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An interdisciplinary model for interacting individuals

A discrete particle system

N particles, located at X1(t), . . . ,XN(t) ∈ Rd with masses m1, . . . ,mN .

Subject to binary interaction forces depending on their position.

Friction dominated regime: no inertia.

dXj(t)

dt
= −

∑
k 6=j

mk∇G (Xj(t)− Xk(t)), j = 1, . . . ,N. (1)

Typical assumptions for the interaction potential G

G ∈ C (Rd), with G (0) = 0,

Radial symmetry G (x) = g(|x |),

Notation: g increasing ⇒ G attractive, g decreasing ⇒ G repulsive.

Stochastic version:

dXj(t) = −
∑
k 6=j

mk∇G (Xj(t)− Xk(t))dt + σNdW j(t)
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An interdisciplinary model for interacting individuals

Figure: N interacting particles
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An interdisciplinary model for interacting individuals

Main motivation: population dynamics

Animal swarming:

Okubo (1980)

Oelschläger (1989)

Morale, Capasso, and Oelschläger (1998)

Mogilner, Edelstein-Keshet (1999)

Topaz, Bertozzi, and Lewis (2006)

Typical interaction potentials:

attractive-repulsive Morse potentials G (x) = −Cae−|x|/la + Cre
−|x|/lr

combination of Gaussian potentials G (x) = −Cae−|x|
2/la + Cre

−|x|2/lr

smoothed characteristic functions of a set G (x) = αδε ∗ χA(x).
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An interdisciplinary model for interacting individuals

Hydrodynamic N → +∞ limit

Empirical measure:

µN(t) =

 N∑
j=1

mj

−1
N∑

k=1

mkδXk (t)

Formal limit of µN in the stochastic case

Assuming limN→+∞ σN = σ > 0, then

∂µ

∂t
=
σ2

2
∆µ+ div(µ∇G ∗ µ)

Distributional PDE for µN for σ = 0

∂µ

∂t
= div(µ∇G ∗ µ)
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An interdisciplinary model for interacting individuals

More motivations: Interplay with physics

Mean-field limits of large particle systems in statistical mechanics:

Onsager (1949) - Vortex dynamics

Morrey (1955) - Derivation of hydrodynamics from statistical mechanics

Dobrushin (1993) - Vlasov equation

Golse (2003) - Review paper

In those contexts, the potential G blows-up at the origin, which renders the
rigorous analytical framework of the model a challenging issue.
Kinetic modeling for granular media:

Benedetto, Caglioti, Pulvirenti (1997)

Brilliantov, Pöschel (2004)

Toscani (2004)

Here, G is a convex attractive potential, typically G (x) = |x |α with α > 1.
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An interdisciplinary model for interacting individuals

More motivations: chemotaxis

In many problems in biology, such as the 2d Keller-Segel model

∂tρ = ∆ρ+
χ

2π
div(ρ∇ log | · | ∗ ρ),

the dichotomy between the repulsive linear diffusion term and the attractive
log ‘chemotaxis’ term produces blow-up (concentration) of solutions in finite
time. No one knows (up to now) how to define solutions in a measure sense
after blow up.

The large time behavior for models with ‘milder’ aggregation force and with
nonlinear diffusion

∂tρ = ∆ρm + div(ρ∇G ∗ ρ)

G (x) = g(|x |), g ′(r) > 0, G ∈W 1,∞,

is a (most of the times) highly nontrivial question.

Simplification: no diffusion. Measure solutions theory (particles remain particles).
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An interdisciplinary model for interacting individuals

More motivations:

Alignment of actin laments with or without cross-linking proteins, cf. Kang,
Perthame, Primi, Stevens, Velazquez (2009). G double well potential.

Kinetic dithering
∂tρ = −div(ρ∇(G ∗ (ρ− σ)))

with σ ∈ L1
+ being a given profile, and

∫
ρ =

∫
σ. Typically, G (x) = |x |α.

Stationary solution ρ = σ. Stable for large times? PhD thesis of J.-C.
Hütter. Ref: Fornasier, Haškovec, Steidl - 2012.

Opinion formation: Sznajd-Weron, Sznajd (2000) - Aletti, Naldi, Toscani
(2007). Quasi invariant opinion limit of kinetic models.

Crowd movements: Helbing’s social force modelled via nonlocal forces, cf.
Hughes (2002), Cristiani et al. (2011), Colombo et al. (2012).
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An interdisciplinary model for interacting individuals

Mathematical motivation

Models with nonlocal attractive-repulsive kernels

∂tρ = div(ρ∇G ∗ ρ)

with G being a double-well potential, e. g. Lennard–Jones. Stationary
solutions? How do they look like?

Fetecau, Huang, Kolkolnikov - 2011: L1 stationary states.
von Brecht, Bertozzi - 2012: aggregation sheets.
Balagué, Carrillo, Laurent, Raoul - 2011: radial ins/stability of
‘spherical shells’.

Similarities with 2d incompressible Euler.

A repulsive nonlocal approximation for nonlinear diffusion

∂ρ

∂t
= div(ρ∇Gε ∗ ρ)
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Gradient flow structure of the discrete model

What is a gradient flow?

Given a smooth function F : Rd → R, a differentiable curve
[0,+∞) 3 t 7→ X (t) = Rd is a gradient flow of F if X (t) satisfies

Ẋ (t) = −∇F (X (t)).

Energy dissipation:
d

dt
F (X (t)) = −|∇F (X (t))|2

Implicit Euler variational derivation: time step τ > 0, Xτ (t) = X n
τ for

t ∈ ((n − 1)τ, nτ ], with

X n
τ = argmin{ 1

2τ
|X − X n

τ |2 + F (X ), X ∈ Rd}

D2F ≥ λI implies stability

d

dt
|X1(t)− X2(t)|2 = −2 < X1(t)− X2(t),∇F (X1(t))−∇F (X1(t)) >

≤ −2λ|X1(t)− X2(t)|2.
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Gradient flow structure of the discrete model

Gradient flow structure of the ODE particle system

Consider

dXj(t)

dt
= −

∑
k 6=j

mk∇G (Xj(t)− Xk(t)), j = 1, . . . ,N.

with G (−x) = G (x) and G ∈ C 2(Rd).

Weighted metric structure

Denote m = (m1, . . . ,mN). For X,Y ∈ RdN , let

< X,Y >L2
m

:=
N∑
j=1

mjXjYj , ‖X‖2
L2

m
=< X,X >L2

m
.

Frechét differential

Let F ∈ C 1(RdN). The linear operator gradXF[X ] is defined by

lim
ε→0

F[X + εY]− F[X]

ε
=:< gradXF[X],Y >L2

m
=

N∑
j=1

mj∇Xj F[X] · Yj .
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Gradient flow structure of the discrete model

Gradient flow structure of the ODE particle system

Energy functional

Let X := (X1, . . . ,XN)T .

G[X] :=
1

2

∑
i,j

mimjG (Xi − Xj)

Then
Ẋ(t) = −gradXG[X(t)]. (2)

Problem (2) makes sense if G ∈ C 1(Rd).

Regularity and collisions

If G ∈ C 2(Rd), then particles do not collide.
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Gradient flow structure of the discrete model

Mildly singular, locally attractive kernels

Assume

(K1) G (−x) = G (x)

(K2) G ∈ C 1(Rd \ {0})

(K3) G has a local minimum at x = 0

(K4) G is λ-convex, i. e. G (x)− λ
2 |x |

2 is convex on Rd .

Examples:

Morse type potentials G (x) = −e−a|x|, with a > 0,

Pointy potentials, i. e. with a Lipschitz point at the origin,

Power laws G (x) = |x |α with α ∈ (1, 2), cf. [Li, Toscani - 2004], [Burger,
DF - 2008]

Kernels with above assumptions (K1)–(K4) possibly produce finite time collapse
µ = δxc , with xc center of mass of the particles (constant in time).
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Gradient flow structure of the discrete model

Weaker gradient flow structure

Introduce the sub-differential of G

∂G (x) :=
{

k ∈ Rd : G (y)− G (x) ≥ k · (y − x) + o(|x − y |) for all y ∈ Rd
}
,

and the minimal sub-differential of G

∂0G (x) = argmink∈∂G(x)|k | =

{
∇G (x) if x 6= 0

0 if x = 0

Sub-differential structure of L2
m

∂G[X] =:=
{

K ∈ L2
m : G(Y)− G(X) ≥< K , (Y − X) >L2

m

+o(‖X− Y‖L2
m

) for all Y ∈ L2
m

}
.
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Gradient flow structure of the discrete model

Weaker gradient flow structure

We replace our particle system with

dXj(t)

dt
∈ −

∑
k∈Cj (t)

mk∂
0G (Xj(t)− Xk(t)), Cj(t) = {k : Xj(t) 6= Xk(t)}. (3)

Then, it is easily checked that

Ẋ(t) ∈ −∂0G[X(t)], (4)

with ∂0G = argminK∈∂G‖K‖L2
m

.

Well posedness in the discrete case

λ-convexity of the functional G

Existence and uniqueness of gradient flows.
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Gradient flow structure of the discrete model

Finite time collapse for attractive potentials

Assume G satisfies (K1)–(K4) and the additional conditions

G (x) = g(|x |), g ′(r) > 01 for r > 0,
g ′(r)

r
non-increasing. (5)

Proposition (Finite time collapse)

Let X1, . . . ,XN evolve according to (4), i. e.

Ẋj(t) = −
∑

Xk (t) 6=Xj (t)

mk∇G (Xj(t)− Xk(t).

Then, all the particles collapse in a finite time, i. e. Xj(t) = δCm for all t ≥ t∗ for
some t∗, iff ∫ ε

0

1

g ′(z)
dz < +∞ (6)

for some ε > 0.

1G is called attractive when g ′(r) > 0 and repulsive when g ′(r) < 0
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Gradient flow structure of the discrete model

Figure: The quantity R(t) = max{|Xj(t)− Cm|, j = 1, . . . ,N}.
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Gradient flow structure of the discrete model

Proof

Assume
∑N

j=1 mj = 1. Center of mass Cm =
∑N

j=1 mjXj(t) is preserved. Assume
for simplicity Cm = 0.

d

dt
R(t) =

d

dt
|X1(t)| = − X1(t)

|X1(t)|
·
∑
j 6=1

mj∇G (X1(t)− Xj(t))

= −
∑
j 6=1

mjX1(t) · (X1(t)− Xj(t))
g ′(|X1(t)− Xj(t)|)
|X1(t)||X1(t)− Xj(t)|

.

Since X1(t) · Xj(t) ≤ |X1(t)|2, and since g ′(r)/r is non increasing, we use
|X1(t)− Xj(t)| ≤ 2|X1(t)|:

d

dt
R(t) ≤ −g ′(2|X1(t)|)

2|X1(t)|2
∑
j 6=1

mj

(
|X1(t)|2 − X1(t) · Xj(t)

)
= −(1−m1)g ′(2|X1(t)|) +

g ′(2|X1(t)|)
2|X1(t)|2

X1(t) · (−m1X1(t)) = −g ′(2R(t))

and the assertion is proven. Notice that the collapse time is independent of N.
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The continuum theory
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The continuum theory

Ingredients for the continuum theory2

Aim: produce a unique notion of measure solution for

∂µ

∂t
= div(µ∇G ∗ µ).

The measure space

µ ∈ P2(Rd) :=

{
µ ∈ P(Rd),

∫
|x |2dµ(x) < +∞

}
endowed with the 2-Wasserstein distance

d2(µ, ν)2 = inf

{∫∫
Rd×Rd

|x − y |2dγ(x , y), : γ ∈ Γ(µ, ν)

}
Γ(µ, ν) =

{
γ ∈ P(Rd × Rd) : µ andµ are the marginals of γ

}
The functional

G[µ] =
1

2

∫∫
Rd×Rd

G (x − y)dµ(x)dµ(y)

2Ambrosio, Gigli, Savaré - Birkhäuser 2005
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The continuum theory

Why the Wasserstein distance?

Go back to the discrete case:

µ :=
N∑
j=1

mjXj , ν :=
N∑
j=1

mjYj .

The natural distance is

d(µ, ν)2 = inf

{∫ 1

0

‖ d

ds
X(·)‖2

L2
m
, Xj(0) = Xj , Xj(1) = Yj

}
.

The natural continuum version is:

d(µ, ν)2 = inf

{∫ 1

0

∫
|vs(x)|2dµs(x), ∂sµs + div(µsvs)0, µ0 = µ, µ1 = ν

}
,

which coincides with the 2–Wasserstein distance according to the
Benamou-Brenier formula.
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The continuum theory

Definition of Wasserstein gradient flow

An absolutely continuous curve [0,+∞) 3 t 7→ µ(t) ∈ P(Rd) is a Wasserstein
gradient flow of the functional G iff

∂µ(t)

∂t
+ div(µ(t)v(t)) = 0, inD′(Rd × [0,+∞))

v(t) = −∂0G ∗ µ(t) = −
∫
x 6=y

∇G (x − y)dµ(y , t).

Notice that ∂0G ∗ µ(t) coincides with the minimal sub-differential of G on
P2(Rd), namely

∂0G ∗ µ(t) = argminv∈∂G[µ]‖v‖L2(dµ:Rd )

∂G[µ] =
{

v ∈ L2(dµ) :

G[ν]− G[µ] ≥ inf
γo∈Γ(µ,ν)

∫∫
Rd×Rd

v(x) · (y − x)dγo(x , y) + o(d2(µ, ν))

}
,

γo ∈ Γ(µ, ν) such that d2(µ, ν) =

∫∫
Rd×Rd

|x − y |2dγo(x , y).
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The continuum theory

Existence and uniqueness of solutions

Theorem (Existence and uniquenessa)

aCarrillo, DF, Figalli, Laurent, Slepcev - Duke Math. J. - 2011

Let µ0 ∈ P2(Rd). Then, there exists a unique Wasserstein gradient flow
solution for G with µ0 as initial datum. Moreover,

G[µ(t)] +

∫ t

0

ds

∫
R2

∣∣∂0G ∗ µ(x , s)
∣∣2 dµ(x , s) ≤ G[µ0], (7)

for all t ≥ 0.

Let µ0
1, µ

0
2 ∈ P2(Rd). Let µ1(t) and µ2(t) be Wasserstein gradient flows for

G with µ0
1 and µ0

2 as initial data respectively. Then,

d2(µ1(t), µ2(t)) ≤ e|λ|td2(µ0
1, µ

0
2), (8)

for all t ≥ 0.
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The continuum theory

Finite time collapse for general solutions

Theorem (Finite total collapsea)

aCarrillo, DF, Figalli, Laurent, Slepcev - Duke Math. J. - 2011

Let µ0 ∈ P2(Rd) compactly supported. Let µ(t) the corresponding gradient flow
of G. Let

Cm :=

∫
Rd

xdµ(x , t).

Then, there exists a time t∗ depending only on the radius of spt(µ0) such that

µ(t) = δCm ,

for all t ≥ t∗.
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The continuum theory

Proof

Similar to an old idea of R. Dobrushin (1979).

1 Atomization of µ0: for a fixed arbitrary ε > 0, take µN
0 =

∑N
j=1 mjδXj such

that
d2(µ0, µ

N
0 ) ≤ ε.

2 Let the particles X1, . . . ,XN evolve via the discrete particle system. Let t∗

be the collapse time,

X1(t) = . . . = XN(t) = Cm, for all t ≥ t∗.

3 This means that µN(t) :=
∑

j=1 NmjδXi (t) = δCm for all t ≥ t∗.

4 The stability property (8) implies

d2(µ(t∗), µN(t∗)) ≤ e−λt
∗
d2(µ0, µ

N
0 ) ≤ εe−λt

∗
,

which is an arbitrary small quantity. Hence,

5 µ(t∗) = µN(t∗) = δCm .
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The continuum theory

Global confinement for attractive-repulsive potentials3

Assume G as in (K1)–(K4), plus

(K5) G (x) = g(|x |), g ∈ C 1((0,+∞),

(K6) g ′(r) > 0 for r > Ra for some Ra > 0,

(K7) g ′(r) > −CG for r < Ra for some CG > 0.

Moreover, assume either

(K8) there exists R̄ > 0 such that g ′(r) ≥ 4CG for all r ≥ R̄,
or

(K9) lim infr→0 g(r) > −∞, and limr→+∞ g ′(r)
√

r = +∞.

Then, there exists R∗ > 0 depending only on G and on µ0 such that

spt(µ(t)) ⊂ B(0,R∗), for all t ≥ 0.

Remark: conditions (K5)–(K7) alone are not enough for global confinement
(Theil, 2006).

3Carrillo, DF, Figalli, Laurent, Slepcev - Nonlinear Anal. - 2012
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A model with moderate repulsion

N–dependent repulsion range4

dXj(t)

dt
= −

∑
k 6=j

mk∇G (Xj(t)− Xk(t))−
∑
k 6=j

mk∇VN(Xj(t)− Xk(t)), j = 1, . . . ,N

VN(x) = NdβV (Nβx), β ∈ (0, 1)

V (x) = v(|x |), v ∈ C 2((0,+∞)), v ′(r) < 0, as r > 0,

V ≥ 0,

∫
Rd

V (x)dx = ε.

VN is a repulsive kernel, with a range of interaction O(N−β) and strength of
the interaction force O(Ndβ) depending on the number of individuals N.

Formally VN(x)→ εδ in D′ as N → +∞.

Formal limit of the particle system

∂µ

∂t
= div(µ∇G ∗ µ) + εdiv(µ∇µ). (9)

Hence... a quadratic porous medium type diffusion term appears.

4Ölschläger - Prob. Th. Rel. Fields - 1989
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A model with moderate repulsion

Basic properties of the limiting equation

Assume

G (x) = g(|x |), g ∈ C 2([0,+∞)),

g ′(r) > 0 for all r > 0,

sptG = Rd , G ≤ 0, G ∈ L1(Rd).

Regularizing effect

For all initial data µ0 ∈ P2(Rd), the corresponding solutions are densities,
µ(t) = ρ(t)dLd .

Conservation of the center of mass

Let

CM[ρ(t)] :=

∫
xρ(x , t)dx ,

then CM[ρ(t)] = CM[ρ0] for all t ≥ 0.
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A model with moderate repulsion

Wasserstein gradient flow for the limiting equation

∂ρ

∂t
= div(ρ∇(ερ+ G ∗ ρ)).

Energy functional:

E [ρ] :=
ε

2

∫
Rd

ρ2(x)dx +
1

2

∫
Rd

∫
Rd

G (x − y)ρ(y)ρ(x)dydx . (10)

Energy identity:

E [ρ(t)] +

∫ T

0

∫
Rd

ρ |∇(ερ+ G ∗ ρ)|2 dxdt = E [ρ0]. (11)

The identity (11) can be proven rigorously in the context of the Wasserstein
gradient flow theory developed in [Ambrosio, Gigli, Savaré, Birkhäuser 2003].
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A model with moderate repulsion

A key question: large time behavior

How does ρ(t) behave as t → +∞? There are (basically) three possibilities:

(i) Diffusion dominated case: ρ(t) decays to zero in some Lp norm with
p > 1. In this case, the repulsive effects dominates.

(ii) Aggregation dominated case: ρ(t) concentrates to a singular measure
(delta) in finite or infinite time. Here, the aggregation effect dominates.

(iii) Balanced case: ρ(t) converges to some (stable) non trivial L1 steady state
for large times.

Unlike the Keller-Segel system, here no mass threshold phenomenon occurs, since
the equation is quadratically homogeneous.
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A model with moderate repulsion

A minimization problem

argminρ∈L1
+(Rd )

{∫
Rd

Φ(ρ(x))dx − 1

2

∫
Rd

∫
Rd

ρ(x)ρ(y)G (x − y)dxdy

}
.

Existence of nontrivial minimizers5 under the assumptions

Total mass sufficiently large,

Φ(tu) ≤ tνΦ(u) with 1 < ν < 2,

G slow decaying at infinity, i. e. G (tx) ≥ t−αG (x) with α ∈ (0, d),

Φ(u) = o(u1+ α
d ) as u → 0.

5[Lions - Ann. Inst. H. Poincare 1984]
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A model with moderate repulsion

A critical exponent

Nontrivial minimizers exist6 if

G ∈ L1
+,

Φ(u) = cu2 + o(u2) as u → 0 with c > 0,

either c = 0 or 2c <
∫

G .

Case Φ(u) = um: the exponent m = 2 is critical:

m > 2⇒ aggregation dominates ⇒ nontrivial stationary patterns,

m < 2⇒ diffusion dominates (large time decay expected),

m = 2⇒ ??

6[Bedrossian, 2012]
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A model with moderate repulsion

Stationary states in multiple dimensions.

∂ρ

∂t
= div(ρ∇(ερ+ G ∗ ρ)).

Threshold phenomenona

a[Burger, DF, Franek - to appear on CMS], [Bedrossian, AML 2011]

Let ε < ‖G‖L1 . Then, there exists at least one non trivial L1 steady state,
which is also a minimizer for the energy E [ρ].

Let ε ≥ ‖G‖L1 . Then, there exist no steady states except ρ ≡ 0.

Finite time concentration is not possible under the present smoothness
assumptions on G.

Stationary points of E [ρ] are steady states and vice-versa
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A model with moderate repulsion

Uniqueness of steady states in one space dimension

With d = 1 we can characterize all the steady states as follows.

Theorem (Burger-DF-Franek - to appear on CMS)

Let ε < ‖G‖L1 . Then, there exists a unique ρ ∈ L2 ∩ P with zero center of mass
which solves

ρ∂x(ερ+ G ∗ ρ) = 0.

Moreover,

ρ is symmetric and monotonically decreasing on x > 0,

ρ ∈ C 2(supp[ρ]),

supp[ρ] is a bounded interval in R,

ρ has a global maximum at x = 0 and ρ′′(0) < 0,

ρ is the global minimizer of the energy E [ρ] = ε
2

∫
ρ2dx − 1

2

∫
ρG ∗ ρdx.
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A model with moderate repulsion

Sketch of the proof

Fix L > 0. Look for ρ ∈ C (R) symmetric on sptρ = [−L, L], strictly
decreasing on (0, L]:

ερ(x) = −
∫ L

0

(G (x − y) + G (x + y)) ρ(y)dy + C (12)

Differentiate (12) w.r.t. x , set u(x) = −ρx(x):

εu(x) = −
∫ L

0

(G (x − y)− G (x + y)) u(y)dy =: GL[u](x) (13)

Solve the eigenvalue problem (13) with Krein-Rutman theorem. GL is a
strictly positive operator, therefore ε = ε(L) is a simple eigenvalue ⇒
uniqueness of ρ(x) =

∫ L

x
u(y)dy with

∫ L

0
ρ(x)dx = 1.

Prove that the function (0,+∞) 3 L 7→ ε(L) ∈ (0, 1) is continuous and 1 : 1
⇒ uniqueness is proven provided all steady states are supported on a
bounded interval, symmetric and decreasing on x > 0.

Prove that all steady states are as above. Main tools: symmetric
rearrangement and connected support.
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A model with moderate repulsion

Remarks and open problems:

The uniqueness is surprising because the functional is neither geodesically
convex in the Wasserstein space nor convex in the classical sense.

Uniqueness in many dimensions? We believe it true in the radially symmetric
case.

Porous medium exponent γ 6= 2 (ongoing discussion with M. Burger, R.
Fetecau, Y. Huang).
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Interplay with entropy solutions
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Interplay with entropy solutions

The JKO scheme produces entropy solutions

Nonlocal interaction equations with nonlinear diffusion

∂tρ = ∆ρm + div(ρ∇G ∗ ρ) = 0 (14)

with m > 1 and G ∈ C 2 and G even. Here, both notions of entropy
solutions and gradient flow solutions have been used (almost at the same
time!) to prove uniqueness of solutions.

Nonlinear diffusion equations with in-homogeneous term

∂tρ = ∂x(ρ∂x(a(x)ρm−1))

with a(x) ≥ c > 0. In [DF, Matthes - submitted 2012] we prove that the
notions of gradient flow solution and entropy solutions coincide.

The results in [DF, Matthes] can be applied also for (14).
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Interplay with entropy solutions

A one dimensional repulsive equation7

Consider ρ gradient flow solution to

ρt = ∂x(ρ∂x(G ∗ ρ)), G (x) = −|x |. (15)

Let

F (x , t) =

∫ x

−∞
ρ(y , t)dy ,

then F is an entropy solution to the Burgers’ type equation

Ft + (F 2 − F )x = 0. (16)

Applications:

Smoothing effect: initial deltas become densities,

Wave front tracking approximation for (16) provide particle approximation
for (15).

7Work in preparation with G. Bonaschi and J. A. Carrillo
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Systems with many species
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Systems with many species

A two species model8

X1, . . . ,XN particles of the first species with masses n1, . . . , nN ,

Y1, . . . ,YM are particles of the second species with masses m1, . . . ,mM .

Particle system:{
Ẋi (t) = −

∑
Xi 6=Xk

nk∇H1(Xi (t)− Xk(t))−
∑

Xi 6=Yk
mk∇K1(Xi (t)− Yk(t))

Ẏj(t) = −
∑

Yj 6=Yk
mk∇H2(Yj(t)− Yk(t))−

∑
Yj 6=Xk

nk∇K2(Yj(t)− Xk(t))
.

Continuum version:{
∂tµ1 = div (µ1∇H1 ∗ µ1 + µ1∇K1 ∗ µ2)

∂tµ2 = div (µ2∇H2 ∗ µ2 + µ2∇K2 ∗ µ1) .

8[DF, Fagioli - submitted]
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Systems with many species

Motivation

Pedestrian movements, lane formation, segregation, cf. [Appert-Rolland,
Degond, Motsch - 2011], [Colombo, Lécureux-Mercier - 2012].

Opinion formation, cf. [Josek - 2009], [Düring, Markowich, Pietschmann,
Wolfram - 2009], [Escudero, Macià, Velázquez - 2010].

Two species chemotaxis, cf. [Horstmann - 2011], [Espejo, Stevens,
Velázquez - 2009], [Conca, Espejo, Vilches - 2011].

Predator–Prey type interaction, cf. [Mogilner, Edelstein-Keshet, Bent,
Spiros - 2003].

M. Di Francesco (University of Bath) Nonlocal interaction PDEs NCSU, Jan 15 - 18, 201 46 / 52



Systems with many species

Symmetrizable case

{
∂tµ1 = div (µ1∇K11 ∗ µ1 + µ1∇K12 ∗ µ2)

∂tµ2 = αdiv (µ2∇K22 ∗ µ2 + µ2∇K12 ∗ µ1) .
(17)

System (17) has a gradient flow structure, with functional

F(µ1, µ2) =
1

2

∫
Rd

K11 ∗ µ1dµ1 +
1

2

∫
Rd

K22 ∗ µ2dµ2 +

∫
Rd

K12 ∗ µ2dµ1.

The quantity

cM,α := α

∫
xdµ1(x) +

∫
xdµ2(x)

is preserved.

Metric product structure

µ = (µ1, µ2) ∈P2(Rd)×P2(Rd),

W2
2,α(µ, ν) = W 2

2 (µ1, ν1) +
1

α
W 2

2 (µ2, ν2).
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Systems with many species

Results in the symmetrizable case

Assumptions: all the kernels Kij are mildly singular and λij–convex. We prove:

λ convexity of the interaction energy on a suitable sub-differential structure.

Existence, uniqueness, and stability of gradient flow solutions, by
generalizing the one-species theory.

Finite time collapse if all the kernels are of Non–Osgood type.

Partial intermediate collapse of each species if the cross interaction kernel
decays at infinity.
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Systems with many species

General case: the strategy

No gradient flow structure in general, no variational formulation. Main idea:
semi-implicit version of the JKO scheme.
For all µ ∈P(Rd)2 we set

F[µ|ν] =
1

2

∫
Rd

H1 ∗µ1dµ1 +

∫
Rd

K1 ∗ ν2dµ1 +
1

2

∫
Rd

H2 ∗µ2dµ2 +

∫
Rd

K2 ∗ ν1dµ2.

Let τ > 0 be a fixed time step, and let µ0 = (µ0,1, µ0,2) ∈P(Rd)2 be a fixed
initial pair of probability measures. For a given µτn ∈P(Rd)2, we define the
sequence µτn+1 as

µn+1
τ ∈ argminµ∈P2(Rd )×P2(Rd )

{
1

2τ
W2

2(µn
τ , µ) + F [µ|µn

τ ]

}
.
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Systems with many species

General case: the results

Existence of weak measure solutions

d

dt

∫
φ(x)dµ1(x , t) = −1

2

∫∫
∇H1(x − y) · (∇φ(x)−∇φ(y))dµ1(x)dµ1(y)

−
∫∫
∇K1(x − y) · ∇φ(x)dµ1(x)dµ2(y)

d

dt

∫
ψ(x)dµ2(x , t) = −1

2

∫∫
∇H2(x − y) · (∇ψ(x)−∇ψ(y))dµ2(x)dµ2(y)

−
∫∫
∇K2(x − y) · ψ(x)dµ2(x)dµ1(y).

as limit of the semi-implicit JKO scheme.

Uniqueness in case Hj and Kj are W 2,∞, via a variant of the characteristics
method.
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Systems with many species

Open problems and future work

Open problem: uniqueness in the two species system for less regular
potentials.

Many species with nonlocal aggregation and nonlinear cross-diffusion terms:
segregation. Ongoing project with M. Burger and A. Stevens.

Derivation of multi-species continuum second order models via particle
methods.

Derivation of first order systems as damping dominated limits of second
order systems.
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Systems with many species

End of the talk

Thank you for your attention!
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