# Alignment processes on the sphere

# Amic Frouvelle CEREMADE – Université Paris Dauphine

Joint works with:

Pierre Degond (Imperial College London) and Gaël Raoul (École Polytechnique) Jian-Guo Liu (Duke University)

Young Researchers Workshop: "Stochastic and deterministic methods in kinetic theory"

Duke University, November 28th - December 2nd, 2016

# Context: alignment of self-propelled particles



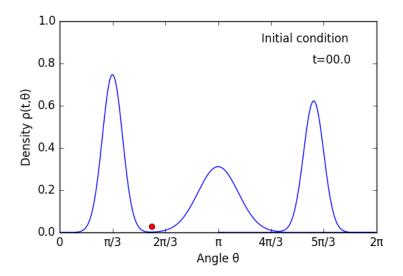


- Unit speed, local interactions without leader
- Emergence of patterns

Purpose of this talk: alignment mechanisms of (kinetic) Vicsek and BDG models.

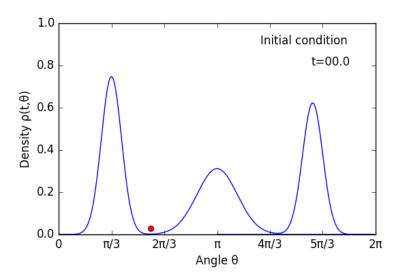
Focus on the alignment process only: no noise, no space!

Images @(1)(1) Benson Kua (flickr) and (6)



Amic Frouvelle

3/24



### Toy model in $\mathbb{R}^n$

Velocities  $v_i(t) \in \mathbb{R}^n$ , for  $1 \le i \le N$ . Each velocity is attracted by the others, with strengths  $m_j$  such that  $\sum_{j=1}^N m_j = 1$ .

$$\frac{\mathrm{d}v_i}{\mathrm{d}t} = \sum_{j=1}^N m_j(v_j - v_i) = J - v_i \quad \text{where } J = \sum_{i=1}^N m_i v_i.$$

### Toy model in $\mathbb{R}^n$

Velocities  $v_i(t) \in \mathbb{R}^n$ , for  $1 \le i \le N$ . Each velocity is attracted by the others, with strengths  $m_j$  such that  $\sum_{j=1}^N m_j = 1$ .

$$\frac{\mathrm{d}v_i}{\mathrm{d}t} = \sum_{j=1}^N m_j(v_j - v_i) = J - v_i \quad \text{where } J = \sum_{i=1}^N m_i v_i.$$

Conservation of momentum : J is constant. We get

$$v_i(t) = J + e^{-t} a_i$$
, with  $a_i = v_i(0) - J \in \mathbb{R}^n$  and  $\sum_{i=1}^N m_i a_i = 0$ .

### Toy model in $\mathbb{R}^n$

Velocities  $v_i(t) \in \mathbb{R}^n$ , for  $1 \le i \le N$ . Each velocity is attracted by the others, with strengths  $m_j$  such that  $\sum_{j=1}^N m_j = 1$ .

$$\frac{\mathrm{d}v_i}{\mathrm{d}t} = \sum_{j=1}^N m_j(v_j - v_i) = J - v_i \quad \text{where } J = \sum_{i=1}^N m_i v_i.$$

Conservation of momentum : J is constant. We get

$$v_i(t)=J+e^{-t}\,a_i$$
, with  $a_i=v_i(0)-J\in\mathbb{R}^n$  and  $\sum_{i=1}^Nm_ia_i=0$ .

#### Gradient flow structure

If 
$$\mathcal{E} = \frac{1}{2} \sum_{i,j} m_i m_j \|v_i - v_j\|^2$$
, then  $\mathcal{E} = \sum_i m_i \|v_i - J\|^2$ .

Then 
$$\nabla_{v_i} \mathcal{E} = -2m_i \frac{dv_i}{dt}$$
, and so  $\frac{d\mathcal{E}}{dt} = -2\sum_i m_i |\frac{dv_i}{dt}|^2 = -2\mathcal{E}$ .

# Coupled nonlinear ordinary differential equations

Velocities  $v_i(t) \in \mathbb{S}$ , the unit sphere of  $\mathbb{R}^n$ , for  $1 \leqslant i \leqslant N$ . Each velocity is attracted by the others, with strengths  $m_j$  such that  $\sum_{j=1}^N m_j = 1$ , under the constraint that it stays on the sphere. If  $v \in \mathbb{S}$ , we denote  $P_{v^{\perp}}$  the orthogonal projection on the tangent space of  $\mathbb{S}$  at v. So  $P_{v^{\perp}}u = u - (v \cdot u)v$ , for any  $u \in \mathbb{R}^n$ .

$$rac{\mathrm{d} v_i}{\mathrm{d} t} = P_{v_i^\perp} \sum_{j=1}^N m_j (v_j - v_i) = P_{v_i^\perp} J$$
 where  $J = \sum_{i=1}^N m_i v_i$ .

We indeed get  $\frac{\mathrm{d}|v_i|^2}{\mathrm{d}t} = 2v_i \cdot P_{v_i^{\perp}} J = 0$ .

No more conservation here!

### Same gradient flow structure

Define as in the toy model:

$$\mathcal{E} = \frac{1}{2} \sum_{i,i=1}^{N} m_i m_j \|v_i - v_j\|^2 = \sum_{i,i=1}^{N} m_i m_j (1 - v_i \cdot v_j) = 1 - |J|^2 \geqslant 0.$$

### Same gradient flow structure

Define as in the toy model:

$$\mathcal{E} = \frac{1}{2} \sum_{i,j=1}^{N} m_i m_j \|v_i - v_j\|^2 = \sum_{i,j=1}^{N} m_i m_j (1 - v_i \cdot v_j) = 1 - |J|^2 \geqslant 0.$$

Notice that we have  $\nabla_v(v \cdot u) = P_{v^{\perp}}u$ , (for  $v \in \mathbb{S}$ ,  $u \in \mathbb{R}^n$ , and where  $\nabla_v$  is the gradient on the sphere). So

$$\nabla_{\mathbf{v}_i} \mathcal{E} = -2 \sum_{j=1}^N m_i m_j P_{\mathbf{v}_i^{\perp}} \mathbf{v}_j = -2 m_i \frac{\mathsf{d} \mathbf{v}_i}{\mathsf{d} t}.$$

### Same gradient flow structure

Define as in the toy model:

$$\mathcal{E} = \frac{1}{2} \sum_{i,j=1}^{N} m_i m_j \|v_i - v_j\|^2 = \sum_{i,j=1}^{N} m_i m_j (1 - v_i \cdot v_j) = 1 - |J|^2 \geqslant 0.$$

Notice that we have  $\nabla_{v}(v \cdot u) = P_{v^{\perp}}u$ , (for  $v \in \mathbb{S}$ ,  $u \in \mathbb{R}^{n}$ , and where  $\nabla_{v}$  is the gradient on the sphere). So

$$\nabla_{v_i} \mathcal{E} = -2 \sum_{j=1}^N m_i m_j P_{v_i^{\perp}} v_j = -2 m_i \frac{\mathrm{d} v_i}{\mathrm{d} t}.$$

$$\frac{d\mathcal{E}}{dt}\left(=-\frac{d|J|^2}{dt}\right) = -2\sum_{i=1}^{N} m_i \left|\frac{dv_i}{dt}\right|^2 = -2\sum_{i=1}^{N} m_i (|J|^2 - (v_i \cdot J)^2) \leqslant 0.$$

Then |J| is increasing, so if  $J(0) \neq 0$ , then  $J(t) \neq 0$  for all t, and  $\Omega(t) = \frac{J(t)}{|J(t)|}$  is well-defined.

# Convergence, relatively to $\Omega$

$$\frac{1}{2}\frac{d|J|^2}{dt} = |J|^2 \sum_{i=1}^N m_i (1 - (v_i \cdot \Omega)^2) \geqslant 0.$$

Hence  $|J|^2$  is increasing, bounded and with bounded second derivative (we compute it and get that everything is continuous on  $\mathbb{S}$ ). Therefore its derivative must converge to 0 as  $t \to +\infty$ .

# Convergence, relatively to $\Omega$

$$\frac{1}{2}\frac{d|J|^2}{dt} = |J|^2 \sum_{i=1}^N m_i (1 - (v_i \cdot \Omega)^2) \geqslant 0.$$

Hence  $|J|^2$  is increasing, bounded and with bounded second derivative (we compute it and get that everything is continuous on  $\mathbb{S}$ ). Therefore its derivative must converge to 0 as  $t \to +\infty$ .

### "Front" or "Back" particles

$$v_i(t)\cdot\Omega(t)\to\pm 1$$
 as  $t\to+\infty$ , for  $1\leqslant i\leqslant N$ .

# Convergence, relatively to $\Omega$

$$\frac{1}{2}\frac{d|J|^2}{dt} = |J|^2 \sum_{i=1}^N m_i (1 - (v_i \cdot \Omega)^2) \geqslant 0.$$

Hence  $|J|^2$  is increasing, bounded and with bounded second derivative (we compute it and get that everything is continuous on  $\mathbb{S}$ ). Therefore its derivative must converge to 0 as  $t \to +\infty$ .

### "Front" or "Back" particles

$$v_i(t)\cdot\Omega(t) o \pm 1$$
 as  $t o +\infty$ , for  $1\leqslant i\leqslant N$ .

Convergence of  $\Omega(t)$  ?  $\frac{d\Omega}{dt} = P_{\Omega^{\perp}} M\Omega$ , with  $M(t) = \sum_{i=1}^{N} m_i P_{v_i^{\perp}}$  (a  $n \times n$  matrix). Easy to show that  $|\frac{d\Omega}{dt}|$  is  $L^2$  in time, but  $L^1$  ?...

### Case with all $v_i$ "at the front"

If  $v_i \cdot \Omega \to 1$  for all i, then  $|J| = \sum_i m_i v_i \cdot \Omega \to 1$ . We have

$$\frac{1}{2} \frac{d}{dt} \|v_i - v_j\|^2 = -|J| \Omega \cdot \frac{v_i + v_j}{2} \|v_i - v_j\|^2.$$

### Case with all $v_i$ "at the front"

If  $v_i \cdot \Omega \to 1$  for all i, then  $|J| = \sum_i m_i v_i \cdot \Omega \to 1$ . We have

$$\frac{1}{2} \frac{d}{dt} \|v_i - v_j\|^2 = -|J| \Omega \cdot \frac{v_i + v_j}{2} \|v_i - v_j\|^2.$$

#### Exponential estimates

The quantities  $(1 - v_i \cdot v_j) = \frac{1}{2} ||v_i - v_j||^2$ ,  $1 - |J|^2$ ,  $1 - v_i \cdot \Omega$  and  $|P_{v_i^{\perp}}\Omega|^2 = 1 - (v_i \cdot \Omega)^2$  are all bounded by  $Ce^{-2t}$ .

### Case with all $v_i$ "at the front"

If  $v_i \cdot \Omega \to 1$  for all i, then  $|J| = \sum_i m_i v_i \cdot \Omega \to 1$ . We have

$$\frac{1}{2} \frac{d}{dt} \|v_i - v_j\|^2 = -|J| \Omega \cdot \frac{v_i + v_j}{2} \|v_i - v_j\|^2.$$

#### Exponential estimates

The quantities  $(1 - v_i \cdot v_j) = \frac{1}{2} ||v_i - v_j||^2$ ,  $1 - |J|^2$ ,  $1 - v_i \cdot \Omega$  and  $|P_{v_i^{\perp}}\Omega|^2 = 1 - (v_i \cdot \Omega)^2$  are all bounded by  $Ce^{-2t}$ .

We then obtain

$$rac{\mathsf{d}\Omega}{\mathsf{d}t} = \sum_{i=1}^N m_i (1-v_i\cdot\Omega) P_{\Omega^\perp} v_i = O(e^{-3t}),$$

which gives that  $\Omega(t) \to \Omega_{\infty} \in \mathbb{S}$ .

### Asymptotic behaviour of each vi

After some computations, using the previous estimates, we get

$$\frac{\mathrm{d}^2 v_i}{\mathrm{d}t^2} = -\frac{\mathrm{d}v_i}{\mathrm{d}t} - \left|\frac{\mathrm{d}v_i}{\mathrm{d}t}\right|^2 v_i + O(e^{-3t}).$$

This gives that  $\frac{dv_i}{dt} = a_i e^{-t} + O(e^{-2t})$  for some  $a_i \in \mathbb{R}^n$ . Using it with the expression above, we obtain a better estimate for  $v_i$ .

### Asymptotic behaviour of each *vi*

After some computations, using the previous estimates, we get

$$\frac{\mathrm{d}^2 v_i}{\mathrm{d}t^2} = -\frac{\mathrm{d}v_i}{\mathrm{d}t} - \left|\frac{\mathrm{d}v_i}{\mathrm{d}t}\right|^2 v_i + O(e^{-3t}).$$

This gives that  $\frac{dv_i}{dt} = a_i e^{-t} + O(e^{-2t})$  for some  $a_i \in \mathbb{R}^n$ . Using it with the expression above, we obtain a better estimate for  $v_i$ .

#### Theorem (if all particles are "front"):

There exists  $\Omega_{\infty} \in \mathbb{S}$ , and  $a_i \in \{\Omega_{\infty}\}^{\perp} \subset \mathbb{R}^n$ , for  $1 \leqslant i \leqslant N$  such that  $\sum_{i=1}^N m_i a_i = 0$  and that, as  $t \to +\infty$ ,

$$v_i(t)=\left(1-|a_i|^2e^{-2t}\right)\Omega_\infty+e^{-t}\,a_i+\mathit{O}(e^{-3t})\quad ext{for } 1\leqslant i\leqslant \mathit{N},$$
  $\Omega(t)=\Omega_\infty+\mathit{O}(e^{-3t}).$ 

We see that  $\Omega(t)$  acts as a nearly conserved quantity, and we recover results asymptotically similar to the case of the toy model.

# Only one can finish at the back

We denote  $\lambda > 0$  the limit of |J| (increasing). Recall that

$$\frac{1}{2}\frac{d}{dt}\|v_i - v_j\|^2 = -J \cdot \frac{v_i + v_j}{2}\|v_i - v_j\|^2.$$

If  $v_i(0) \neq v_j(0)$ , we cannot have  $v_i \cdot \Omega \to -1$  and  $v_j \cdot \Omega \to -1$  (repulsion). Up to renumbering, only  $v_N$  is "going to the back".

We then get  $|J| \to \sum_{i=1}^{N-1} m_i - m_N = 1 - 2m_N = \lambda$  (so  $m_N < \frac{1}{2}$ ). Same as before:  $||v_i - v_j|| = O(e^{-\lambda t})$  (for  $i, j \neq N$ ).

# Only one can finish at the back

We denote  $\lambda > 0$  the limit of |J| (increasing). Recall that

$$\frac{1}{2} \frac{d}{dt} \|v_i - v_j\|^2 = -J \cdot \frac{v_i + v_j}{2} \|v_i - v_j\|^2.$$

If  $v_i(0) \neq v_j(0)$ , we cannot have  $v_i \cdot \Omega \to -1$  and  $v_j \cdot \Omega \to -1$  (repulsion). Up to renumbering, only  $v_N$  is "going to the back".

We then get  $|J| \to \sum_{i=1}^{N-1} m_i - m_N = 1 - 2m_N = \lambda$  (so  $m_N < \frac{1}{2}$ ). Same as before:  $||v_i - v_j|| = O(e^{-\lambda t})$  (for  $i, j \neq N$ ).

#### Convexity argument

If all  $v_i$  are in the same hemisphere, they stay in it.

Therefore  $v_N \in -\mathsf{Cone}((v_i)_{1 \leqslant i < N})$ .

We then get the same estimates (with  $e^{-t}$  replaced by  $e^{-\lambda t}$ , except the one in  $O(e^{-3t})$  for  $\frac{d\Omega}{dt}$ , since  $1 - v_N \cdot \Omega$  does not converge to 0).

# Faster convergence of $v_N$

After some computations, we get

$$\frac{\mathrm{d}^2 v_N}{\mathrm{d}t^2} = \frac{\mathrm{d}v_N}{\mathrm{d}t} - \left|\frac{\mathrm{d}v_N}{\mathrm{d}t}\right|^2 v_N + O(e^{-3\lambda t}).$$

Therefore we get  $\frac{\mathrm{d}}{\mathrm{d}t}|\frac{\mathrm{d}\nu_N}{\mathrm{d}t}|=|\frac{\mathrm{d}\nu_N}{\mathrm{d}t}|+\mathit{O}(e^{-3\lambda t}).$ 

# Faster convergence of $v_N$

After some computations, we get

$$\frac{\mathrm{d}^2 v_N}{\mathrm{d}t^2} = \frac{\mathrm{d}v_N}{\mathrm{d}t} - \left|\frac{\mathrm{d}v_N}{\mathrm{d}t}\right|^2 v_N + O(e^{-3\lambda t}).$$

Therefore we get  $\frac{\mathrm{d}}{\mathrm{d}t}|\frac{\mathrm{d}v_N}{\mathrm{d}t}|=|\frac{\mathrm{d}v_N}{\mathrm{d}t}|+\mathit{O}(e^{-3\lambda t}).$ 

#### Lemma: Tail of a perturbed ODE (exponential)

If  $x \in C^1(\mathbb{R})$ , such that  $\frac{\mathrm{d}x}{\mathrm{d}t} = x + O(e^{-\alpha t})$ , with  $\alpha > 0$ . If x is uniformly bounded, then  $x(t) = O(e^{-\alpha t})$ .

# Faster convergence of $v_N$

After some computations, we get

$$\frac{\mathrm{d}^2 v_N}{\mathrm{d}t^2} = \frac{\mathrm{d}v_N}{\mathrm{d}t} - \left|\frac{\mathrm{d}v_N}{\mathrm{d}t}\right|^2 v_N + O(e^{-3\lambda t}).$$

Therefore we get  $\frac{\mathrm{d}}{\mathrm{d}t}|\frac{\mathrm{d}v_N}{\mathrm{d}t}|=|\frac{\mathrm{d}v_N}{\mathrm{d}t}|+\mathit{O}(e^{-3\lambda t})$ .

#### Lemma: Tail of a perturbed ODE (exponential)

If  $x \in C^1(\mathbb{R})$ , such that  $\frac{\mathrm{d}x}{\mathrm{d}t} = x + O(e^{-\alpha t})$ , with  $\alpha > 0$ . If x is uniformly bounded, then  $x(t) = O(e^{-\alpha t})$ .

Therefore  $\frac{\mathrm{d}v_N}{\mathrm{d}t} = O(e^{-3\lambda t})$ . This gives that  $|P_{\Omega^{\perp}}v_N| = \frac{1}{|J|}|\frac{\mathrm{d}v_N}{\mathrm{d}t}| = O(e^{-3\lambda t})$ .

# Asymptotic behaviour of each vi

Same method to get  $\frac{\mathrm{d}\Omega}{\mathrm{d}t} = O(e^{-3\lambda t})$ , except for the term in  $(1 - v_N \cdot \Omega) P_{\Omega^\perp} v_N$  for which we use the previous analysis. We then get the same kind of asymptotic expansions.

### Theorem (if $v_N$ is the only "back" particle):

There exists  $\Omega_{\infty} \in \mathbb{S}$ , and  $a_i \in \{\Omega_{\infty}\}^{\perp} \subset \mathbb{R}^n$ , for  $1 \leqslant i < N$  such that  $\sum_{i=1}^{N-1} m_i a_i = 0$  and that, as  $t \to +\infty$ ,

$$egin{aligned} v_i(t) &= (1-|a_i|^2e^{-2\lambda t})\,\Omega_\infty + e^{-\lambda t}\,a_i + O(e^{-3\lambda t}) \quad ext{for } i 
eq N, \ v_N(t) &= -\Omega_\infty + O(e^{-3\lambda t}), \ \Omega(t) &= \Omega_\infty + O(e^{-3\lambda t}). \end{aligned}$$

# Aggregation equation on the sphere

#### PDE for the empirical distribution

Define  $f(t) = \sum_{i=1}^{N} \delta_{v_i(t)} \in \mathcal{P}(\mathbb{S})$  (a probability measure on the sphere), then f is a weak solution of the following PDE:

$$\partial_t f + \nabla_v \cdot (f \, P_{v^\perp} J_f) = 0$$
, where  $J_f = \int_{\mathbb{S}} v \, \mathrm{d} f(v)$ . (1)

# Aggregation equation on the sphere

#### PDE for the empirical distribution

Define  $f(t) = \sum_{i=1}^{N} \delta_{v_i(t)} \in \mathcal{P}(\mathbb{S})$  (a probability measure on the sphere), then f is a weak solution of the following PDE:

$$\partial_t f + \nabla_v \cdot (f P_{v^{\perp}} J_f) = 0$$
, where  $J_f = \int_{\mathbb{S}} v \, \mathrm{d} f(v)$ . (1)

#### Theorem

Given a probability measure  $f_0$ , there exists a unique global (weak) solution to the aggregation equation given by (1).

Tools: optimal transport, or for this case harmonic analysis (Fourier for n=2), which gives well-posedness in Sobolev spaces.

# Properties of the model

#### Characteristics

Suppose that the function J(t) is given, we define  $\Phi_t(v)$  the solution of the following ODE:

$$\frac{\mathsf{d}\Phi_t(v)}{\mathsf{d}t} = P_{\Phi_t(v)^{\perp}}J(t) \quad \text{with } \Phi_0(v) = v.$$

Then the solution to the (linear) equation  $\partial_t f + \nabla_v \cdot (f P_{v^{\perp}} J) = 0$  is given by  $f(t) = \Phi_t \# f_0$  (push-forward): if  $\psi \in C^0(\mathbb{S})$ , then  $\int_{\mathbb{S}} \psi(v) d(\Phi_t \# f_0)(v) = \int_{\mathbb{S}} \psi(\Phi_t(v)) df_0(v)$ .

# Properties of the model

#### Characteristics

Suppose that the function J(t) is given, we define  $\Phi_t(v)$  the solution of the following ODE:

$$\frac{\mathsf{d}\Phi_t(v)}{\mathsf{d}t} = P_{\Phi_t(v)^{\perp}}J(t) \quad \text{with } \Phi_0(v) = v.$$

Then the solution to the (linear) equation  $\partial_t f + \nabla_v \cdot (f P_{v^\perp} J) = 0$  is given by  $f(t) = \Phi_t \# f_0$  (push-forward): if  $\psi \in C^0(\mathbb{S})$ , then  $\int_{\mathbb{S}} \psi(v) d(\Phi_t \# f_0)(v) = \int_{\mathbb{S}} \psi(\Phi_t(v)) df_0(v)$ .

We can perform computations exactly as for the particles:

$$\frac{\mathsf{d}}{\mathsf{d}t}J_f = \int_{\mathbb{S}} P_{\nu^{\perp}}J_f \mathsf{d}f(\nu) = \langle P_{\nu^{\perp}}\rangle_f J_f = M_f J_f.$$

Increase of  $|J_f(t)|$ , integrability of  $J_f \cdot M_f J_f$ . All moments are  $C^{\infty}$ .

# Convergence of $\Omega(t)$

We have  $\dot{\Omega}=\frac{\mathrm{d}\Omega}{\mathrm{d}t}=P_{\Omega^{\perp}}M_f\Omega$ , which is  $L^2$  in time, but  $L^1$ ? After a few computations, we obtain

$$\frac{\mathsf{d}}{\mathsf{d}t}|\dot{\Omega}| = |\dot{\Omega}|(1 - \Omega \cdot M_f \Omega - \langle (u \cdot P_{\Omega^{\perp}} v)^2 \rangle_f) + 2|J|\langle (1 - (v \cdot \Omega)^2) u \cdot P_{\Omega^{\perp}} v \rangle_f,$$

where  $u=rac{\dot{\Omega}}{|\dot{\Omega}|}$  (when it is well-defined, 0 otherwise).

# Convergence of $\Omega(t)$

We have  $\dot{\Omega}=\frac{\mathrm{d}\Omega}{\mathrm{d}t}=P_{\Omega^{\perp}}M_f\Omega$ , which is  $L^2$  in time, but  $L^1$ ? After a few computations, we obtain

$$\frac{\mathsf{d}}{\mathsf{d}t}|\dot{\Omega}| = |\dot{\Omega}|(1 - \Omega \cdot M_f \Omega - \langle (u \cdot P_{\Omega^{\perp}} v)^2 \rangle_f) + 2|J|\langle (1 - (v \cdot \Omega)^2)u \cdot P_{\Omega^{\perp}} v \rangle_f,$$

where  $u=rac{\dot{\Omega}}{|\dot{\Omega}|}$  (when it is well-defined, 0 otherwise).

### Lemma: Tail of a perturbed ODE (integrability)

If  $\frac{dx}{dt} = x + g$  where x is bounded,  $g \in L^1(\mathbb{R}_+)$ , then  $x(t) \in L^1(\mathbb{R}_+)$ .

Therefore we get that  $|\dot{\Omega}|$  is integrable, and then  $\Omega(t) \to \Omega_{\infty} \in \mathbb{S}$ .

# Convergence of f

### Proposition: unique back

Suppose that  $J(t) \in \mathbb{R}^n \setminus \{0\}$  is given (and continuous), with  $\Omega(t) = \frac{J(t)}{|J(t)|}$  converging to  $\Omega_\infty \in \mathbb{S}$ . Then there exists a unique  $v_{\mathsf{back}} \in \mathbb{S}$  such that the solution v(t) of  $\frac{\mathsf{d} v}{\mathsf{d} t} = P_{v^\perp} J(t)$  with  $v(0) = v_{\mathsf{back}}$  satisfies  $v(t) \to -\Omega_\infty$  as  $t \to +\infty$ .

Conversely, if  $v(0) \neq v_{\mathsf{back}}$ , then  $v(t) \to \Omega_{\infty}$  as  $t \to \infty$ .

# Convergence of f

#### Proposition: unique back

Suppose that  $J(t) \in \mathbb{R}^n \setminus \{0\}$  is given (and continuous), with  $\Omega(t) = \frac{J(t)}{|J(t)|}$  converging to  $\Omega_\infty \in \mathbb{S}$ . Then there exists a unique  $v_{\mathsf{back}} \in \mathbb{S}$  such that the solution v(t) of  $\frac{\mathsf{d} v}{\mathsf{d} t} = P_{v^\perp} J(t)$  with  $v(0) = v_{\mathsf{back}}$  satisfies  $v(t) \to -\Omega_\infty$  as  $t \to +\infty$ .

Conversely, if  $v(0) \neq v_{\mathsf{back}}$ , then  $v(t) \to \Omega_{\infty}$  as  $t \to \infty$ .

#### Theorem

Convergence in Wasserstein distance to  $m\delta_{-\Omega_{\infty}}+(1-m)\delta_{\Omega_{\infty}}$ , where m is the mass of  $\{v_b\}$  with respect to the measure  $f_0$ . In particular, if  $f_0$  has no atoms, then  $f\to\delta_{\Omega_{\infty}}$ .

No rate ...

# Toy model in $\mathbb{R}^n$ : midpoint collision (sticky particles)

Speeds  $v_i \in \mathbb{R}^n$   $(1 \leqslant i \leqslant N)$ , Poisson clocks:  $v_i, v_j \leadsto \frac{v_i + v_j}{2}$ .

Kinetic version (large N) : evolution of  $f_t(v) \in \mathcal{P}_2(\mathbb{R}^n)$ 

$$\partial_t f_t(v) = \int_{\mathbb{R}^n} f_t(v+w) f_t(v-w) dw - f_t(v).$$

# Toy model in $\mathbb{R}^n$ : midpoint collision (sticky particles)

Speeds  $v_i \in \mathbb{R}^n$   $(1 \leqslant i \leqslant N)$ , Poisson clocks:  $v_i, v_j \leadsto \frac{v_i + v_j}{2}$ .

Kinetic version (large N) : evolution of  $f_t(v) \in \mathcal{P}_2(\mathbb{R}^n)$ 

$$\partial_t f_t(v) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \delta_{\frac{v_* + v_*'}{2}}(v) \, \mathrm{d}f_t(v_*) \mathrm{d}f_t(v_*') - f(t, v).$$

# Toy model in $\mathbb{R}^n$ : midpoint collision (sticky particles)

Speeds  $v_i \in \mathbb{R}^n$   $(1 \leqslant i \leqslant N)$ , Poisson clocks:  $v_i, v_j \leadsto \frac{v_i + v_j}{2}$ .

### Kinetic version (large N) : evolution of $f_t(v) \in \mathcal{P}_2(\mathbb{R}^n)$

$$\partial_t f_t(v) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \delta_{\frac{v_* + v_*'}{2}}(v) \, \mathrm{d}f_t(v_*) \mathrm{d}f_t(v_*') - f(t, v).$$

- Conservation of center of mass  $\bar{v} = \int_{\mathbb{R}^n} v \, df(v)$ .
- Second moment  $m_2=\int_{\mathbb{R}^n}|v-ar{v}|^2\,\mathrm{d}f(v)$ :  $rac{\mathrm{d}}{\mathrm{d}t}m_2=-rac{m_2}{2}$ .

#### Exponential convergence towards a Dirac mass

$$W_2(f_t, \delta_{\bar{v}}) = W_2(f_0, \delta_{\bar{v}})e^{-\frac{t}{4}}.$$

# Toy model in $\mathbb{R}^n$ : midpoint collision (sticky particles)

Speeds  $v_i \in \mathbb{R}^n$   $(1 \leqslant i \leqslant N)$ , Poisson clocks:  $v_i, v_j \leadsto \frac{v_i + v_j}{2}$ .

## Kinetic version (large N) : evolution of $f_t(v) \in \mathcal{P}_2(\mathbb{R}^n)$

$$\partial_t f_t(v) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \delta_{\frac{v_* + v_*'}{2}}(v) \, \mathrm{d}f_t(v_*) \mathrm{d}f_t(v_*') - f(t, v).$$

- Conservation of center of mass  $\bar{v} = \int_{\mathbb{R}^n} v \, \mathrm{d} f(v)$ .
- Second moment  $m_2 = \int_{\mathbb{R}^n} |v \overline{v}|^2 \, \mathrm{d} f(v)$ :  $\frac{\mathrm{d}}{\mathrm{d} t} m_2 = -\frac{m_2}{2}$ .

## Exponential convergence towards a Dirac mass

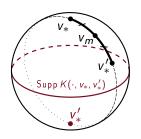
$$W_2(f_t, \delta_{\bar{v}}) = W_2(f_0, \delta_{\bar{v}})e^{-\frac{t}{4}}.$$

• Decreasing energy:  $E(f) = \int_{\mathbb{R}^n \times \mathbb{R}^n} |v - u|^2 df(v) df(u)$  (equal to  $2m_2$ ), no need for  $\overline{v}$  in this definition.

## Midpoint model on the sphere

Kernel  $K(v, v_*, v_*')$ : probability density that a particle at position  $v_*$  interacting with another one at  $v_*'$  is found at v after collision.

$$\partial_t f_t(v) = \int_{\mathbb{S} \times \mathbb{S}} K(v, v_*, v_*') \, \mathrm{d} f_t(v_*) \mathrm{d} f_t(v_*') - f_t(v).$$

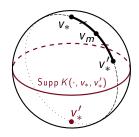


When  $v_* \neq v_*', K(\cdot, v_*, v_*') = \delta_{v_m}$ , where  $v_m = \frac{v_* + v_*'}{\|v_* + v_*'\|}$ .

# Midpoint model on the sphere

Kernel  $K(v, v_*, v_*')$ : probability density that a particle at position  $v_*$  interacting with another one at  $v_*'$  is found at v after collision.

$$\partial_t f_t(v) = \int_{\mathbb{S} \times \mathbb{S}} K(v, v_*, v_*') \, \mathrm{d} f_t(v_*) \mathrm{d} f_t(v_*') - f_t(v).$$



When  $v_* \neq v_*'$ ,  $K(\cdot, v_*, v_*') = \delta_{v_m}$ , where  $v_m = \frac{v_* + v_*'}{\|v_* + v_*'\|}$ .

## Energy

$$E(f) = \int_{\mathbb{S} \times \mathbb{S}} d(v, u)^2 df(v) df(u).$$

# Link "Energy – Wasserstein"

#### Useful Lemma - Markov inequalities

For  $f \in \mathcal{P}(\mathbb{S})$ , there exists  $\bar{v} \in \mathbb{S}$  such that for all  $v \in \mathbb{S}$ :

$$W_2(f, \delta_{\overline{\nu}})^2 \leqslant E(f) \leqslant 4 W_2(f, \delta_{\nu})^2$$
,

For such a  $\bar{v}$  and for all  $\kappa > 0$ , we have

$$\int_{\{v \in \mathbb{S}; \, d(v,\bar{v}) \geqslant \kappa\}} \mathrm{d}f(v) \leqslant \frac{1}{\kappa^2} E(f),$$

$$\int_{\{v \in \mathbb{S}; \, d(v, \bar{v}) \geqslant \kappa\}} d(v, \bar{v}) \, \mathrm{d}f(v) \leqslant \frac{1}{\kappa} E(f).$$

$$\frac{1}{2}\frac{d}{dt}E(f) = \int_{\mathbb{S}\times\mathbb{S}\times\mathbb{S}} \alpha(v_*, v_*', u) df(v_*) df(v_*') df(u).$$

## Local contribution to the variation of energy

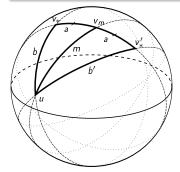
$$\alpha(v_*,v_*',u) = \int_{\mathbb{S}} d(v,u)^2 K(v,v_*,v_*') dv - \frac{d(v_*,u)^2 + d(v_*',u)^2}{2}.$$

# Evolution of the energy

$$\frac{1}{2}\frac{d}{dt}E(f) = \int_{\mathbb{S}\times\mathbb{S}\times\mathbb{S}} \alpha(v_*, v_*', u) df(v_*) df(v_*') df(u).$$

## Local contribution to the variation of energy

$$\alpha(v_*, v_*', u) = \int_{\mathbb{S}} d(v, u)^2 K(v, v_*, v_*') dv - \frac{d(v_*, u)^2 + d(v_*', u)^2}{2}.$$



Configuration of Apollonius:

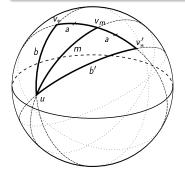
$$\alpha(v_*, v_*', u) = m^2 - \frac{b^2 + b'^2}{2}.$$

## Evolution of the energy

$$\frac{1}{2}\frac{d}{dt}E(f) = \int_{\mathbb{S}\times\mathbb{S}\times\mathbb{S}} \alpha(v_*, v_*', u) df(v_*) df(v_*') df(u).$$

## Local contribution to the variation of energy

$$\alpha(v_*, v_*', u) = \int_{\mathbb{S}} d(v, u)^2 K(v, v_*, v_*') dv - \frac{d(v_*, u)^2 + d(v_*', u)^2}{2}.$$



Configuration of Apollonius:

$$\alpha(v_*, v_*', u) = m^2 - \frac{b^2 + b'^2}{2}.$$

Flat case (we get  $-a^2$ ):

$$\alpha(v_*, v_*', u) = -\frac{1}{4}d(v_*, v_*')^2.$$

# Error estimates in Apollonius' formula

## Lemma: global estimate (only triangular inequalities)

For all  $v_*$ ,  $v'_*$ ,  $u \in \mathbb{S}$ , we have

$$\alpha(v_*, v_*', u) \leqslant -\frac{1}{4}d(v_*, v_*')^2 + 2d(v_*, v_*')\min(d(v_*, u), d(v_*', u)).$$

# Error estimates in Apollonius' formula

## Lemma: global estimate (only triangular inequalities)

For all  $v_*$ ,  $v'_*$ ,  $u \in \mathbb{S}$ , we have

$$\alpha(v_*, v_*', u) \leqslant -\frac{1}{4}d(v_*, v_*')^2 + 2d(v_*, v_*')\min(d(v_*, u), d(v_*', u)).$$

#### Lemma: local estimate, more precise

For all  $\kappa_1 < \frac{2\pi}{3}$ , there exists  $C_1 > 0$  such that for all  $\kappa \leqslant \kappa_1$ , and all  $v_*$ ,  $v_*'$ ,  $u \in \mathbb{S}$  with  $\max(d(v_*, u), d(v_*', u), d(v_*, v_*')) \leqslant \kappa$ , we have

$$\alpha(v_*, v_*', u) \leqslant -\frac{1}{4}d(v_*, v_*')^2 + C_1 \kappa^2 d(v_*, v_*')^2.$$

Spherical Apollonius:  $\frac{1}{2}(\cos b + \cos b') = \cos a \cos m$ .

# Decreasing energy - Control on displacement

We set  $\bar{\omega} := \{ v \in \mathbb{S}; d(v, \bar{v}) \leqslant \frac{1}{2}\kappa \}$ , and we cut the triple integral in four parts following if  $v_*, v_*', u$  is in  $\bar{\omega}$  or not.

$$\frac{1}{2}\frac{d}{dt}E(f) + \frac{1}{4}E(f) \leqslant \underbrace{C \kappa^2 E(f)}_{\text{Local lemma}} + \underbrace{12\frac{E(f)^{\frac{3}{2}}}{\kappa} + 24\frac{E(f)^2}{\kappa^2}}_{\text{Global lemma} + \text{Markov}}.$$

# Decreasing energy - Control on displacement

We set  $\bar{\omega} := \{ v \in \mathbb{S}; d(v, \bar{v}) \leqslant \frac{1}{2}\kappa \}$ , and we cut the triple integral in four parts following if  $v_*, v_*', u$  is in  $\bar{\omega}$  or not.

$$\frac{1}{2}\frac{d}{dt}E(f) + \frac{1}{4}E(f) \leqslant \underbrace{C \kappa^2 E(f)}_{\text{Local lemma}} + \underbrace{12\frac{E(f)^{\frac{3}{2}}}{\kappa} + 24\frac{E(f)^2}{\kappa^2}}_{\text{Global lemma} + \text{Markov}}.$$

Same kind of cut to show that  $\bar{v}(t)$  satisfies Cauchy's criteria (for  $t \to \infty$ ) and converges with the same rate as  $\sqrt{E(f)}$ .

# Decreasing energy - Control on displacement

We set  $\bar{\omega} := \{v \in \mathbb{S}; d(v, \bar{v}) \leqslant \frac{1}{2}\kappa\}$ , and we cut the triple integral in four parts following if  $v_*, v_*', u$  is in  $\bar{\omega}$  or not.

$$\frac{1}{2}\frac{d}{dt}E(f) + \frac{1}{4}E(f) \leqslant \underbrace{C \kappa^2 E(f)}_{\text{Local lemma}} + \underbrace{12\frac{E(f)^{\frac{3}{2}}}{\kappa} + 24\frac{E(f)^2}{\kappa^2}}_{\text{Global lemma} + \text{Markov}}.$$

Same kind of cut to show that  $\bar{v}(t)$  satisfies Cauchy's criteria (for  $t \to \infty$ ) and converges with the same rate as  $\sqrt{E(f)}$ .

### Theorem: local stability of Dirac masses

There exists  $C_1>0$  and  $\eta>0$  such that for all solution  $f\in C(\mathbb{R}_+,\mathcal{P}(\mathbb{S}))$  with initial condition  $f_0$  satisfying  $W_2(f_0,\delta_{\nu_0})<\eta$  for a  $\nu_0\in\mathbb{S}$ , there exists  $\nu_\infty\in\mathbb{S}$  such that

$$W_2(f_t, \delta_{V_{\infty}}) \leqslant C_1 W_2(f_0, \delta_{V_0}) e^{-\frac{1}{4}t}$$
.

