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Low-rank approximation

» Given a matrix A € R™*"™, a low-rank approximation of A is
A~ BC, BeR™F* CecR" k< min(m,n).

A B C

[

» Example: singular value decomposition A ~ (US)VT.
» Applications

Principal component analysis,

Signal processing (compression, denoising, ...)

Fast numerical linear algebra

>
>
>
> Sparse recovery (collaborative filtering)



Interpolative decomposition (ID)

» A low-rank approximation that uses A's own columns.

A Z

» The picked columns are called the skeletons.

> Let P be the permutation matrix moving the skeletons to the front.
AP~ (AP)(amy [I T], T eRF*(n=h),

AP (AP)(:,l:k)

IIT

» Key advantages: keep the columns of A in the approximation

> Reuse the entries of A (save space),
> Keep structure of the columns.



Theory

Theorem (Gu+Eisenstat, Tyrtyshnikov)
For fixed k, there exists P and T s.t.

> [[AP — (AP)( 1y (I T, < V1+k(n—k)ors1(A),
> Ty < 1.
Proof.
» Find k& columns of A that span the maximal volume. This implies
that |T1]| S 1.

» Build a QR decomposition based on these columns to derive the
error bound.

O

> or+1(A) is the best approximation result from SVD. ID has an extra
vnk factor (in the worst case).

» Complexity: combinatorial search, exponential cost.



Theory

Theorem (Gu+Eisenstat)
For fixed k and fixed f > 1, there exists P and T s.t.
> [[AP — (AP)( 1y [T T, < V14 f2k(n — k)orii(A),

> Tyl < f,
and it can be found in O((m + nlog; n)n?) steps.
Proof.

> lteratively improve the column selection by finding the largest entry
T;; with |T;;] > f.
> Number of iterations bounded by O(log; nk/?) = O(klogsn).
» Efficient routines for updating the factorization once a new column
is picked.
O

» Approx. error has an extra / f2nk factor compared to SVD.
» Complexity: for f = O(n®), the cost is cubic O(mn min(m,n)).



practice

» QR with column pivoting (QRCP).
> A greedy heuristic for maximizing the volume of the picked columns
one by one.

AP=QR=[Q1 Q] {Ru g;j ~ Q1 [Ru  Ris)

~ (QlRu) [I R;llng] = (AP)(;J;M [I T} .

» Almost the same cost of standard QR: O(mnk).
» No guarantee for a bound on |T;;| but works well in most cases.



In practice

» Randomized approach if min(m,n) > k

> Project the columns (via randomized Fourier transform
[Ailon-Chazelle-2009]) to a random O(k) dimensional subspace.
> Apply QRCP to the projected (fat) matrix.

>

» Benefits

>

1T

zI:

> Reuse the entries of A (save space),
> Inherit the structure of the columns: sparsity, locality, factorized

form.

%
I



Extension
» Two-sided interpolative decomposition [Cheng et al.-2006]
1
PTAQ ~ |:T1T:| (PTAQ)(l:k,lzk,) [I T2] .

> Apply QRCP to both the rows and the columns.
» Can be combined with the randomization.

» In what follows, we assume that the columns are already in the
correct order for ID (i.e., P =1)

A= A(:,l:k) [I T]

I
A [TT] A I T2
1



Related but different approaches

v

Column/row sampling with leverage scores (Clarkson, Drineas,
Kannan, Mahoney, Woodruff, ...)

CUR decomposition (Tyrtyshnikov, Hackbusch, ...)

v

v

Non-negative factorization (...)

v

Nystrdm interpolation (...)
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Many-body Schrodinger equation

» Consider a quantum system with N, electrons. The many-body
Schrodinger equation for the ground state

Z A,ﬁzm_%' Zm_%' U, 0,V =HU

1<J

where ¥ = U(xq,...,2n,) and nuclei at {z,} with charge {M,}.

» Ground state: HVg = Ey¥,
> Ej is the lowest eigenvalue. Eo = inf|q|=1 (®|H|®D).
> Uy = Uo(x1,...,2nN,) is the lowest eigenfunction.

» Density p(z) = N, [ |Uo(z, 22, ...,2n,)%|d2s, . N, .

» High-dimensional problem and curse of dimensionality.



Kohn-Sham DFT

Z AI7+Z|%_$7| Zm_m U, 0,0 =HU

1<J

» Kohn-Sham density function theory: 3D nonlinear problem
(=A+Vip]) i =Niti, i=1,...,N.

A1, ..., AN, are the smallest N, eigenvalues.
P1,...,9¥nN, are the Kohn-Sham (KS) orbitals (eigenfunctions)

p@) =3 (@)

» Nonlinear eigenvalue problem: self consistent iteration

p(@) = VIpl(z) = {Yi(@) h<icn. = plz) = Vipl(z) = ...

> At the end, we hold converged {1;(z)}1<i<n, and p(z).
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Kohn-Sham orbitals and subspace

p(x) = Yo i)
p(@) = Vol(x) = {Wi(@) heen, = p(x) = Vo) = ...

{(‘A+V[P])1/Jz=)\zi/117 Z‘:17"'7]\[6

» This is the starting point of computing other physical quantities.

» Many such quantities depend only on the subspace spanned by

{vi(x) h<i<n. -
eg. p=diag(¥¥"), U= [1/11 wNe] . UUT = proj. op.

> Seek for a sparse and localized basis for span ¥

> Interpretability.
» Computation and storage efficiency.



Localization [with A. Damle and L. Lin]

> Given U = [y,

N, ] € RNe find R € RNeXNe sych that

¢ = [¢17"'>¢Ns] =UR

has localized and well-conditioned columns.
() Y R

uncountable choices

» Assumption: working with insulators so such a basis exists.

» Requirements

> Sparse/localized.

> Orthogonal (at least well-conditioned).




Previous work

» Maximally localized Wannier functions [Marzari+Vanderbilt].

N 2
i 3 ( [ rotwpar— ( [roferar) ) .

> Challenges

> Non-convex optimization problem.
> Needs smart initial guess.



Density matrix

v

Requirement 1: sparse/localized

v

Idea: consider the density matrix (projector) Z = W T,

v

For insulators, Z has localized and sparse columns.

Z v w7
-H

Instead of using arbitrary columns for R, only look for selected
columns of the density matrix (SCDM).

) Y R

v




Interpolative decomposition
T ® v R

Z b4
H: il
- - o

> Requirement 2: orthogonal or at least well-conditioned
» Apply ID to ¥T: (let C be the picked columns)

R:= (\IIT)(:,C)a ¢=UR= \IJ(\IJT)(:,C)~
> For orthonormal ®, the QRCP gives WTP = Q [R11  Ria]:

o = TQ.



SCDM example: silicon and water
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Electron repulsion integral tensor fwith J. Ly

» Given a set {¢;(z)}1<;,<n, of basis functions.

. . 2 2
» Electron repulsion integral tensor R € RVe X Ne

R = [ di()u(o)

1
dxd
z _y|¢k(y)’l/fl(y) zdy
(e.g. N. =103 and n = 10%).
» Introduce W € RYSX™ and G' € R™*™ with
Wij,w = ’(,Z)Z(I)wj(l‘) and Gz’y

_ 1
[z—y|

R=WGWT.
kl

Y

R

G
> Goal: compute and represent R = (R;; 1) efficien

tly.

=




Interpolative separable density fitting (ISDF)

v

Each column of W is separable (i.e. an outer-product)

’Lj T %( )1/11(37)

In most cases W is numerically low-rank.

Consider ¢;(z) = exp(2mv/—1iz),
Vi(2)1;(x) = exp(2mv/=1(i + j)z).

Only O(N,) choices for (z + 4) for N2 combinations of i and j.
Idea: TV has rank O(N, Apply ID to compress wW.

v

v

v

v



Interpolative separable density fitting (ISDF)

» Given an interpolative decomposition of W

x % x
ij. ijl_
» Then R = WGW' has approximation
kl x y kl
_ij. x . y .
I .I IOH) :

Middle matrix products done with FFTs

U]

O(N;) n

» Costs: O(N2) storage and O(N?2n) time



How to compute the ID of W

Size of W: N2 xn
Naive randomized ID costs at lest O(N3n)

Idea: use the separable (outer-product) structure of W's columns
Reshape W from N2 x n to N, x N, x n

vV V. v vy

n

n
N? E>Ne- E>-®_
N,

» Randomized ID with random project in each dimension of size N,
» Cost: O(N?2n) time

» So total cost of ISDF: O(N?) storage and O(NZ2nlogn) time

u]
o)
I
i
it
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