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Low-rank approximation

I Given a matrix A ∈ Rm×n, a low-rank approximation of A is

A ≈ BC, B ∈ Rm×k, C ∈ Rk×n, k � min(m,n).

I Example: singular value decomposition A ≈ (US)V T .

I Applications
I Principal component analysis,
I Signal processing (compression, denoising, ...)
I Fast numerical linear algebra
I Sparse recovery (collaborative filtering)



Interpolative decomposition (ID)

I A low-rank approximation that uses A’s own columns.

I The picked columns are called the skeletons.

I Let P be the permutation matrix moving the skeletons to the front.

AP ≈ (AP )(:,1:k)
[
I T

]
, T ∈ Rk×(n−k).

I Key advantages: keep the columns of A in the approximation
I Reuse the entries of A (save space),
I Keep structure of the columns.



Theory

Theorem (Gu+Eisenstat, Tyrtyshnikov)
For fixed k, there exists P and T s.t.

I
∥∥AP − (AP )(:,1:k)

[
I T

]∥∥
2
≤
√

1 + k(n− k)σk+1(A),

I |Tij | ≤ 1.

Proof.

I Find k columns of A that span the maximal volume. This implies
that |Tij | ≤ 1.

I Build a QR decomposition based on these columns to derive the
error bound.

I σk+1(A) is the best approximation result from SVD. ID has an extra√
nk factor (in the worst case).

I Complexity: combinatorial search, exponential cost.



Theory

Theorem (Gu+Eisenstat)
For fixed k and fixed f > 1, there exists P and T s.t.

I
∥∥AP − (AP )(:,1:k)

[
I T

]∥∥
2
≤
√

1 + f2k(n− k)σk+1(A),

I |Tij | ≤ f ,

and it can be found in O((m+ n logf n)n2) steps.

Proof.

I Iteratively improve the column selection by finding the largest entry
Tij with |Tij | > f .

I Number of iterations bounded by O(logf n
k/2) = O(k logf n).

I Efficient routines for updating the factorization once a new column
is picked.

I Approx. error has an extra
√
f2nk factor compared to SVD.

I Complexity: for f = O(nα), the cost is cubic O(mnmin(m,n)).



In practice

I QR with column pivoting (QRCP).
I A greedy heuristic for maximizing the volume of the picked columns

one by one.

AP = QR =
[
Q1 Q2

] [R11 R12

R22

]
≈ Q1

[
R11 R12

]
≈ (Q1R11)

[
I R−1

11 R12

]
:= (AP )(:,1:k)

[
I T

]
.

I Almost the same cost of standard QR: O(mnk).

I No guarantee for a bound on |Tij | but works well in most cases.



In practice

I Randomized approach if min(m,n)� k

I Project the columns (via randomized Fourier transform
[Ailon-Chazelle-2009]) to a random O(k) dimensional subspace.

I Apply QRCP to the projected (fat) matrix.

I Benefits
I Reuse the entries of A (save space),
I Inherit the structure of the columns: sparsity, locality, factorized

form.



Extension

I Two-sided interpolative decomposition [Cheng et al.-2006]

PTAQ ≈
[
I
TT
1

]
(PTAQ)(1:k,1:k)

[
I T2

]
.

I Apply QRCP to both the rows and the columns.
I Can be combined with the randomization.

I In what follows, we assume that the columns are already in the
correct order for ID (i.e., P = I)

A ≈ A(:,1:k)

[
I T

]
A ≈

[
I
TT
1

]
A(1:k,1:k)

[
I T2

]
.



Related but different approaches

I Column/row sampling with leverage scores (Clarkson, Drineas,
Kannan, Mahoney, Woodruff, ...)

I CUR decomposition (Tyrtyshnikov, Hackbusch, ...)

I Non-negative factorization (...)

I Nyström interpolation (...)
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Many-body Schrodinger equation

I Consider a quantum system with Ne electrons. The many-body
Schrodinger equation for the ground state

HΨ =

 Ne∑
i=1

−∆xi +
∑
i<j

1

|xi − xj |
−
∑
i,α

Mα

|xi − zα|

Ψ, i∂tΨ = HΨ

where Ψ = Ψ(x1, . . . , xNe
) and nuclei at {zα} with charge {Mα}.

I Ground state: HΨ0 = E0Ψ0

I E0 is the lowest eigenvalue. E0 = inf‖Φ‖=1 〈Φ|H|Φ〉.
I Ψ0 = Ψ0(x1, . . . , xNe) is the lowest eigenfunction.

I Density ρ(x) = Ne
∫
|Ψ0(x, x2, . . . , xNe

)2|dx2,...,Ne
.

I High-dimensional problem and curse of dimensionality.



Kohn-Sham DFT

HΨ =

 Ne∑
i=1

−∆xi
+
∑
i<j

1

|xi − xj |
−
∑
i,α

Mα

|xi − zα|

Ψ, i∂tΨ = HΨ

I Kohn-Sham density function theory: 3D nonlinear problem

(−∆ + V [ρ])ψi = λiψi, i = 1, . . . , Ne.

λ1, . . . , λNe are the smallest Ne eigenvalues.
ψ1, . . . , ψNe

are the Kohn-Sham (KS) orbitals (eigenfunctions)

ρ(x) =
∑Ne

i=1
|ψi(x)|2.

I Nonlinear eigenvalue problem: self consistent iteration

ρ(x)⇒ V [ρ](x)⇒ {ψi(x)}1≤i≤Ne ⇒ ρ(x)⇒ V [ρ](x)⇒ . . .

I At the end, we hold converged {ψi(x)}1≤i≤Ne
and ρ(x).
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Kohn-Sham orbitals and subspace

{
(−∆ + V [ρ])ψi = λiψi, i = 1, . . . , Ne

ρ(x) =
∑Ne

i=1 |ψi(x)|2.

ρ(x)⇒ V [ρ](x)⇒ {ψi(x)}1≤i≤Ne
⇒ ρ(x)⇒ V [ρ](x)⇒ . . .

I This is the starting point of computing other physical quantities.

I Many such quantities depend only on the subspace spanned by
{ψi(x)}1≤i≤Ne .

e.g. ρ = diag(ΨΨT), Ψ =
[
ψ1 . . . ψNe

]
, ΨΨT = proj. op.

I Seek for a sparse and localized basis for span Ψ
I Interpretability.
I Computation and storage efficiency.



Localization [with A. Damle and L. Lin]

I Given Ψ = [ψ1, . . . , ψNe
] ∈ Rn×Ne , find R ∈ RNe×Ne such that

Φ = [φ1, . . . , φNe ] = ΨR

has localized and well-conditioned columns.

I Assumption: working with insulators so such a basis exists.

I Requirements
I Sparse/localized.
I Orthogonal (at least well-conditioned).



Previous work

I Maximally localized Wannier functions [Marzari+Vanderbilt].

min
R∈SOk

Ne∑
i=1

(∫
r2|φRi (r)|2dr −

(∫
r|φRi (r)|2dr

)2
)
.

I Challenges
I Non-convex optimization problem.
I Needs smart initial guess.



Density matrix

I Requirement 1: sparse/localized

I Idea: consider the density matrix (projector) Z = ΨΨT.

I For insulators, Z has localized and sparse columns.

I Instead of using arbitrary columns for R, only look for selected
columns of the density matrix (SCDM).



Interpolative decomposition

I Requirement 2: orthogonal or at least well-conditioned

I Apply ID to ΨT: (let C be the picked columns)

R := (ΨT)(:,C), Φ = ΨR = Ψ(ΨT)(:,C).

I For orthonormal Φ, the QRCP gives ΨTP = Q
[
R11 R12

]
:

Φ = ΨQ.



SCDM example: silicon and water
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Electron repulsion integral tensor [with J. Lu]

I Given a set {ψi(x)}1≤i≤Ne
of basis functions.

I Electron repulsion integral tensor R ∈ RN2
e×N

2
e

Rij,kl =

∫∫
ψi(x)ψj(x)

1

|x− y|
ψk(y)ψl(y)dxdy.

(e.g. Ne = 103 and n = 106).

I Introduce W ∈ RN2
e×n and G ∈ Rn×n with

Wij,x = ψi(x)ψj(x) and Gx,y = 1
|x−y|

R = WGWT.

I Goal: compute and represent R = (Rij,kl) efficiently.



Interpolative separable density fitting (ISDF)

I Each column of W is separable (i.e. an outer-product)

Wij,x = ψi(x)ψj(x)

I In most cases W is numerically low-rank.

I Consider ψi(x) = exp
(
2π
√
−1ix

)
,

ψi(x)ψj(x) = exp
(
2π
√
−1(i+ j)x

)
.

I Only O(Ne) choices for (i+ j) for N2
e combinations of i and j.

I Idea: W has rank O(Ne). Apply ID to compress W .



Interpolative separable density fitting (ISDF)

I Given an interpolative decomposition of W

I Then R = WGWT has approximation

Middle matrix products done with FFTs.

I Costs: O(N2
e ) storage and O(N2

en) time



How to compute the ID of W

I Size of W : N2
e × n

I Naive randomized ID costs at lest O(N3
en)

I Idea: use the separable (outer-product) structure of W ’s columns

I Reshape W from N2
e × n to Ne ×Ne × n

I Randomized ID with random project in each dimension of size Ne
I Cost: O(N2

en) time

I So total cost of ISDF: O(N2
e ) storage and O(N2

en log n) time
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