rigorously
by Yau et al., 2006-07

Tensor product of 1-particle states (BEC signature)

Approximate N-body wave function for Boson gas (zeroth order):

N
\‘IJ’N(I,)_C’) H ‘L"I, \/' ; (xl, ,XN) € R
1

condensate

Jj=
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Review: Non-periodic case: Mean field limit

Heuristically by Wu, 1961; Gross, 1961; Pitaevskii, 1961; rigorously
by Yau et al., 2006-07

Tensor product of 1-particle states (BEC signature)

Approximate N-body wave function for Boson gas (zeroth order):

N
Iy, ¥) m 0% = ()5 F=(x, ..., xn) €RW
le\ﬁ/—/

condensate

¢ For constant sc. length and certain assumptions on interactions:
i0,2(1,%) = [~A + V,(x) + 8ma| 2|*)®(1, x) (Gross-Pitaevskii Eq)

e Lowest bound (ground) state:
‘IIN(t ¥) = e BNy (3); <I>(t x) = e #Hd(x) (¥ : R = R)
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Review: Beyond GPE: Pair excitation [Wu, 1961 ]

Pair Excitation Hypothesis
(Uncontrolled) Ansatz:

P[K} = Py: operator that describes scattering of atoms in pairs;
K(t,x,y) is pair collision kernel (“pair excitation function”)

e K(t,x,y) is not known a priori; obeys integro-PDE.
e P induces partial depletion to condensate ()
e K(t,x,y) = K(t, y, x) (without loss of generality)

e For bound states: K(t,x,y) = e 2*'K(x, y);
K(x,y) = O(1/]x —y|) as |x — y[ = 0.



In this talk:

N
1
H= Z[—A,~+Ve(x_,-)]+§ ZV(xi,xj) i Ve > 0, smooth ; V,(x) = oo |x| = o0
J=1 i#j
@ Heuristically introduce spatially varying scattering length:

1 —periodic;
sc. Igth smooth; (A)=0

V(xi,x7) = g°(x;)d(xi—x;) ; g°(x) :=8ma

)
—
=
~—
Il

oo
(=]
T
+
>
—_
=
S~
m
~
Vv
(@)



In this talk:

N
1
H= Z[—A,~+Ve(x_,-)]+§ ZV(xi,xj) i Ve > 0, smooth ; V,(x) = oo |x| = o0
J=1 i#j
@ Heuristically introduce spatially varying scattering length:

1 —periodic;
sc. Igth smooth; (A)=0

V(xi, ) = &5 () (u—17) ; ¢5(x) = 87 @ (x) = gol1+ A(x/e) ] >0

@ For lowest bound state: derive PDEs for &, K.



Focus
°

In this talk:

N
1
H= Z[—A,~+Ve(x_,-)]+§ ZV(xi,xj) i Ve > 0, smooth ; V,(x) = oo |x| = o0
J=1 i#j
@ Heuristically introduce spatially varying scattering length:

1 —periodic;
sc. Igth smooth; (A)=0

V(xi, ) = &5 () (u—17) ; ¢5(x) = 87 @ (x) = gol1+ A(x/e) ] >0

@ For lowest bound state: derive PDEs for &, K.
@ Apply: classical homogenization up to two orders in €;



In this talk:

N
1
H= Z[—A,~+Ve(x_,-)]+§ ZV(xi,xj) i Ve > 0, smooth ; V,(x) = oo |x| = o0
J=1 i#j
@ Heuristically introduce spatially varying scattering length:

1 —periodic;
sc. Igth smooth; (A)=0

V(xi, ) = &5 () (u—17) ; ¢5(x) = 87 @ (x) = gol1+ A(x/e) ] >0

@ For lowest bound state: derive PDEs for &, K.
@ Apply: classical homogenization up to two orders in €;
@ (singular) perturbations for slowly varying trap, V.(x) = U(&x).



In this talk:

N
1
H= Z[—Aj+Ve(x,-)]+§ ZV(xi,xj) ; V. > 0, smooth; V,(x) = oo |x| = oo
j=1 i

Heuristically introduce spatially varying scattering length:

1 —periodic;
sc. Igth smooth; (A)=0

V(xi, ) = &5 () (u—17) ; ¢5(x) = 87 @ (x) = gol1+ A(x/e) ] >0

For lowest bound state: derive PDEs for ¢, K.

Apply: classical homogenization up to two orders in €;
(singular) perturbations for slowly varying trap, V,(x) = U(&x).
Describe depletion of . Will show:



In this talk:

N
1
H= Z[—Aj+Ve(x,-)]+§ ZV(xi,xj) ; V. > 0, smooth; V,(x) = oo |x| = oo
j=1 i

Heuristically introduce spatially varying scattering length:

1 —periodic;
sc. Igth smooth; (A)=0

V(xi, ) = &5 () (u—17) ; ¢5(x) = 87 @ (x) = gol1+ A(x/e) ] >0

For lowest bound state: derive PDEs for ¢, K.

Apply: classical homogenization up to two orders in €;
(singular) perturbations for slowly varying trap, V,(x) = U(&x).
Describe depletion of . Will show:

(Fractionat ) & ~ 1 — ¢ / de [ p) —U@) + U] A%
Ro =~ a

14: lowest chem. pot./particle; H,! = {f € H='(T?) | {f) = 0}
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Pair excitation and varying scattering length. Why?

o Experimental efforts to study quantum depletion in atomic gases
[Cornell, Ensher, Wieman, 1999; Ketterle, Durfee,
Stamper-Kurn, 1999; Xu et al., 2006].

@ Modification of interactions in atomic gas, e.g., by controlling
scattering length via external fields [Claussen et al., 2003;
Cornish et al., 2000; Inouye et al., 1998; Stenger et al., 1998; Xu
et al., 2006]

@ Related theoretical work on bound states for focusing (attractive
interactions) NLS by Fibich, Sivan and Weinstein [2006] via
classical homogenization
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Motivation: Condensate depletion

Quantum depletion of 22Na BECondensate [Xu et al, 2006]

Ly D — -

0.8 o 1D s ()

0.6 1

0.4+

Quantum Depletion

0.2+

0.0

Lattice Depth [Eg]

Depletion seems to be enhanced by manipulation of ext. potential
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Results: 1. Consistency of pair excitation hypothesis with
many-body dynamics

Proposition 1 [DM, 2012] (Lowest bound state; varying sc. length)

The condensate wave function obeys:
LIB)B(x) = [~ DA Vo (x) + ()~ p J8() = 0; N7'J|&|Prgge) = 1
lowest

The pair collision kernel K (x, y) satisfies

LL12](x) + £[2]0) + 60920 + 80) 2OV TR (x,)
+ [ B K5 D KO:2) = ~5() B8 =)
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Addendum: Elements of bosonic Fock space, F = C @ @, (L*(R?)) o

e Elements of F: v = {U(")}nzo where v € C, v™ € L2(R*) are symm. in
X1, - - ., % Hilbert space structure: (v, x)r = » v (x)x"* (x)dx.

Creation (annihilation) operator a; (ar): creates (destroys) particle at state f

n>0 JR3”

n
(@0)PE) = a7 T e 8
j=1

() (@) = Va+l / oo (o) o™ D (w0, %), Ty o= (31, o)
R3
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e Elements of F: v = {U(")}nzo where v € C, v™ € L2(R*) are symm. in
X1, - - ., % Hilbert space structure: (v, x)r = » v (x)x"* (x)dx.

Creation (annihilation) operator a; (ar): creates (destroys) particle at state f

n>0 JR3”

n
(@0)PE) = a7 T e 8
j=1

() (@) = Va+l / oo (o) o™ D (w0, %), Ty o= (31, o)
R3

= la,af] = apaf — afay = 1
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Addendum: Elements of bosonic Fock space, F = C @ @, (L*(R?)) o

e Elements of F: v = {U(")}nzo where v € C, v™ € L2(R*) are symm. in
X1,..., % Hilbert space structure: (v, X)r = > . 5, fR3n v (x)x"* (x)dx.

Creation (annihilation) operator a; (ar): creates (destroys) particle at state f

n
(@0)PE) = a7 T e 8
j=1

(arv)(F) = m/m Ao f* (x0)v" T (%0, %)y Fo = (1, ey Xn)
= lar, af] = araf — ajay =1
e Operator-valued distributions, %*(x) and ¥(x), x € R*:
i = [arw ., o= [arme
= ), ¥" ()] =6 — )1, [¥*(x), ¥* ()] = [¥(x), p(»)] =0



Sketch of (formal) proof of Proposition 1

e Hamiltonian, H : F — F:
8(x)8(x—y)

1 —~—
H= [ WAV [y (03 0) D) B0
e Perturbation scheme: Field operator splitting:
YO =N eWart i) (@) =0, M = [BIn0)d
~——

——
condensate (¥, N1y pKN
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Sketch of (formal) proof of Proposition 1

e Hamiltonian, H : F — F:
(x)5(x ¥)
H= [ ap @0+ [y 0w 0) D) v0)we

e Perturbation scheme: Field operator splitting:

YO =N eWart i) (@) =0, M = [BIn0)d
condensate  (¥n N1 ¥y )rKN

e N-body Schrodinger eq. and pair excitation ansatz [Wu, 1961]:

HUy = EyUy; Uy’ 00 [2] €F;, N= <‘PN,/¢*(X)1/’(X)‘I’N>
——

tensor prod. of ¢
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Sketch of (formal) proof of Proposition 1

e Hamiltonian, H : F — F:
g(x)5(x ¥)

H:/dxw*( AV /dxdyw 3*0) Vo) POIPE)

e Perturbation scheme: Field operator splitting:

YO =N eWart i) (@) =0, M = [BIn0)d
condensate  (¥n N1 ¥y )rKN
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Sketch of (formal) proof of Proposition 1

e Hamiltonian, H : F — F:
g(x)5(x ¥)

H:/dxw*( AV /dxdyw 3*0) Vo) POIPE)

e Perturbation scheme: Field operator splitting:

YO =N eWart i) (@) =0, M = [BIn0)d
condensate  (¥n N1 ¥y )rKN

e N-body Schrodinger eq. and pair excitation ansatz [Wu, 1961]:

HUy = EyUy; Uy’ 00 [2] €F;, N= <‘PN,/¢*(X)1/’(X)‘I’N>
——

tensor prod. of ¢

e Pair excitation operator:

PIK] = (ZN)_1/ dedy YY) K(vy) g
R3JR3 —_—— ~—
creates 2 part. @ states 1. $ annih. 2 part.@ ¢

e Scheme: keep up to terms quadratic in 4, ¥} in ‘H, Enforce Schr. eq. [



Results: II. Homogenization

Governing (elliptic) PDEs:

L899 1= [~ A V()" (@) -8 () =0, N & = 1
{c.fe €]+c [<I>€] (6840 + 5 ()8 BE(x,)
+ [ g @R KD K 2) = —g (W F (e )

Periodic microstructure:
g5(x) = go[l + A(x/e)] .
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Governing (elliptic) PDEs:

L899 1= [~ A V()" (@) -8 () =0, N & = 1
{c.fe €]+c [<I>€] + [ (0R()? + gD 0PI (1)
+ [ g @R KD K 2) = —g (W F (e )

Periodic microstructure:
g5(x) = go[l + A(x/e)] .

Seek (formally) two-scale expansions for $¢(x), K¢(x, y):
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Results: II. Homogenization

Governing (elliptic) PDEs:

L899 1= [~ A V()" (@) -8 () =0, N & = 1
{c.fe €]+c [<I>€] + [ (0R()? + gD 0PI (1)
+ [ g @R KD K 2) = —g (W F (e )

Periodic microstructure:
g5(x) = go[l + A(x/e)] .

Seek (formally) two-scale expansions for $¢(x), K¢(x, y):

¢(x) = ®o(x, X) + €1 (x, %) + €2 (x, %) +..., I=x/¢

K*(x,y) = Ko(x, 5, %,5) + €K1(x,7, %, 5) + €Ka(x,9,%,9) + . ..
Accordingly, write u¢ = po + €uy + €2y + ...
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Results: II. Homogenization (Continued)

Proposition 2.1 [DM, 2012] (Classical period. homogen. for $¢)
The coefficients of two-scale expansion for $¢€ read

Bo(x, %) = folx), @1(x,%) =
&,(x, %) = gofo(x)’ [AF'A ()]+fz(X);
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Results: II. Homogenization (Continued)

Proposition 2.1 [DM, 2012] (Classical period. homogen. for $¢)

The coefficients of two-scale expansion for $¢€ read
Po(x, %) = fox), ®i(x,X) =
&2(x, %) = gafo(x)’ [A7'A

Loxlfolfo 1= [=Dx + Ve(x) + gafo(x)* — polfo(x) = 0, N7 [|foll7. = 1

(% )] +f2(x);

Lofr = [Lolfo] + 2800(x)’12(x) = 3gaf Al + wafo, (forf2)
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Results: II. Homogenization (Continued)

Proposition 2.1 [DM, 2012] (Classical period. homogen. for $¢)

The coefficients of two-scale expansion for $¢€ read
Po(x, %) = fox), ®i(x,X) =
&2(x, %) = gafo(x)’ [A7'A

Loxlfolfo 1= [=Dx + Ve(x) + gafo(x)* — polfo(x) = 0, N7 [|foll7. = 1

(% )] +f2(x);

[Loalfo] + 280fo(x)*1f2(x) = 335 1Al + wafo, (foufo)

Lo 2 = | Lo,
<fO7‘CZ fO)
(fO:‘CZ f0>

po = Co+ o+ Ceo, 1 =0, pr =—3g;||A HH i




Governing PDEs

0.0

Results: II. Homogenization (Continued)

Proposition 2.1 [DM, 2012] (Classical period. homogen. for $¢)

The coefficients of two-scale expansion for $¢€ read
Po(x, %) = fox), ®i(x,X) =
&2(x, %) = gafo(x)’ [A7'A

Loxlfolfo 1= [=Dx + Ve(x) + gafo(x)* — pwolfo(x) = 0, N7 [|foll7. = 1

(% )] +f2(x);

[Loalfo] + 280fo(x)*1f2(x) = 335 1Al + wafo, (foufo)

Lo 2 = | Lo,
<fO7‘CZ fO)
(fO:‘CZ f0>

po = Co+ o+ Ceo, 1 =0, pr =—3g;||A HH i

where ¢o = goN~!If§1IZ2. Cao = NI VAol 7. Ceo =

N™Yfo, Vefo).
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Results: II. Homogenization (Cont.)

Proposition 2.2 [DM, 2012] (Classical periodic homogenization for K¢)
Coefficients in two-scale expansion for K¢:

Ko(x,3,%3) = ko(x,),  Ki(x%,7,%5) =0,

Ka(x,3,%,3) = 280[(A5 Ao () + (A5 AG)H () ko + Ka(x, 3);
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Results: II. Homogenization (Cont.)

Proposition 2.2 [DM, 2012] (Classical periodic homogenization for K¢)
Coefficients in two-scale expansion for K¢:

Ko(x,3,%3) = ko(x,),  Ki(x%,7,%5) =0,

Ka(x,3,%,3) = 280[(A5 Ao () + (A5 AG)H () ko + Ka(x, 3);

Lo := {Loxfo] + Loylfo] + golfo(x)” +/0(y)*1}o(x,)
= —CI[f§; kol&o(x,y) + Bo(x,¥) ;
= —2C[f2; ko) + Boffo, ] (x,¥) ;
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Results: II. Homogenization (Cont.)

Proposition 2.2 [DM, 2012] (Classical periodic homogenization for K¢)
Coefficients in two-scale expansion for K¢:

Ko(x,3,%3) = ko(x,),  Ki(x%,7,%5) =0,

Ka(x,3,%,3) = 280[(A5 Ao () + (A5 AG)H () ko + Ka(x, 3);

Lo := {Loxlfo] + Loylfo] + golfo(x)> + o)1} Ko (x, )
= —C[f3; Kolko(x,y) + Bo(x,5) ;  Bo(x,y) = —gafo(x)?8(x —y) ;
Lxyyk2 = =2C[f5; kolka(x,¥) + Balfo, o] (%, ¥) ;
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Results: II. Homogenization (Cont.)

Proposition 2.2 [DM, 2012] (Classical periodic homogenization for K¢)

Coefficients in two-scale expansion for K¢:
Ko(x,y,ic,j'/):/{(,(x,y), Kl(x,y,icj'))—O
Ka(x,,%,5) = 280l(A5 'A®)fo(x)* + (A5 'AG)AG) ko + K2, ¥);

L(xy) k0 = {Loxlfo] + Loylfo] + golfo(x)> + o)1} Ko (x, )
= —C[f3; Kolko(x,y) + Bo(x,5) ;  Bo(x,y) = —gafo(x)?8(x —y) ;
Lyyka = =2C[f5; kolka(x,¥) + Baolfo, ] (x,¥)

Clf; kle(x,y) := 1go [ dzf(2) [k(x, 2)L(y, 2) + £(x,2)K(¥,2)] ,




Results: II. Homogenization (Cont.)

Proposition 2.2 [DM, 2012] (Classical periodic homogenization for K¢)

Coefficients in two-scale expansion for K¢:
KU(x)y)%)j}):KO(xvy)v Kl(xvy)i:j)):()7
Ky(x,3,%5) = 280[(A¢ 'A@)N0(x)” + (A5 'AG)H () 1Ko + Ka(x, ¥);
Liyyko = {Loxlfo] + Lo,ylfo] + golfo(x)* + fo(»)*1}ko(x, )
= —C[f3; kolko(x,y) + Bo(x,y) ;  Bo(x,y) = —gafo(x)*8(x —{y) ;
Lyyka = =2C[f5; kolka(x,¥) + Baolfo, ] (x,¥)
CIf; kle(x,y) := 380 [ dzf(2) [£(x, 2)£(y, 2) + £(x, 2)K(3,2)] ,
By(x,y) = 28 [3go||A||§,;1fo(x) —fo()R(x)] 6(x —y) + {22
gl [fo(x)* + /()] = 4golfo(x)fa(x) + o)A ()] ko
—ZC[foz, K,()]K() + 6g0 ||A||i1;1 C[fOA, KZQ Ko,

Z; N_lgO [2<ﬁ)3)f2> - 3g0 ||A||[2_]a—vl “f(;”%z] .
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Remarks on (formal) proof of Proposition 2

@ Need "compatibility condition" on terms up to O(€*) (see
Lemma 1 below) [Bensoussan, Lions, Papanicolaou, 1978].

e Difficulty: Nonlocal term in PDE for K (see Lemmas 2, 3).

@ Two-scale convergence is not addressed.
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(Formal) Proof of Proposition 2: Useful lemmas

By substitution of expansions in PDEs, obtain cascade of equations:

—Azu = §(%)

Lemma 1 (Implication of Fredholm alternative)

The equation —Azu = S(%), where S(X) is (1-)periodic, admits a
(1-)periodic solution u(%) only if (S) = 0 (compatibility condition).
Then, u(%) = (—A5)~'S(F) + c.
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(Formal) Proof of Proposition 2: Useful lemmas

By substitution of expansions in PDEs, obtain cascade of equations:

—Azu = §(%)

Lemma 1 (Implication of Fredholm alternative)

The equation —Azu = S(%), where S(X) is (1-)periodic, admits a
(1-)periodic solution u(%) only if (S) = 0 (compatibility condition).
Then, u(%) = (—A5)~'S(F) + c.

In nonlocal term for K, some averaging is needed:

Lemma 2 (Asymptotics for nonlocal term. Part I.)

If P(%) is 1-periodic with P € L*°(R¢) and (P) = 0, and
h € W™!(R?) with vanishing derivatives at co, then

/de<x> h(x)dx=0(e"); m=1,2, ... (¢10)

€
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A few useful lemmas (cont.)

Lemma 3 (Refinement of Lemma 2 via Fourier Transform)

Consider the 1-periodic P where P € L*(T%) and (P) = 0, and
h € L*(RY). Suppose e**h(A) = ¢ A= + o(|]A| =) as |A| — oo,
A € RY, for some s > d/4, xo # 0. Then,

/ P<x> h(x) dx = c1 € [(—A)*Pl(xo/€) + o(€¥) ase L 0.
R4

€
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A few useful lemmas (cont.)

Lemma 3 (Refinement of Lemma 2 via Fourier Transform)

Consider the 1-periodic P where P € L*(T%) and (P) = 0, and
h € L*(RY). Suppose e**h(A) = ¢ A= + o(|]A| =) as |A| — oo,
A € RY, for some s > d/4, xo # 0. Then,

/ P<x> h(x) dx = c1 € [(—A)*Pl(xo/€) + o(€¥) ase L 0.
R4 €

v

In the above, P(¥) = 8; “A(%).
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@000

Slow-varying trap: Classical solution for &,

Assume V,(x) = U(&x), € < e.
Apply heuristics for ¢, via boundary layer theory

I. Zeroth-order homog. soln., fo(x). x — X = éx, ¢o(X) := fo(X/€),

[—EZA)ZC + U(x) + goq,’)(z) — Loldo(x) = 0;
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Slow-varying trap: Classical solution for &,

Assume V,(x) = U(&x), € < e.
Apply heuristics for ¢, via boundary layer theory

I. Zeroth-order homog. soln., fo(x). x — X = éx, ¢o(X) := fo(X/€),

&A% 1+ UX) + 082 — polo(x) = O; / do(x)>dx = EN
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Assume V,(x) = U(&x), € < e.
Apply heuristics for ¢, via boundary layer theory
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Macro-trap
@000

Slow-varying trap: Classical solution for &,

Assume V,(x) = U(&x), € < e.
Apply heuristics for ¢, via boundary layer theory

I. Zeroth-order homog. soln., fo(x). x — X = éx, ¢o(X) := fo(X/€),

[~EA2+ UMW) + g0~ iolgo(0) = 05 [ o) v = EN= 1
e Outer solution (for € = 0), ¢o(x) ~ ¢8(x):
¢8(x) — gal/z \/ /1'8 - U(x) X € g{g
0 xe R

MY 1= Ry \ B(8No, 8), NG = R>\ Ry; Ro == {x € R3 | U(x) < ud}



Macro-trap
@000

Slow-varying trap: Classical solution for &,

Assume V,(x) = U(&x), € < e.
Apply heuristics for ¢, via boundary layer theory

I. Zeroth-order homog. soln., fo(x). x — X = éx, ¢o(X) := fo(X/€),

[~EA2+ UMW) + g0~ iolgo(0) = 05 [ o) v = EN= 1

e Outer solution (for € = 0), ¢o(x) ~ ¢8(x):
—1/2
¢8(x) — 80 / \/ /1.8 - U(x) X € g{g
0 xe R
RS 1= Ry \ B(8R, ), RS = R\ Ro; Ro := {x € R? | U(x) < uf}
o ~ = 3] M0 + (U)o (U)o = ol [ UG dx
Ro



Macro-trap
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Slowly-varying trap: Classical solutions for ¢, (cont.)

@) is not H} . near 8R: Boundary layer
e Inner solution (near 8Ry), ¢6"(77):

By U(x) = U(xbd) +Tv- (x — xbd) + 0(|x — xbd|), fixed xpq € ONRy:

1/2
[_62+77+( in)Z] in =0: N = I 1/31/ . (X _xbd) in — L¢O
n 0 0 v 1 f7) » 70 - (‘éT)l/3

Apply matching ¢’ — 0 asn—00; ¢t ~,/—n asn— —o0
= ¢i"(n) = Py(n): case of 2nd Painlevé transcendent [DM, ’00]



Slowly varying trap: Classical solutions for ¢, (cont.)

I1I. Next-order homogenized soln.,
B2(x, %) = g0/ (1) [A7 'A®D)] + /2(1): $2(x) = fo(x/8)
e Outer solution, ¢9(x):

() = gy {318 — UPNAIR + SuSlud —

if x € RS $9(x) = 0if x € RSP

A7y



ooeo

Slowly varying trap: Classical solutions for ¢, (cont.)

I1I. Next-order homogenized soln.,
&2(x,%) = g0/o ()" [O¢ TA®)] + 12(2); da(x) = fa(x/€)
e Outer solution, ¢9(x):
$) = g0 3G — UPPRIAIZ + Judlud — U]/

if x € RS $9(x) = 0if x € RSP

o~ w3 = =341l [ [ - VWP
Ro



Macro-trap
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Slowly varying trap: Classical solutions for ¢, (cont.)

Boundary layer near 69
e Inner solution (near 8R), ¢ (n)

in in —1.1/2 v
2—n-3Pu(nY g0 (m) = Pu(n); ¢ = —(u9) & *(Us) P2,

where by matching with outer solution:
M) —0 asp— o0, ¢r(n)~ —%(—’r))_l/2 as?m — —00 .
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Slowly varying trap: Classical solutions for ¢, (cont.)

Boundary layer near 69

e Inner solution (near 8R), ¢ (n)

[82—n—3Pu(n)¢5(m) = Pu(m); &5 = —(u9) "2y *(U8)' s,

where by matching with outer solution:
M) —0 asp— o0, ¢r(n)~ —%(—’r))_l/2 as?m — —00 .

= ¢5'(n) = Py(n)



Macro-trap
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Slowly-varying trap: Classical solutions for K,

Because of d(x — y)-forcing, K depends on x — y if V, & const.
Transform to center of mass: (x,y) — (xg,X) = (x —y, %)

Apply FT in x4; boundary-layer theory in X.

I. Zeroth-order homg. kernel, xo(x, y): Let X — X = £X: slow;
xy = O(1); define 8o(xy,X) 1= ko(X/E+ x4 /2, X /€ — x4 /2).
Apply FT in x; dual variable is A € R3.
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Slowly-varying trap: Classical solutions for K,

Because of d(x — y)-forcing, K depends on x — y if V, & const.
Transform to center of mass: (x,y) — (xg,X) = (x —y, %)
Apply FT in x4; boundary-layer theory in X.

I. Zeroth-order homg. kernel, xo(x, y): Let X — X = £X: slow;
xy = O(1); define 8o(xy,X) 1= ko(X/E+ x4 /2, X /€ — x4 /2).
Apply FT in x; dual variable is A € R3.

Outer solution, &(xx, X).
SX2 = (X0 /1N X(X)2)2 — g3e(X)¢

=0 A .
FolX, ) = god)(X)? '
Xo(X)? 1= U(X) + 2g08Y(X)* — i X € R\ B(8%,0),
§ = O(&).

Inversion: Lommel’s fcns.



Macro-trap
L]

Slowly-varying trap: Classical solutions for K,

Because of d(x — y)-forcing, K depends on x — y if V, & const.
Transform to center of mass: (x,y) — (xg,X) = (x —y, %)
Apply FT in x4; boundary-layer theory in X.

I. Zeroth-order homg. kernel, xo(x, y): Let X — X = £X: slow;
xy = O(1); define 8o(xy,X) 1= ko(X/E+ x4 /2, X /€ — x4 /2).
Apply FT in x; dual variable is A € R3.

Outer solution, &(xx, X).
SX2 = (X0 /1N X(X)2)2 — g3e(X)¢

=0 A .
FolX, ) = god)(X)? '
Xo(X)? 1= U(X) + 2g08Y(X)* — i X € R\ B(8%,0),
§ = O(&).

Inversion: Lommel’s fcns.
Inner solution, X € B(8R,, d). Obtain ODE near 8%Ry; A is
parameter [DM, 2012]
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Application: Partial depletion of $

Fraction of particles out of @ (depletion fraction) [Wu, 1961; DM, 2011]:
&= (85, (Wi /N) ¥ )= N"ovs; 0< €L < 1,

We = WE(1 — WE) L, WE = K€*K€, and K€ has repr. K¢(x,y).

Proposition 3 (Depletion fraction under slowly varying trap) [DM, 2012]
If g(x) = go[1 + A(x/€)] and V,(x) = U(€x), the depletion fraction is

V2

€sc dx [/,1,8 - U(x)]3/2

127['2 Ro

312
Al [ {iateo*
NRo

+ 90|~ llgo(60)?112: Hgodd(x)?]/*dx as L0, 1O.




Application: Partial depletion of $

Fraction of particles out of @ (depletion fraction) [Wu, 1961; DM, 2011]:
&= (85, (Wi /N) ¥ )= N"ovs; 0< €L < 1,

We = WE(1 — WE) L, WE = K€*K€, and K€ has repr. K¢(x,y).

Proposition 3 (Depletion fraction under slowly varying trap) [DM, 2012]
If g(x) = go[1 + A(x/€)] and V,(x) = U(€x), the depletion fraction is

€se I\ZQZ dx [up — Ux )]3/2
3
Zgﬂanng] [ g
NRo

+ 90|~ llgo(60)?112: Hgodd(x)?]' /2 dx ase, €10,€/e 0.




Depletion
L]

Remarks on formula for depletion fraction, &

o Interplay of external potential and spatial variation of scattering
length.

@ Depletion fraction, &, can be enhanced via external potential.

e For fixed e: Spatial (periodic) variation of scattering length
causes reduction of the . solely due to pair excitation.

@ Decreasing oscillations of scattering length (i.e., increasing €)
can cause decrease of &..
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Epilogue: Pending issues

@ Rigorous analysis/justification for many-body wave function of
pair excitation?
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Epilogue: Pending issues

@ Rigorous analysis/justification for many-body wave function of
pair excitation?
On the basis of recent work [Grillakis, Machedon, DM, 2010]
for V, = 0, one may expect (with a trap):
¥ N,ex = ¥n,pairll 2av) < C(t)N~'72,

C(t): bounded locally in time.

@ In our program, subscale € of scattering length is assumed.
What may be the physical origin of such €?
Derivation of spatial variation of a, as an emergent concept when
N — o0?
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Epilogue: Pending issues

@ Rigorous analysis/justification for many-body wave function of
pair excitation?
On the basis of recent work [Grillakis, Machedon, DM, 2010]
for V, = 0, one may expect (with a trap):
¥ N,ex = ¥n,pairll 2av) < C(t)N~'72,

C(t): bounded locally in time.

@ In our program, subscale € of scattering length is assumed.
What may be the physical origin of such €?
Derivation of spatial variation of a, as an emergent concept when
N — o0?

@ Within our approximation scheme, pair excitation does not act
back on NLS for &.
Modified equation of motion for ¢ via pair excitation?
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Epilogue: Pending issues (cont.)

@ What is the appropriate macroscopic description for finite but
“small” temperatures (below the phase transition point)?
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Epilogue: Pending issues (cont.)

@ What is the appropriate macroscopic description for finite but
“small” temperatures (below the phase transition point)?
Complication: Particles are distributed over thermally excited
states. In addition to ¢ and K, one must use {¢; 2, 1-particle
excitation wave functions.
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Epilogue: Pending issues (cont.)

@ What is the appropriate macroscopic description for finite but
“small” temperatures (below the phase transition point)?
Complication: Particles are distributed over thermally excited
states. In addition to ¢ and K, one must use {¢; 2, 1-particle
excitation wave functions.

Coupled PDEs for &(x), ¢j(x) G =1, 2, ...):

uB(x) = [~ A + Ve(x) + vg(x)|2(x) | + 28(x) e (x)) 2 (x),

pidi(x) = [— 2 + Veo(x) + 2wg(x)|2(x) > + 28(x) 04 (x)]B;(x)
—®(x)N ! /dy 2(y)ve() 20

where g,(x) = N~! > |¢j(x)|2n](~), and v: fraction at condensate
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