Nonlocal interaction PDEs with nonlinear diffusion

Marco Di Francesco

Joint with: J. A. Carrillo, A. Figalli, T. Laurent, D. Slepčev, M. Burger, M. Franek, S. Fagioli, G. Bonaschi.

TRANSPORT MODELS FOR COLLECTIVE DYNAMICS IN BIOLOGICAL SYSTEMS, NORTH CAROLINA STATE UNIVERSITY, JAN 15 - 18, 2013.

Table of contents

An interdisciplinary model for interacting individuals

A model with moderate repulsion

Interplay with entropy solutions

M. Di Francesco (University of Bath)

Table of contents

Gradient flow structure of the discrete mode

Interplay with entropy solutions

A discrete particle system

- N particles, located at $X_1(t),\ldots,X_N(t)\in\mathbb{R}^d$ with masses $m_1,\ldots,m_N.$
- Subject to binary interaction forces depending on their position.
- Friction dominated regime: no inertia.

$$\frac{dX_j(t)}{dt} = -\sum_{k\neq j} m_k \nabla G(X_j(t) - X_k(t)), \qquad j = 1, \dots, N.$$
(1)

Typical assumptions for the interaction potential G

•
$$G\in C(\mathbb{R}^d)$$
, with $G(0)=0$,

• Radial symmetry G(x) = g(|x|),

Notation: g increasing \Rightarrow G attractive, g decreasing \Rightarrow G repulsive.

Stochastic version:

$$dX_j(t) = -\sum_{k \neq i} m_k \nabla G(X_j(t) - X_k(t)) dt + \sigma_N dW^j(t)$$

M. Di Francesco (University of Bath)

Figure: *N* interacting particles

Nonlocal interaction PDEs

Main motivation: population dynamics

Animal swarming:

- Okubo (1980)
- Oelschläger (1989)
- Morale, Capasso, and Oelschläger (1998)
- Mogilner, Edelstein-Keshet (1999)
- Topaz, Bertozzi, and Lewis (2006)

Typical interaction potentials:

- attractive-repulsive Morse potentials $G(x) = -C_a e^{-|x|/l_a} + C_r e^{-|x|/l_r}$
- combination of Gaussian potentials $G(x) = -C_a e^{-|x|^2/l_a} + C_r e^{-|x|^2/l_r}$
- smoothed characteristic functions of a set $G(x) = \alpha \delta_{\epsilon} * \chi_A(x)$.

Hydrodynamic $N \to +\infty$ limit

Empirical measure:

$$\mu_N(t) = \left(\sum_{j=1}^N m_j\right)^{-1} \sum_{k=1}^N m_k \delta_{X_k(t)}$$

Formal limit of μ_N in the stochastic case

Assuming $\lim_{N\to+\infty} \sigma_N = \sigma > 0$, then

$$\frac{\partial \mu}{\partial t} = \frac{\sigma^2}{2} \Delta \mu + \operatorname{div}(\mu \nabla G * \mu)$$

Distributional PDE for μ_N for $\sigma = 0$

$$\frac{\partial \mu}{\partial t} = \operatorname{div}(\mu \nabla G * \mu)$$

M. Di Francesco (University of Bath)

Nonlocal interaction PDEs

More motivations: Interplay with physics

Mean-field limits of large particle systems in statistical mechanics:

- Onsager (1949) Vortex dynamics
- Morrey (1955) Derivation of hydrodynamics from statistical mechanics
- Dobrushin (1993) Vlasov equation
- Golse (2003) Review paper

In those contexts, the potential G blows-up at the origin, which renders the rigorous analytical framework of the model a challenging issue. Kinetic modeling for granular media:

- Benedetto, Caglioti, Pulvirenti (1997)
- Brilliantov, Pöschel (2004)
- Toscani (2004)

Here, G is a convex attractive potential, typically $G(x) = |x|^{\alpha}$ with $\alpha > 1$.

More motivations: chemotaxis

• In many problems in biology, such as the 2d Keller-Segel model

$$\partial_t \rho = \Delta \rho + \frac{\chi}{2\pi} \operatorname{div}(\rho \nabla \log |\cdot| * \rho),$$

the dichotomy between the *repulsive* linear diffusion term and the *attractive log* 'chemotaxis' term produces *blow-up* (concentration) of solutions in finite time. No one knows (up to now) how to define solutions in a *measure* sense after blow up.

• The large time behavior for models with 'milder' aggregation force and with nonlinear diffusion

$$\begin{split} \partial_t \rho &= \Delta \rho^m + \operatorname{div}(\rho \nabla G * \rho) \\ G(x) &= g(|x|), \qquad g'(r) > 0, \qquad G \in W^{1,\infty}, \end{split}$$

is a (most of the times) highly nontrivial question.

Simplification: no diffusion. Measure solutions theory (particles remain particles).

9 / 52

More motivations:

- Alignment of actin laments with or without cross-linking proteins, cf. Kang, Perthame, Primi, Stevens, Velazquez (2009). G double well potential.
- Kinetic dithering

$$\partial_t \rho = -\operatorname{div}(\rho \nabla (G * (\rho - \sigma)))$$

with $\sigma \in L^1_+$ being a given profile, and $\int \rho = \int \sigma$. Typically, $G(x) = |x|^{\alpha}$. Stationary solution $\rho = \sigma$. Stable for large times? PhD thesis of J.-C. Hütter. Ref: Fornasier, Haškovec, Steidl - 2012.

- Opinion formation: Sznajd-Weron, Sznajd (2000) Aletti, Naldi, Toscani (2007). Quasi invariant opinion limit of kinetic models.
- Crowd movements: Helbing's social force modelled via nonlocal forces, cf. Hughes (2002), Cristiani et al. (2011), Colombo et al. (2012).

Mathematical motivation

• Models with nonlocal attractive-repulsive kernels

 $\partial_t \rho = \operatorname{div}(\rho \nabla G * \rho)$

with G being a *double-well* potential, e. g. Lennard–Jones. Stationary solutions? How do they look like?

- Fetecau, Huang, Kolkolnikov 2011: L¹ stationary states.
- von Brecht, Bertozzi 2012: aggregation sheets.
- Balagué, Carrillo, Laurent, Raoul 2011: radial ins/stability of 'spherical shells'.
- Similarities with 2d incompressible Euler.
- A repulsive nonlocal approximation for nonlinear diffusion

$$\frac{\partial \rho}{\partial t} = \operatorname{div}(\rho \nabla G_{\epsilon} * \rho)$$

Table of contents

An interdisciplinary model for interacting individuals

Gradient flow structure of the discrete model

The continuum theo

A model with moderate repulsion

Interplay with entropy solutions

What is a gradient flow?

Given a smooth function $F : \mathbb{R}^d \to \mathbb{R}$, a differentiable curve $[0, +\infty) \ni t \mapsto X(t) = \mathbb{R}^d$ is a gradient flow of F if X(t) satisfies $\dot{X}(t) = -\nabla F(X(t)).$

• Energy dissipation:

$$\frac{d}{dt}F(X(t)) = -|\nabla F(X(t))|^2$$

• Implicit Euler variational derivation: time step $\tau > 0$, $X_{\tau}(t) = X_{\tau}^{n}$ for $t \in ((n-1)\tau, n\tau]$, with

$$X_{\tau}^{n} = \operatorname{argmin}\left\{\frac{1}{2\tau}|X - X_{\tau}^{n}|^{2} + F(X), \ X \in \mathbb{R}^{d}
ight\}$$

• $D^2 F \ge \lambda \mathbb{I}$ implies stability

$$egin{aligned} &rac{d}{dt}|X_1(t)-X_2(t)|^2=-2< X_1(t)-X_2(t),
abla F(X_1(t))-
abla F(X_1(t))>\ &\leq -2\lambda|X_1(t)-X_2(t)|^2. \end{aligned}$$

Gradient flow structure of the ODE particle system

Consider

$$\frac{dX_j(t)}{dt} = -\sum_{k\neq j} m_k \nabla G(X_j(t) - X_k(t)), \qquad j = 1, \dots, N.$$

with G(-x) = G(x) and $G \in C^2(\mathbb{R}^d)$.

Weighted metric structure

Denote $\mathbf{m} = (m_1, \dots, m_N)$. For $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{dN}$, let

$$<\mathbf{X},\mathbf{Y}>_{L^2_{\mathbf{m}}}:=\sum_{j=1}^N m_j X_j Y_j, \qquad \|\mathbf{X}\|_{L^2_{\mathbf{m}}}^2=<\mathbf{X},\mathbf{X}>_{L^2_{\mathbf{m}}}.$$

Frechét differential

M. E

Let $\mathbf{F} \in C^1(\mathbb{R}^{dN})$. The linear operator $\operatorname{grad}_{\mathbf{X}} \mathbf{F}[X]$ is defined by

$$\lim_{\epsilon \to 0} \frac{\mathbf{F}[\mathbf{X} + \epsilon \mathbf{Y}] - \mathbf{F}[\mathbf{X}]}{\epsilon} = : < \operatorname{grad}_{\mathbf{X}} \mathbf{F}[\mathbf{X}], \mathbf{Y} >_{L_{\mathbf{m}}^2} = \sum_{i=1}^{N} m_j \nabla_{X_i} \mathbf{F}[\mathbf{X}] \cdot \mathbf{Y}_i.$$

Gradient flow structure of the ODE particle system

Energy functional

Let **X** := $(X_1, ..., X_N)^T$.

$$\mathbf{G}[\mathbf{X}] := \frac{1}{2} \sum_{i,j} m_i m_j G(X_i - X_j)$$

Then

$$\dot{\mathbf{X}}(t) = -\operatorname{grad}_{\mathbf{X}} \mathbf{G}[\mathbf{X}(t)].$$
 (2)

Problem (2) makes sense if $G \in C^1(\mathbb{R}^d)$.

Regularity and collisions

If $G \in C^2(\mathbb{R}^d)$, then particles do not collide.

•

Mildly singular, locally attractive kernels

Assume

- (K1) G(-x) = G(x)
- (K2) $G \in C^1(\mathbb{R}^d \setminus \{0\})$
- (K3) G has a local minimum at x = 0
- (K4) G is λ -convex, i. e. $G(x) \frac{\lambda}{2}|x|^2$ is convex on \mathbb{R}^d .

Examples:

- Morse type potentials $G(x) = -e^{-a|x|}$, with a > 0,
- Pointy potentials, i. e. with a Lipschitz point at the origin,
- Power laws $G(x) = |x|^{\alpha}$ with $\alpha \in (1, 2)$, cf. [Li, Toscani 2004], [Burger, DF 2008]

Kernels with above assumptions (K1)–(K4) possibly produce *finite time collapse* $\mu = \delta_{x_c}$, with x_c center of mass of the particles (constant in time).

Weaker gradient flow structure

Introduce the sub-differential of G

$$\partial G(x) := \left\{ k \in \mathbb{R}^d \ : \ G(y) - G(x) \ge k \cdot (y - x) + o(|x - y|) \text{ for all } y \in \mathbb{R}^d
ight\},$$

and the minimal sub-differential of G

$$\partial^0 G(x) = \operatorname{argmin}_{k \in \partial G(x)} |k| = \begin{cases} \nabla G(x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Sub-differential structure of L_m^2

$$\begin{split} \partial \mathbf{G}[\mathbf{X}] &=:= \left\{ K \in L^2_{\mathbf{m}} \, : \, \mathbf{G}(\mathbf{Y}) - \mathbf{G}(\mathbf{X}) \geq < K, (\mathbf{Y} - \mathbf{X}) >_{L^2_{\mathbf{m}}} \right. \\ &+ o(\|\mathbf{X} - \mathbf{Y}\|_{L^2_{\mathbf{m}}}) \, \text{for all } Y \in L^2_{\mathbf{m}} \right\}. \end{split}$$

Weaker gradient flow structure

We replace our particle system with

$$\frac{dX_{j}(t)}{dt} \in -\sum_{k \in C_{j}(t)} m_{k} \partial^{0} G(X_{j}(t) - X_{k}(t)), \quad C_{j}(t) = \{k : X_{j}(t) \neq X_{k}(t)\}.$$
(3)

Then, it is easily checked that

$$\dot{\mathbf{X}}(t) \in -\partial^0 \mathbf{G}[\mathbf{X}(t)],$$
 (4)

with $\partial^{0}\mathbf{G} = \operatorname{argmin}_{K \in \partial \mathbf{G}} \|K\|_{L^{2}_{\mathbf{m}}}.$

Well posedness in the discrete case

- λ -convexity of the functional **G**
- Existence and uniqueness of gradient flows.

Finite time collapse for attractive potentials

Assume G satisfies (K1)-(K4) and the additional conditions

$$G(x) = g(|x|), \quad g'(r) > 0^1 ext{ for } r > 0, \quad rac{g'(r)}{r} ext{ non-increasing.}$$
 (5)

Proposition (Finite time collapse)

Let X_1, \ldots, X_N evolve according to (4), i. e.

$$\dot{X}_j(t) = -\sum_{X_k(t)
eq X_j(t)} m_k
abla G(X_j(t) - X_k(t)).$$

Then, all the particles collapse in a finite time, i. e. $X_j(t) = \delta_{C_m}$ for all $t \ge t^*$ for some t^* , iff

$$\int_0^\varepsilon \frac{1}{g'(z)} dz < +\infty \tag{6}$$

for some $\varepsilon > 0$.

 ${}^{1}G$ is called *attractive* when g'(r) > 0 and *repulsive* when g'(r) < 0

M. Di Francesco (University of Bath)

Nonlocal interaction PDEs

Figure: The quantity $R(t) = \max\{|X_j(t) - C_m|, j = 1, \dots, N\}$.

Proof

Assume $\sum_{j=1}^{N} m_j = 1$. Center of mass $C_m = \sum_{j=1}^{N} m_j X_j(t)$ is preserved. Assume for simplicity $C_m = 0$.

$$\begin{aligned} \frac{d}{dt}R(t) &= \frac{d}{dt}|X_1(t)| = -\frac{X_1(t)}{|X_1(t)|} \cdot \sum_{j \neq 1} m_j \nabla G(X_1(t) - X_j(t)) \\ &= -\sum_{j \neq 1} m_j X_1(t) \cdot (X_1(t) - X_j(t)) \frac{g'(|X_1(t) - X_j(t)|)}{|X_1(t)||X_1(t) - X_j(t)|}. \end{aligned}$$

Since $X_1(t) \cdot X_j(t) \le |X_1(t)|^2$, and since g'(r)/r is non increasing, we use $|X_1(t) - X_j(t)| \le 2|X_1(t)|$:

$$egin{aligned} &rac{d}{dt}R(t) \leq -rac{g'(2|X_1(t)|)}{2|X_1(t)|^2}\sum_{j
eq 1}m_j\left(|X_1(t)|^2-X_1(t)\cdot X_j(t)
ight)\ &= -(1-m_1)g'(2|X_1(t)|)+rac{g'(2|X_1(t)|)}{2|X_1(t)|^2}X_1(t)\cdot (-m_1X_1(t))=-g'(2R(t)) \end{aligned}$$

and the assertion is proven. Notice that the collapse time is independent of N.

Table of contents

An interdisciplinary model for interacting individuals

Gradient now structure of the discrete mod

Interplay with entropy solutions

M. Di Francesco (University of Bath)

Ingredients for the continuum theory²

Aim: produce a unique notion of measure solution for

$$\frac{\partial \mu}{\partial t} = \operatorname{div}(\mu \nabla G * \mu).$$

The measure space

$$\mu\in \mathfrak{P}_2(\mathbb{R}^d):=\left\{\mu\in \mathfrak{P}(\mathbb{R}^d), \ \int |x|^2d\mu(x)<+\infty
ight\}$$

endowed with the 2-Wasserstein distance

$$\begin{aligned} d_2(\mu,\nu)^2 &= \inf\left\{\iint_{\mathbb{R}^d \times \mathbb{R}^d} |x-y|^2 d\gamma(x,y), : \ \gamma \in \Gamma(\mu,\nu)\right\}\\ \Gamma(\mu,\nu) &= \left\{\gamma \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d) : \ \mu \text{ and } \mu \text{ are the marginals of } \gamma\right\}\end{aligned}$$

The functional

$$\mathfrak{G}[\mu] = \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} G(x - y) d\mu(x) d\mu(y)$$

²Ambrosio, Gigli, Savaré - Birkhäuser 2005

M. Di Francesco (University of Bath)

Nonlocal interaction PDEs

Why the Wasserstein distance?

Go back to the discrete case:

$$\mu := \sum_{j=1}^N m_j X_j, \quad \nu := \sum_{j=1}^N m_j Y_j.$$

The natural distance is

$$d(\mu,\nu)^2 = \inf\left\{\int_0^1 \|\frac{d}{ds}\mathbf{X}(\cdot)\|_{L^2_{\mathbf{m}}}^2, \ X_j(0) = X_j, \ X_j(1) = Y_j\right\}.$$

The natural continuum version is:

$$d(\mu,\nu)^{2} = \inf\left\{\int_{0}^{1}\int |v_{s}(x)|^{2}d\mu_{s}(x), \ \partial_{s}\mu_{s} + \operatorname{div}(\mu_{s}v_{s})0, \ \mu_{0} = \mu, \ \mu_{1} = \nu\right\},$$

which coincides with the 2-Wasserstein distance according to the Benamou-Brenier formula.

Definition of Wasserstein gradient flow

An absolutely continuous curve $[0, +\infty) \ni t \mapsto \mu(t) \in \mathcal{P}(\mathbb{R}^d)$ is a Wasserstein gradient flow of the functional \mathcal{G} iff

$$\begin{aligned} &\frac{\partial \mu(t)}{\partial t} + \operatorname{div}(\mu(t)v(t)) = 0, & \text{in } \mathcal{D}'(\mathbb{R}^d \times [0, +\infty)) \\ &v(t) = -\partial^0 G * \mu(t) = -\int_{x \neq y} \nabla G(x - y) d\mu(y, t). \end{aligned}$$

Notice that $\partial^0 G * \mu(t)$ coincides with the minimal sub-differential of \mathcal{G} on $\mathcal{P}_2(\mathbb{R}^d)$, namely

$$\begin{split} \partial^{0}G * \mu(t) &= \operatorname{argmin}_{\mathbf{v} \in \partial \mathfrak{G}[\mu]} \|\mathbf{v}\|_{L^{2}(d\mu:\mathbb{R}^{d})} \\ \partial \mathfrak{G}[\mu] &= \left\{ \mathbf{v} \in L^{2}(d\mu) : \\ \mathfrak{G}[\nu] - \mathfrak{G}[\mu] &\geq \inf_{\gamma_{o} \in \Gamma(\mu,\nu)} \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \mathbf{v}(x) \cdot (y-x) d\gamma_{o}(x,y) + o(d_{2}(\mu,\nu)) \right\}, \\ \gamma_{o} \in \Gamma(\mu,\nu) \quad \text{such that} \quad d_{2}(\mu,\nu) &= \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} |x-y|^{2} d\gamma_{o}(x,y). \end{split}$$

Existence and uniqueness of solutions

Theorem (Existence and uniqueness^a)

^aCarrillo, DF, Figalli, Laurent, Slepcev - Duke Math. J. - 2011

 Let μ₀ ∈ P₂(ℝ^d). Then, there exists a unique Wasserstein gradient flow solution for 9 with μ₀ as initial datum. Moreover,

$$\mathfrak{G}[\mu(t)] + \int_0^t ds \int_{\mathbb{R}^2} \left| \partial^0 G * \mu(x,s) \right|^2 d\mu(x,s) \le \mathfrak{G}[\mu_0], \tag{7}$$

for all $t \geq 0$.

• Let $\mu_1^0, \mu_2^0 \in \mathcal{P}_2(\mathbb{R}^d)$. Let $\mu_1(t)$ and $\mu_2(t)$ be Wasserstein gradient flows for \mathcal{G} with μ_1^0 and μ_2^0 as initial data respectively. Then,

$$d_2(\mu_1(t),\mu_2(t)) \le e^{|\lambda|t} d_2(\mu_1^0,\mu_2^0), \tag{8}$$

for all $t \geq 0$.

Finite time collapse for general solutions

Theorem (Finite total collapse^a)

^aCarrillo, DF, Figalli, Laurent, Slepcev - Duke Math. J. - 2011

Let $\mu_0 \in \mathfrak{P}_2(\mathbb{R}^d)$ compactly supported. Let $\mu(t)$ the corresponding gradient flow of \mathfrak{G} . Let

$$C_m := \int_{\mathbb{R}^d} x d\mu(x,t).$$

Then, there exists a time t^* depending only on the radius of $\operatorname{spt}(\mu_0)$ such that

$$\mu(t)=\delta_{C_m},$$

for all $t \geq t^*$.

Proof

Similar to an old idea of R. Dobrushin (1979).

• Atomization of μ_0 : for a fixed arbitrary $\varepsilon > 0$, take $\mu_0^N = \sum_{j=1}^N m_j \delta_{X_j}$ such that

$$d_2(\mu_0,\mu_0^N)\leq \varepsilon.$$

Let the particles X₁,..., X_N evolve via the discrete particle system. Let t^{*} be the collapse time,

$$X_1(t)=\ldots=X_N(t)=C_m,\quad\text{for all }t\geq t^*.$$

- 3 This means that $\mu^N(t) := \sum_{j=1} Nm_j \delta_{X_i(t)} = \delta_{C_m}$ for all $t \ge t^*$.
- The stability property (8) implies

$$d_2(\mu(t^*),\mu^N(t^*)) \leq e^{-\lambda t^*} d_2(\mu_0,\mu_0^N) \leq \varepsilon e^{-\lambda t^*},$$

which is an arbitrary small quantity. Hence,

5
$$\mu(t^*) = \mu^N(t^*) = \delta_{C_m}$$
.

Global confinement for attractive-repulsive potentials³

Assume G as in (K1)–(K4), plus
(K5)
$$G(x) = g(|x|), g \in C^1((0, +\infty)),$$

(K6) $g'(r) > 0$ for $r > R_a$ for some $R_a > 0$,
(K7) $g'(r) > -C_G$ for $r < R_a$ for some $C_G > 0$.
Moreover, assume either

$$\begin{array}{l} ({\sf K8}) \\ \text{or} \\ ({\sf K9}) \\ \text{lim}\inf_{r\to 0}g(r)>-\infty, \\ \text{Then, there exists } R^*>0 \\ \text{depending only on } G \\ \text{and on } \mu_0 \\ \text{such that} \\ \\ \operatorname{spt}(\mu(t))\subset B(0,R^*), \\ \text{for all } t\geq 0. \end{array}$$

Remark: conditions (K5)-(K7) alone are not enough for global confinement (Theil, 2006).

³Carrillo, DF, Figalli, Laurent, Slepcev - Nonlinear Anal. - 2012

Table of contents

An interdisciplinary model for interacting individuals

4

Gradient flow structure of the discrete mode

Interplay with entropy solutions

M. Di Francesco (University of Bath)

N-dependent repulsion range⁴

$$\begin{split} \frac{dX_j(t)}{dt} &= -\sum_{k \neq j} m_k \nabla G(X_j(t) - X_k(t)) - \sum_{k \neq j} m_k \nabla V_N(X_j(t) - X_k(t)), \ j = 1, \dots, N \\ V_N(x) &= N^{d\beta} V(N^{\beta} x), \quad \beta \in (0, 1) \\ V(x) &= v(|x|), \quad v \in C^2((0, +\infty)), \quad v'(r) < 0, \ \text{as } r > 0, \\ V &\ge 0, \quad \int_{\mathbb{R}^d} V(x) dx = \varepsilon. \end{split}$$

• V_N is a repulsive kernel, with a range of interaction $O(N^{-\beta})$ and strength of the interaction force $O(N^{d\beta})$ depending on the number of individuals N.

• Formally
$$V_N(x) \to \varepsilon \delta$$
 in \mathcal{D}' as $N \to +\infty$.

Formal limit of the particle system

$$\frac{\partial \mu}{\partial t} = \operatorname{div}(\mu \nabla G * \mu) + \varepsilon \operatorname{div}(\mu \nabla \mu).$$
(9)

Hence... a quadratic porous medium type diffusion term appears.

⁴Ölschläger - Prob. Th. Rel. Fields - 1989

M. Di Francesco (University of Bath)

Nonlocal interaction PDEs

Basic properties of the limiting equation

Assume

- $G(x) = g(|x|), g \in C^2([0, +\infty)),$
- g'(r) > 0 for all r > 0,
- spt $G = \mathbb{R}^d$, $G \leq 0$, $G \in L^1(\mathbb{R}_d)$.

Regularizing effect

For all initial data $\mu_0 \in \mathcal{P}_2(\mathbb{R}^d)$, the corresponding solutions are *densities*, $\mu(t) = \rho(t) d\mathcal{L}_d$.

Conservation of the center of mass

Let

$$CM[\rho(t)] := \int x \rho(x,t) dx,$$

then $CM[\rho(t)] = CM[\rho_0]$ for all $t \ge 0$.

Wasserstein gradient flow for the limiting equation

$$\frac{\partial \rho}{\partial t} = \operatorname{div}(\rho \nabla (\varepsilon \rho + G * \rho)).$$

Energy functional:

$$E[\rho] := \frac{\varepsilon}{2} \int_{\mathbb{R}^d} \rho^2(x) dx + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} G(x-y) \rho(y) \rho(x) dy dx.$$
(10)

Energy identity:

$$E[\rho(t)] + \int_0^T \int_{\mathbb{R}^d} \rho \left| \nabla(\varepsilon \rho + G * \rho) \right|^2 dx dt = E[\rho_0].$$
(11)

The identity (11) can be proven rigorously in the context of the *Wasserstein gradient flow* theory developed in [Ambrosio, Gigli, Savaré, Birkhäuser 2003].

A key question: large time behavior

How does $\rho(t)$ behave as $t \to +\infty$? There are (basically) three possibilities:

- (i) **Diffusion dominated case:** $\rho(t)$ decays to zero in some L^p norm with p > 1. In this case, the repulsive effects dominates.
- (ii) Aggregation dominated case: $\rho(t)$ concentrates to a singular measure (delta) in finite or infinite time. Here, the aggregation effect dominates.
- (iii) **Balanced case:** $\rho(t)$ converges to some (stable) non trivial L^1 steady state for large times.

Unlike the Keller-Segel system, here no mass threshold phenomenon occurs, since the equation is quadratically homogeneous.

A minimization problem

$$\operatorname{argmin}_{\rho \in L^1_+(\mathbb{R}^d)} \left\{ \int_{\mathbb{R}^d} \Phi(\rho(x)) dx - \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \rho(x) \rho(y) G(x-y) dx dy \right\}.$$

Existence of nontrivial minimizers⁵ under the assumptions

- Total mass sufficiently large,
- $\Phi(tu) \leq t^{\nu} \Phi(u)$ with $1 < \nu < 2$,
- G slow decaying at infinity, i. e. $G(tx) \ge t^{-\alpha}G(x)$ with $\alpha \in (0, d)$,

•
$$\Phi(u) = o(u^{1+\frac{\alpha}{d}})$$
 as $u \to 0$.

⁵[Lions - Ann. Inst. H. Poincare 1984]

A critical exponent

Nontrivial minimizers exist⁶ if

• $G \in L^1_+$,

•
$$\Phi(u) = cu^2 + o(u^2)$$
 as $u \to 0$ with $c > 0$,

• either c = 0 or $2c < \int G$.

Case $\Phi(u) = u^m$: the exponent m = 2 is *critical*:

- $m > 2 \Rightarrow$ aggregation dominates \Rightarrow nontrivial stationary patterns,
- $m < 2 \Rightarrow$ diffusion dominates (large time decay expected),
- $m = 2 \Rightarrow ??$

⁶[Bedrossian, 2012]

M. Di Francesco (University of Bath)

Stationary states in multiple dimensions.

$$\frac{\partial \rho}{\partial t} = \operatorname{div}(\rho \nabla (\varepsilon \rho + \mathsf{G} * \rho)).$$

Threshold phenomenon^a

^a[Burger, DF, Franek - to appear on CMS], [Bedrossian, AML 2011]

- Let ε < ||G||_{L¹}. Then, there exists at least one non trivial L¹ steady state, which is also a minimizer for the energy E[ρ].
- Let $\varepsilon \ge \|G\|_{L^1}$. Then, there exist no steady states except $\rho \equiv 0$.

Finite time concentration is not possible under the present smoothness assumptions on *G*.

Stationary points of $E[\rho]$ are steady states and vice-versa

Uniqueness of steady states in one space dimension

With d = 1 we can characterize all the steady states as follows.

Theorem (Burger-DF-Franek - to appear on CMS)

Let $\varepsilon < \|G\|_{L^1}$. Then, there exists a unique $\rho \in L^2 \cap \mathcal{P}$ with zero center of mass which solves

$$\rho\partial_{x}(\varepsilon\rho+G*\rho)=0.$$

Moreover,

- ρ is symmetric and monotonically decreasing on x > 0,
- $\rho \in C^2(\operatorname{supp}[\rho])$,
- $supp[\rho]$ is a bounded interval in \mathbb{R} ,
- ρ has a global maximum at x = 0 and $\rho''(0) < 0$,
- ρ is the global minimizer of the energy $E[\rho] = \frac{\varepsilon}{2} \int \rho^2 dx \frac{1}{2} \int \rho G * \rho dx$.

Sketch of the proof

Fix L > 0. Look for ρ ∈ C(ℝ) symmetric on sptρ = [−L, L], strictly decreasing on (0, L]:

$$\varepsilon\rho(x) = -\int_0^L \left(G(x-y) + G(x+y)\right)\rho(y)dy + C \tag{12}$$

• Differentiate (12) w.r.t. x, set $u(x) = -\rho_x(x)$:

$$\varepsilon u(x) = -\int_0^L (G(x-y) - G(x+y)) u(y) dy =: \mathcal{G}_L[u](x)$$
(13)

- Solve the eigenvalue problem (13) with Krein-Rutman theorem. \mathcal{G}_L is a *strictly positive* operator, therefore $\varepsilon = \varepsilon(L)$ is a *simple* eigenvalue \Rightarrow uniqueness of $\rho(x) = \int_x^L u(y) dy$ with $\int_0^L \rho(x) dx = 1$.
- Prove that the function (0, +∞) ∋ L → ε(L) ∈ (0, 1) is continuous and 1 : 1 ⇒ uniqueness is proven provided all steady states are supported on a bounded interval, symmetric and decreasing on x > 0.
- Prove that all steady states are as above. Main tools: symmetric rearrangement and connected support.

M. Di Francesco (University of Bath)

Nonlocal interaction PDEs

Remarks and open problems:

- The uniqueness is surprising because the functional is neither geodesically convex in the Wasserstein space nor convex in the classical sense.
- Uniqueness in many dimensions? We believe it true in the radially symmetric case.
- Porous medium exponent $\gamma \neq 2$ (ongoing discussion with M. Burger, R. Fetecau, Y. Huang).

Table of contents

An interdisciplinary model for interacting individuals

5

Gradient flow structure of the discrete model

A model with moderate repulsion

Interplay with entropy solutions

M. Di Francesco (University of Bath)

The JKO scheme produces entropy solutions

• Nonlocal interaction equations with nonlinear diffusion

$$\partial_t \rho = \Delta \rho^m + \operatorname{div}(\rho \nabla G * \rho) = 0 \tag{14}$$

with m > 1 and $G \in C^2$ and G even. Here, both notions of *entropy* solutions and gradient flow solutions have been used (almost at the same time!) to prove uniqueness of solutions.

• Nonlinear diffusion equations with in-homogeneous term

$$\partial_t \rho = \partial_x (\rho \partial_x (a(x) \rho^{m-1}))$$

with $a(x) \ge c > 0$. In [DF, Matthes - submitted 2012] we prove that the notions of gradient flow solution and entropy solutions coincide.

The results in [DF, Matthes] can be applied also for (14).

A one dimensional repulsive equation⁷

Consider ρ gradient flow solution to

$$\rho_t = \partial_x (\rho \partial_x (G * \rho)), \qquad G(x) = -|x|.$$
(15)

Let

$$F(x,t)=\int_{-\infty}^{x}\rho(y,t)dy,$$

then F is an entropy solution to the Burgers' type equation

$$F_t + (F^2 - F)_x = 0. (16)$$

Applications:

- Smoothing effect: initial deltas become densities,
- Wave front tracking approximation for (16) provide particle approximation for (15).

⁷Work in preparation with G. Bonaschi and J. A. Carrillo

Nonlocal interaction PDEs

Table of contents

An interdisciplinary model for interacting individuals

Gradient flow structure of the discrete mode

A model with moderate repulsion

Interplay with entropy solutions

A two species model⁸

- X_1, \ldots, X_N particles of the first species with masses n_1, \ldots, n_N ,
- Y_1, \ldots, Y_M are particles of the second species with masses m_1, \ldots, m_M .

Particle system:

$$\begin{cases} \dot{X}_{i}(t) = -\sum_{X_{i} \neq X_{k}} n_{k} \nabla H_{1}(X_{i}(t) - X_{k}(t)) - \sum_{X_{i} \neq Y_{k}} m_{k} \nabla K_{1}(X_{i}(t) - Y_{k}(t)) \\ \dot{Y}_{j}(t) = -\sum_{Y_{j} \neq Y_{k}} m_{k} \nabla H_{2}(Y_{j}(t) - Y_{k}(t)) - \sum_{Y_{j} \neq X_{k}} n_{k} \nabla K_{2}(Y_{j}(t) - X_{k}(t)) \end{cases}$$

Continuum version:

$$\begin{cases} \partial_t \mu_1 = \operatorname{div} \left(\mu_1 \nabla H_1 * \mu_1 + \mu_1 \nabla K_1 * \mu_2 \right) \\ \partial_t \mu_2 = \operatorname{div} \left(\mu_2 \nabla H_2 * \mu_2 + \mu_2 \nabla K_2 * \mu_1 \right). \end{cases}$$

⁸[DF, Fagioli - submitted]

M. Di Francesco (University of Bath)

Motivation

- Pedestrian movements, lane formation, segregation, cf. [Appert-Rolland, Degond, Motsch 2011], [Colombo, Lécureux-Mercier 2012].
- Opinion formation, cf. [Josek 2009], [Düring, Markowich, Pietschmann, Wolfram 2009], [Escudero, Macià, Velázquez 2010].
- Two species chemotaxis, cf. [Horstmann 2011], [Espejo, Stevens, Velázquez 2009], [Conca, Espejo, Vilches 2011].
- Predator-Prey type interaction, cf. [Mogilner, Edelstein-Keshet, Bent, Spiros 2003].

Symmetrizable case

$$\begin{cases} \partial_t \mu_1 = \operatorname{div} \left(\mu_1 \nabla K_{11} * \mu_1 + \mu_1 \nabla K_{12} * \mu_2 \right) \\ \partial_t \mu_2 = \alpha \operatorname{div} \left(\mu_2 \nabla K_{22} * \mu_2 + \mu_2 \nabla K_{12} * \mu_1 \right). \end{cases}$$
(17)

System (17) has a gradient flow structure, with functional

$$\mathbf{F}(\mu_1,\mu_2) = \frac{1}{2} \int_{\mathbb{R}^d} K_{11} * \mu_1 d\mu_1 + \frac{1}{2} \int_{\mathbb{R}^d} K_{22} * \mu_2 d\mu_2 + \int_{\mathbb{R}^d} K_{12} * \mu_2 d\mu_1.$$

The quantity

$$c_{M,\alpha} := \alpha \int x d\mu_1(x) + \int x d\mu_2(x)$$

is preserved.

Metric product structure

$$\mu = (\mu_1, \mu_2) \in \mathscr{P}_2(\mathbb{R}^d) \times \mathscr{P}_2(\mathbb{R}^d), \ W^2_{2,\alpha}(\mu, \nu) = W^2_2(\mu_1, \nu_1) + rac{1}{lpha} W^2_2(\mu_2, \nu_2).$$

M. Di Francesco (University of Bath)

47 / 52

Results in the symmetrizable case

Assumptions: all the kernels K_{ij} are mildly singular and λ_{ij} -convex. We prove:

- λ convexity of the interaction energy on a suitable sub-differential structure.
- Existence, uniqueness, and stability of gradient flow solutions, by generalizing the one-species theory.
- Finite time collapse if all the kernels are of Non–Osgood type.
- Partial intermediate collapse of each species if the cross interaction kernel decays at infinity.

General case: the strategy

No gradient flow structure in general, no variational formulation. Main idea: semi-implicit version of the JKO scheme. For all $\mu \in \mathscr{P}(\mathbb{R}^d)^2$ we set

$$\mathbf{F}[\mu|\nu] = \frac{1}{2} \int_{\mathbb{R}^d} H_1 * \mu_1 d\mu_1 + \int_{\mathbb{R}^d} K_1 * \nu_2 d\mu_1 + \frac{1}{2} \int_{\mathbb{R}^d} H_2 * \mu_2 d\mu_2 + \int_{\mathbb{R}^d} K_2 * \nu_1 d\mu_2.$$

Let $\tau > 0$ be a fixed time step, and let $\mu_0 = (\mu_{0,1}, \mu_{0,2}) \in \mathscr{P}(\mathbb{R}^d)^2$ be a fixed initial pair of probability measures. For a given $\mu_n^{\tau} \in \mathscr{P}(\mathbb{R}^d)^2$, we define the sequence μ_{n+1}^{τ} as

$$\mu_{\tau}^{n+1} \in \operatorname{argmin}_{\mu \in \mathscr{P}_{2}(\mathbb{R}^{d}) \times \mathscr{P}_{2}(\mathbb{R}^{d})} \left\{ \frac{1}{2\tau} \mathcal{W}_{2}^{2}(\mu_{\tau}^{n}, \mu) + \mathbf{F}\left[\mu | \mu_{\tau}^{n}\right] \right\}.$$

M. Di Francesco (University of Bath)

NCSU, Jan 15 - 18, 201 49 / 52

General case: the results

Existence of weak measure solutions

$$\begin{split} \frac{d}{dt} \int \phi(x) d\mu_1(x,t) &= -\frac{1}{2} \iint \nabla H_1(x-y) \cdot (\nabla \phi(x) - \nabla \phi(y)) d\mu_1(x) d\mu_1(y) \\ &- \iint \nabla K_1(x-y) \cdot \nabla \phi(x) d\mu_1(x) d\mu_2(y) \\ \frac{d}{dt} \int \psi(x) d\mu_2(x,t) &= -\frac{1}{2} \iint \nabla H_2(x-y) \cdot (\nabla \psi(x) - \nabla \psi(y)) d\mu_2(x) d\mu_2(y) \\ &- \iint \nabla K_2(x-y) \cdot \psi(x) d\mu_2(x) d\mu_1(y). \end{split}$$

as limit of the semi-implicit JKO scheme.

• Uniqueness in case H_j and K_j are $W^{2,\infty}$, via a variant of the characteristics method.

Open problems and future work

- Open problem: uniqueness in the two species system for less regular potentials.
- Many species with nonlocal aggregation and nonlinear cross-diffusion terms: segregation. Ongoing project with M. Burger and A. Stevens.
- Derivation of multi-species continuum second order models via particle methods.
- Derivation of first order systems as damping dominated limits of second order systems.

End of the talk

Thank you for your attention!