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GLOBAL WEAK SOLUTIONS FOR KOLMOGOROV-VICSEK TYPE

EQUATIONS WITH ORIENTATIONAL INTERACTION

IRENE M. GAMBA AND MOON-JIN KANG

Abstract. We prove the global existence of weak solutions to kinetic Kolmogorov-Vicsek
models that can be considered a non-local non-linear Fokker-Planck type equation de-
scribing the dynamics of individuals with orientational interaction. This model is derived
from the discrete Couzin-Vicsek algorithm as mean-field limit [2, 9], which governs the
interactions of stochastic agents moving with a velocity of constant magnitude. Therefore,
the velocity variable of kinetic Kolmogorov-Vicsek models lies on the unit sphere. For our
analysis, we take advantage of the boundedness of velocity space to get L

p estimates and
compactness property.

1. Introduction

Recently, a variety of mathematical models capturing the emergent phenomena of self-
driven agents have received lots of attention extensively. In particular, the discrete Couzin-
Vicsek algorithm (CVA) has been proposed a model describing the interactions of agents
moving with a velocity of constant magnitude, and with angles measured from a reference
direction (See [1, 3, 15, 21]).

In this manuscript, we look into analytical issues for the kinetic (mesoscopic) description
associated to the discrete Couzin-Vicsek algorithm with stochastic dynamics corresponding
to Brownian motion on a sphere. More precisely, we consider the corresponding kinetic
Kolmogorov-Vicsek model describing stochastic particles with orientational interaction:

∂tf + ω · ∇xf = −∇ω · (fFo) + ∆ωf,

Fo(x, ω, t) = ν(ω · Ω(f))(Id− ω ⊗ ω)Ω(f),

Ω(f)(x, t) =
J(f)(x, t)

|J(f)(x, t)| , J(f)(x, t) =

∫

Rd×Sd−1

K(|x− y|)ωf(y, ω, t)dydω,

f(x, ω, 0) = f0(x, ω), x ∈ R
d, ω ∈ S

d−1, t > 0.

(1.1)

where f = f(x, ξ, t) is the one-particle distribution function at position x ∈ R
d, velocity

direction ω ∈ S
d−1 and time t. The operators ∇ω and ∆ω denote the gradient and the

Laplace-Beltrami operator on the sphere S
d−1. The term Fo(x, ω, t) is the mean-field force
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2 GAMBA AND KANG

that governs the orientational interaction of self-driven particles by aligning them with the
direction Ω(x, t) ∈ S

d−1 that depends on the flux J(x, t).
This mean-field force is also proportional to the interaction frequency ν. Its algebraic

inverse ν−1 represents the typical time-interval between two successive changes in the tra-
jectory of the orientational swarm particle to accommodate the presence of other particle in
the neighborhood. The function K is an isotropic observation kernel around each particle
and it is assumed to be integrable in R.

Following Degond and Motsch in [9], the interaction frequency function ν is taken to be
a positive function of cos θ, where θ is the angle between ω and Ω. Such dependence of ν
with respect to the angle θ represents different turning transition rates at different angles.
Hence, the constitutive form of such interaction frequency ν(θ) is inherent to species being
modeled by orientational interactions. As in [9], we assume that ν(θ) is a smooth and
bounded function of its argument.

The kinetic Kolmogorov-Fokker-Planck type model with orientational interactions (1.1)
was formally derived in [9] as a mean-field limit of the discrete Couzin-Vicsek algorithm
(CVA) with stochastic dynamics. There, the authors mainly focused on the model with the
following interaction term

∂tf + ω · ∇xf = −∇ω · (fFo) + ∆ωf,

Fo(x, ω, t) = ν(ω · Ω(f))(Id− ω ⊗ ω)Ω(f),

Ω(f)(x, t) =
J(f)(x, t)

|J(f)(x, t)| , J(f)(x, t) =

∫

Sd−1

ωf(x, ω, t)dω,

f(x, ω, 0) = f0(x, ω), x ∈ R
d, ω ∈ S

d−1, t > 0.

(1.2)

This form of J(f)(x, t) was derived in [9] from the corresponding one (1.1) with the kernel
K by rescaling time and spatial variables. Such scaling describes dynamics for the model
in (1.1) at large time and length scales compared with scales of the individuals:

We discuss more on the specifics of both models, (1.1) and (1.2), in the next section.
The purpose of this article is to present the global existence of weak solutions to models

(1.1) and (1.2) in appropriate Sobolev spaces. In fact we will show that the proofs for both
models, (1.1) and (1.2), are exactly the same.

The classical Vicsek model have been receiving lots of attention in the last few years
concerning the rigor of mathematical studies of its mean-field limit, hydrodynamic limit
and phase transition, among the main properties. More specifically, Bolley, Cañizo and
J. A. Carrillo have rigorously justified mean-field limit in [2]. When the force acting on
the particles is not normalized, i.e., νΩ(x, t) replaced by J(x, t) in force term Fo. This
modification leads to the appearance of phase transitions from disordered states at low
density to aligned states at high densities. This phase transition problem has been studied
in [1, 3, 7, 8, 13, 15]. Also, issues on hydrodynamic descriptions of kinetic Vicsek model
have been discussed in [7, 8, 9, 10, 11, 12]. We also refer to [6, 16] concerning related models
of Vicsek model.

Although the Vicsek model has been studied via a variety of scales from microscopic level
to macroscopic level, there is few results on existence theory of kinetic description. In [13],
Frouvelle and Liu have shown the well-posedness of the space-homogeneous case of (1.2),
in which νΩ(x, t) is replaced by J(x, t). More precisely, when there is no advection due
to spatial homogeneity, the kinetic equation (1.2) becomes Smoluchowski equation defined
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on sphere, for which Frouvelle and Liu have proved the global solvability and regularity,
moreover by making use of Onsager free energy functional, the large time behavior has
been shown. On the other hand, Bolley, Cañizo and J. A. Carrillo [2] have presented
the existence of weak solution of space-inhomogeneous equation with a different kind of
force. More precisely, they considered the difference between spatial convolutions of mass
and momentum with Lipschitz and bounded kernel K, namely ωK ∗x ρ − K ∗x J instead
of νΩ. This force has regular effect for spatial variable compared to our case νΩ. To
the best of our knowledge, the well-posedness of the space-inhomogeneous for both kinetic
Kolmogorov-Vicsek models, (1.1) and (1.2), is still open.

This paper is devoted to show the existence of weak solutions to the kinetic Kolmogorov-
Vicsek type models with orientational interactions, given by (1.1) and (1.2). In Section
2, we briefly provides some known results for these kinetic models, which give a heuristic
justification for a priori non-zero assumption to be stated in our main result. In Section 3,
we present a priori estimates and compactness lemma, which play crucial roles in the main
proof in Section 4.

2. Preliminaries and Main result

In this section, we briefly review how the kinetic Kolmogorov-Viscek equations, (1.1)
and (1.2) can be formally derived from the discrete Couzin-Vicsek algorithm model [9] with
stochastic dynamics. Then we provide our main result and useful formulations.

2.1. Kinetic Kolmogorov-Vicsek models. Following [9], the kinetic Kolmogorov-Vicsek
model considered in (1.1) is derived from the following classical discrete Vicsek model mod-
eling Brownian motion of the sphere S

d−1 given by the stochastic differential equations for
1 ≤ i ≤ N ,

dXi = ωidt,

dωi = (Id− ωi ⊗ ωi)ν(ωi · Ω̄i)Ω̄idt+
√

2µ(Id− ωi ⊗ ωi) ◦ dBi
t ,

Ω̄i =
J̄i

|J̄i|
, J̄i =

∑

j, |Xj−Xi|≤R

ωj.

(2.3)

Here, the neighborhood of the i-th particle is the ball centered at Xi ∈ R
d with radius

R > 0. The velocity director ωi ∈ S
d−1 of the i-th particle tends to be aligned to the

director Ωi of the average velocity of the neighboring particles with noise Bi
t that stand for

N independent standard Brownian motions on R
d with intensity

√
2µ. Then, its projection

(Id− ωi ⊗ ωi) ◦ dBi
t represents the contribution of a Brownian motion on the sphere S

d−1.
We refer to [17] for more details on Brownian motions on Riemannian manifolds. The
first interaction term of (2.3)2 is the sum of smooth binary interactions with same speed,
whereas there is no constraint on the velocity in the Cucker-Smale model [4]. In addition
the interaction frequency (weight) function ν(ωi ·Ωi) depends on the angle between ωi and
Ωi, parametrized by cos θi = ωi · Ωi.

From the individual-based model (2.3), the corresponding kinetic mean-field limit as the
number of particles N tends to infinity was proposed in [2, 9], results in the phenomenolog-
ical model for f = f(x, ω, t), the one-point probability density function of finding a particle
at position x ∈ R

d, with velocity ω ∈ S
d−1 and time t, evolving according
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∂tf + ω · ∇xf = −∇ω · (fF ) + µ∆ωf,

F (x, ω, t) = ν(ω · Ω(f))(Id− ω ⊗ ω)Ω(f),

Ω(f)(x, t) =
J(f)(x, t)

|J(f)(x, t)| , J(f)(x, t) =

∫

Rd×Sd−1

K(|x− y|)ωf(y, ω, t)dydω,
(2.4)

where K is an isotropic observation kernel around each particle, which is assumed to be of
L1 class in our framework. Notice that µ corresponds to the diffusive coefficient associated
to the Brownian motion on the sphere S

d−1.
On the other hand, if we observe the dynamics of the system at large time and length

scales compared with the scales of the individuals by introducing new dimensionless variables
x̃ = εx, t̃ = εt with ε ≪ 1, this makes the interaction local and to be aligned the particle
velocity to the direction of the local particle flux. This interaction term is balanced at
leading order ε by the diffusion term. Under this consideration, (2.4) can be considered as
the following equation (see [9])

∂tf + ω · ∇xf = Q(f),

Q(f) = −∇ω · (fν(ω · Ω(f))(Id− ω ⊗ ω)Ω(f)) + µ∆ωf,

Ω(f)(x, t) =
J(f)(x, t)

|J(f)(x, t)| , J(f)(x, t) =

∫

Sd−1

ωf(x, ω, t)dω.

(2.5)

Notice that Ω(f) in (2.4) and (2.5) have a singularity when J(f) becomes 0. To avoid
this singularity issue, we are going to present the existence of weak solutions to (2.4) and
(2.5) in a subclass of solutions with the non-zero local momentum, i.e. J(f) 6= 0. As shown
in [9], since ω is not a collisional invariant of operator Q, the momentum is not conserved.
Thus, it is not straightforward to get J(f)(x, t) 6= 0 for all (x, t) from imposing non-zero
initial momentum, i.e. J(f)(x, 0) 6= 0 for all x. Moreover, there is no canonical entropy
for a type of the kinetic equations (2.4) and (2.5). Due to these analytical difficulties, we
are going to heuristically justify our constraint J(f) 6= 0 by observing equilibria only for
(2.5), which has been studied in [9] as follows: For classification of equilibria in the case of
dimension d = 3, we define the Fisher-von Mises distribution by

MΩ(ω) =
1

∫

S2
exp(σ(ω·Ω)

µ )dω
exp

(σ(ω · Ω)
µ

)

for a given unit vector Ω ∈ S
2. Here, σ denotes an antiderivative of ν, i.e. dσ

dτ (τ) = ν(τ).
Since ν is positive, σ is an increasing function, MΩ is maximal for ω · Ω = 1, i.e. for ω
pointing in the direction of Ω. Therefore, Ω plays the same role as the averaged velocity of
the classical Maxwellian of gas dynamics. Moreover, the diffusion constant µ corresponds
to the strength of temperature, which measures the spreading of the equilibrium about the
average direction Ω. Here, the value of the diffusion constant is fixed, in contrast with
the classical gas dynamics where the temperature is a thermodynamical variable whose
evolution is determined by the energy balance equation.

By using Fisher-von Mises distribution, the operator Q and equilibria of (2.5) are ex-
pressed as follows:

Lemma 2.1. [9] (i) The operator Q(f) can be written as

Q(f) = µ∇ω ·
[

MΩ(f)∇ω

( f

MΩ(f)

)]

.
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(ii) The equilibria, i.e. the solutions f(ω) satisfying Q(f) = 0 form a three dimensional
manifold E given by

E = {ρMΩ(ω) | ρ > 0, Ω ∈ S
2},

where ρ is the total mass and Ω is the director of the flux of ρMΩ(ω), i.e.

ρ =

∫

S2

ρMΩ(ω)dω, Ω =
J(ρMΩ)
∣

∣

∣
J(ρMΩ)

∣

∣

∣

,

J(ρMΩ) :=

∫

S2

ρMΩ(ω)ωdω = ρc(µ)Ω,

where

c(µ) =

∫ π
0 cos θ exp

(

σ(ω·Ω)
µ

)

sin θdθ

∫ π
0 exp

(

σ(ω·Ω)
µ

)

sin θdθ
.

We note that c(µ) → 1 as µ → 0, and c(µ) → 0 as µ → ∞. This means that the local
momentum J(ρMΩ) of equilibrium solution f = ρMΩ is not zero as long as the strength µ
of diffusion is not sufficiently large compared to orientational interaction. Therefore, if the
diffusion constant µ is not large, it would make sense that the local momentum J(f) of our
solution f is assumed to be nonzero at least near the equilibrium.

2.2. Main result. In this part, we present the main results for global existence of weak
solutions to equations (1.1) and (1.2).
Before giving the main theorem, we introduce the following notations for simplification.

• Notation : From now on, D denotes Rd × S
d−1, and Pω⊥ denotes Id− ω ⊗ ω.

Note that the mapping v 7→ (Id−ω⊗ω)v is the projection of the vector v onto the normal
plane to ω.

• Framework : In the following sections, it turns out that the proof for (1.1) is the same
as that for (1.2). Thus, for convenience, we rewrite (1.1) and (1.2) as one form:

∂tf + ω · ∇xf = −∇ω · (fFo) + µ∆ωf,

Fo(x, ω, t) = ν(ω · Ω(f))Pω⊥Ω(f), Ω(f)(x, t) =
J(f)(x, t)

|J(f)(x, t)| ,

f(x, ω, 0) = f0(x, ω), (x, ω) ∈ D, t > 0.

(2.6)

where J(f)(x, t) denotes either

J̄(f)(x, t) :=

∫

D
K(|x− y|)ωf(y, ω, t)dydω,

or

J̃(f)(x, t) :=

∫

Sd−1

ωf(x, ω, t)dω.

As already mentioned, we assume that ν(·) is a smooth and bounded function of its argument
and K(| · |) ∈ L1(Rd). Moreover, we go around the singularity issue for Ω(f) by imposing
a priori assumptions that the weak solution f of (1.1) satisfies

(2.7) J̄(f)(x, t) 6= 0 for all x ∈ R
d, t > 0,
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and the weak solution f of (1.2) satisfies

(2.8) J̃(f)(x, t) 6= 0 for all x ∈ R
d, t > 0.

Theorem 2.1. Assume that f0 satisfies

(2.9) f0 ∈ L1 ∩ L∞(D) and f0 ≥ 0.

Then, for given T > 0, under each assumption (2.7) and (2.8), the equations (1.1) and
(1.2) respectively have a weak solution f , which satisfies

f ≥ 0,

f ∈ C(0, T ;L1(D)) ∩ L∞((0, T ) ×D),

∇ωf ∈ L2((0, T ) ×D).

and the following weak formulation: for any φ ∈ C∞
c ([0, T ) ×D),

∫ t

0

∫

D
f∂tφ+ fω · ∇xφ+ fFo · ∇ωφ− µ∇ωf · ∇ωφdxdωds

+

∫

D
f0φ(0, ·)dxdω = 0,

Fo(x, ω, t) = ν(ω · Ω(f))Pω⊥Ω(f).

(2.10)

Moreover, f satisfies that for any 1 ≤ p <∞,

(2.11) ‖f‖L∞(0,T ;Lp(D)) +
2µ(p − 1)

p
‖∇ωf

p

2 ‖
2

p

L2((0,T )×D)
≤ e

CT p

p−1 ‖f0‖Lp(D),

and

(2.12) ‖f‖L∞((0,T )×D) ≤ eCT ‖f0‖L∞(D).

Remark 2.1. In the following sections, it turns out that the proof of Theorem 2.1 is based
on energy method, in which the diffusion term µ∆ωf plays a crucial role, but the strength
µ > 0 does not essentially affect the proof of existence. Thus from now on, we set µ = 1
without loss of generality.

2.3. Formulas for Calculus on sphere. We here present some useful formulas on sphere
S
d−1, which are extensively used in this paper.

Let F be a vector-valued function and f be scalar-valued function. Then we have a formula
related to the integration by parts:

(2.13)

∫

Sd−1

f∇ω · Fdω = −
∫

Sd−1

F · (∇ωf − 2ωf)dω.

By the definition of the projection Pω⊥ , it is obvious that

Pω⊥ω = 0, Pω⊥∇ωf = ∇ωf,

Pω⊥u · v = Pω⊥v · u,(2.14)

for any scalar-valued function f and vectors u, v.
On the other hand, for any constant vector v ∈ R

d, we have

∇ω(ω · v) = Pω⊥v,

∇ω · (Pω⊥v) = −(d− 1)ω · v.(2.15)

In order to easily derive the formulas above, one can begin by rewriting them as spherical
coordinates. We refer to [13, 20] for the derivations of formulas above.
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3. a priori estimates and compactness lemma

In this section, we first derive a priori estimates, then compactness lemma, which play
an important role in the proof of Theorem 2.1.

Lemma 3.1. Assume that f is a smooth solution to (2.6) with f0 satisfying (2.9). Then,
for any 1 ≤ p <∞, we have

(3.16) ‖f‖L∞(0,T ;Lp(D)) +
2(p − 1)

p
‖∇ωf

p

2 ‖
2

p

L2((0,T )×D)
≤ e

CT p

p−1‖f0‖Lp(D),

in particular, if p = ∞, we have

(3.17) ‖f‖L∞((0,T )×D) ≤ eCT ‖f0‖L∞(D).

Proof. For any 1 ≤ p <∞, it follows from (2.6) that

d

dt

∫

D
fpdxdω = −p

∫

D
fp−1∇ω · (fν(ω · Ω)Pω⊥Ω)dxdω + p

∫

D
fp−1∆ωfdxdω

=: I1 + I2.

By integration by parts as (2.13) and using ω · ∇ωf = 0, we get

I2 = −p(p− 1)

∫

D
fp−2∇ωf · ∇ωfdxdω + 2p

∫

D
fp−1ω · ∇ωfdxdω

= −4(p − 1)

p

∫

D
|∇ωf

p

2 |2dxdω.

We use the formula (2.15) to have

I1 = −p
∫

D
fp−1

(

ν(ω · Ω)∇ωf · Pω⊥Ω+ fν ′(ω · Ω)|Pω⊥Ω|2 − (d− 1)fν(ω · Ω)ω · Ω
)

dxdω

≤ p‖ν(ω · Ω)‖L∞

∫

D
fp−1|∇ωf |dxdω + p‖ν ′(ω · Ω)‖L∞

∫

D
fpdxdω

+ p(d− 1)‖ν(ω · Ω)‖L∞

∫

D
fpdxdω.

Using Hölder’s inequality, the first integral in right hand side above can be estimates as
∫

D
fp−1|∇ωf |dxdω ≤

(

∫

D
fpdxdω

)1/2(
∫

D
fp−2|∇ωf |2dxdω

)1/2

=
2

p

(

∫

D
fpdxdω

)1/2(
∫

D
|∇ωf

p

2 |2dxdω
)1/2

.

Then we have

I1 ≤
2(p − 1)

p

∫

D
|∇ωf

p
2 |2dxdω + C(

p

p− 1
+ p)

∫

D
fpdxdω.

Combining the estimates above, we get

d

dt

∫

D
fpdxdω +

2(p− 1)

p

∫

D
|∇ωf

p
2 |2dxdω ≤ C(

p

p− 1
+ p)

∫

D
fpdxdω,

which gives the Gronwall type inequality

d

dt
‖f‖Lp(D) ≤ C

p

p− 1
‖f‖Lp(D).



8 GAMBA AND KANG

Therefore, we have

‖f‖L∞(0,T ;Lp(D)) ≤ e
CT p

p−1‖f0‖Lp(D),

which implies the Lp estimate (3.16). Moreover, taking p→ ∞, we have L∞ bound (3.17).
�

Remark 3.1. In the proof of Lemma 3.1, we only needed the boundedness of Ω rather than
specific feature of J itself. In the following proofs, each term corresponding to Ω has to be
bounded, thus Lemma 3.1 can be applied.

The following lemma provides the compactness that ensure the strong Lp convergence of
solutions to the following equation (3.18) with bounded force term as a generalized form of
our main equations. This strong compactness property is based on the boundedness of force
term and velocity space. On the other hand, the celebrated velocity averaging lemma plays
a important role on the analysis for kinetic equations with unbounded velocity variable (See
for instance [18]). Our compactness property crucially underlies the proof of Theorem 2.1.

Lemma 3.2. Assume that f0 satisfies (2.9), and fn is a smooth solution to

∂tfn + ω · ∇xfn = −∇ω ·
(

fnν(ω · Fn)Pω⊥Fn

)

+∆ωfn,

fn(x, ω, 0) = f0(x, ω),
(3.18)

where Fn : R
n × R+ → R

n is a given function of (x, t).
If the sequence (Fn) is bounded in L∞((0, T )×R

d), for any 1 ≤ p <∞, then there exists a
limit function f such that up to a subsequence,

fn → f as n→ ∞ in Lp((0, T ) × R
d) ∩ L2((0, T )× R

d;H1(Sd−1)).

Moreover, the associated sequences

(J̄n) :=
(

∫

D
K(|x− y|)ωfn(y, ω, t)dydω

)

for a given kernel K(| · |) ∈ L1(Rd),

and

(J̃n) :=
(

∫

Sd−1

ωfn(x, ω, t)dω
)

strongly converge to the corresponding limits J̄ and J̃ in Lp((0, T )×R
d) respectively, where

J̄ :=
(

∫

D
K(|x− y|)ωf(y, ω, t)dydω

)

and

J̃ :=
(

∫

Sd−1

ωf(x, ω, t)dω
)

.

Proof. Since the sequence (Fn) is bounded in L∞((0, T )×R
d), there exists F ∈ L∞((0, T )×

R
d) such that up to a subsequence,

(3.19) Fn ⇀ F weakly− ∗ in L∞((0, T )× R
d).
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Let f be a solution of (3.18) corresponding to F . Then, we subtract the equation (3.18)
corresponding to F from (3.18) to obtain

∂t(fn − f) + ω · ∇x(fn − f) = −∇ω ·
(

(fn − f)ν(ω · Fn)Pω⊥Fn

)

−∇ω ·
(

f(ν(ω · Fn)− ν(ω · F ))Pω⊥Fn)
)

−∇ω ·
(

fν(ω · F )Pω⊥(Fn − F )
)

+∆ω(fn − f).

For any fixed p ∈ [1,∞), it follows from the above equation that

d

dt

∫

D
(fn − f)pdxdω

= −p
∫

D
(fn − f)p−1∇ω ·

(

(fn − f)ν(ω · Fn)Pω⊥Fn

)

dxdω

− p

∫

D
(fn − f)p−1∇ω ·

(

f(ν(ω · Fn)− ν(ω · F ))Pω⊥Fn

)

dxdω

− p

∫

D
(fn − f)p−1∇ω ·

(

fν(ω · F )Pω⊥(Fn − F )
)

dxdω

+ p

∫

D
(fn − f)p−1∆ω(fn − f)dxdω

=: J1 + J2 + J3 + J4.

We follow the same computation as I1 in the proof of the Lemma 3.1, to estimate

J1 = −p
∫

D
(fn − f)p−1

(

ν(ω · Fn)∇ω(fn − f) · Pω⊥Fn + (fn − f)ν ′(ω · Fn)|Pω⊥Fn|2

− (d− 1)(fn − f)ν(ω · Fn)ω · Fn

)

dxdω

≤ p‖ν(ω · Fn)‖L∞‖Fn‖L∞

∫

D
(fn − f)p−1|∇ω(fn − f)|dxdω

+ p‖ν ′(ω · Fn)‖L∞‖Fn‖2L∞

∫

D
(fn − f)pdxdω

+ p(d− 1)‖ν(ω · Fn)‖L∞‖Fn‖L∞

∫

D
(fn − f)pdxdω.

≤ 2(p − 1)

p

∫

D
|∇ω(fn − f)

p

2 |2dxdω +
Cp2

p− 1

∫

D
(fn − f)pdxdω

By the same computation as I2 in the proof of the Lemma 3.1, we have

J4 = −4(p− 1)

p

∫

D
|∇ω(fn − f)

p

2 |2dxdω

Thus, we have

d

dt

∫

D
(fn − f)pdxdω ≤ C

∫

D
(fn − f)pdxdω − 2(p − 1)

p

∫

D
|∇ω(fn − f)

p

2 |2dxdω + J2 + J3.
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Since fn = f at t = 0, applying the Gronwall’s inequality to the above inequality, we have
that for any 0 < t ≤ T ,

∫

D
(fn − f)pdxdω +

2(p − 1)

p

∫ t

0

∫

D
|∇ω(fn − f)

p

2 |2dxdωds ≤ eCT

∫ t

0
(J2 + J3)(s)ds.

We use the formula (2.15) and the mean-value theorem to rewrite J2 as

J2 = −p
∫

D
(fn − f)p−1

[

(ν(ω · Fn)− ν(ω · F ))∇ωf · Pω⊥Fn

+ f(ν ′(ω · Fn)Fn − ν ′(ω · F )F ) · Pω⊥Fn

− (d− 1)f(ν(ω · Fn)− ν(ω · F ))ω · Fn

]

dxdω

= −p
∫

D
(fn − f)p−1

[

ν ′(ω · F ∗
n)ω · (Fn − F )∇ωf · Pω⊥Fn

+ f
(

ν ′(ω · Fn)(Fn − F ) + ν ′′(ω · F ∗∗
n )ω · (Fn − F )F

)

· Pω⊥Fn

− (d− 1)fν ′(ω · F ∗
n)ω · (Fn − F )ω · Fn

]

dxdω

= −p
∫

D
(fn − f)p−1

[

ν ′(ω · F ∗
n)∇ωf · Pω⊥Fnω

+ fν ′(ω · Fn)Pω⊥Fn + fν ′′(ω · F ∗∗
n )F · Pω⊥Fnω

− (d− 1)fν ′(ω · F ∗
n)ω · Fnω

]

· (Fn − F )dxdω,

where F ∗
n and F ∗∗

n are some bounded functions due to MVT.
Similarly, using (2.15), we rewrite J3 as

J3 = −p
∫

D
(fn − f)p−1

[

ν(ω · F )∇ωf · Pω⊥(Fn − F ) + fν ′(ω · F )Pω⊥F · Pω⊥(Fn − F )

− (d− 1)fν(ω · F )ω · (Fn − F )
]

dxdω

= −p
∫

D
(fn − f)p−1

[

ν(ω · F )∇ωf + fν ′(ω · F )Pω⊥F − (d− 1)fν(ω · F )ω
]

· (Fn − F )dxdω.

Thus we get

‖fn − f‖pLp(D) +
4(p − 1)

p

∫ T

0

∫

D
|∇ω(fn − f)

p

2 |2dxdωds

≤ eCT

∫ T

0

∫

D
Φ · (Fn − F )dxdωds,

(3.20)

where

Φ = −p(fn − f)p−1
[

ν ′(ω · F ∗
n)∇ωf · Pω⊥Fnω + fν ′(ω · Fn)Pω⊥Fn + fν ′′(ω · F ∗∗

n )F · Pω⊥Fnω

− (d− 1)fν ′(ω · F ∗
n)ω · Fnω + ν(ω · F )∇ωf + fν ′(ω · F )Pω⊥F − (d− 1)fν(ω · F )ω

]

Once we can show Φ ∈ L1((0, T )×D), we can conclude the proof by the weak convergence
Fn as (3.19). Thus, it remains to show the L1 boundedness of φ.
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To this end, using the uniform boundedness of (Fn), we have the same estimates as in
Lemma 3.1, i.e., for each g = fn, f ,

‖g‖L∞(0,T ;Lp(D)) ≤ C‖f0‖Lp(D), 1 ≤ p ≤ ∞,

‖∇ωg
p
2 ‖L2((0,T )×D) ≤ C‖f0‖p/2Lp(D), 1 ≤ p <∞,

where the positive constant C only depends on p and T . Then using those estimates and
Hölder’s inequality, we have
∫ T

0

∫

D
(fn − f)p−1∇ωfdxdωds ≤

(

∫

D
(fn − f)pdxdω

)1/2(
∫

D
(fn − f)p−2|∇ωf |2dxdω

)1/2

≤ C
(

∫

D
(fpn + fp)dxdω

)1/2(
∫

D
|∇ωf

p
2 |2dxdω

)1/2

≤ C0,

and
∫ T

0

∫

D
(fn − f)p−1fdxdωds ≤

(

∫

D
(fn − f)pdxdω

)
p−1

p
(

∫

D
fpdxdω

)
1

p

≤ C
(

∫

D
(fpn + fp)dxdω

)
p−1

p
(

∫

D
fpdxdω

)
1

p

≤ C0,

where the positive constant C0 depends on ‖f0‖Lp(D). Thus we have

‖Φ‖L1((0,T )×D) ≤ C∗(‖(fn − f)p−1∇ωf‖L1((0,T )×D) + ‖(fn − f)p−1f‖L1((0,T )×D))

≤ C∗C0,

where C∗ is a positive constant as

C∗ = pd
[(

(‖ν ′(ω · F ∗
n)‖L∞ + ‖ν ′(ω · Fn)‖L∞) + ‖ν ′′(ω · F ∗∗

n )‖L∞‖F‖L∞

)

‖Fn‖L∞

+ ‖ν(ω · F )‖L∞ + ‖ν ′(ω · F )‖L∞‖F‖L∞

]

,

which does not depend on n thanks to the uniform boundedness of (Fn).
Therefore, by applying (3.19), it follows from (3.20) that

fn → f in Lp((0, T ) ×D),

∇ωfn → ∇ωf in L2((0, T ) ×D).
(3.21)

It remains to show that (3.21) implies the strong convergence of the associated sequences

(J̄n) and (J̃n). For (J̄n), using the Minkowski inequality, Hölder’s inequality and Young’s
inequality, we estimate

‖J̄n − J̄‖Lp((0,T )×Rn) =
(

∫ T

0

∫

Rd

∣

∣

∣

∫

Sd−1

K ∗x (fn − f)ωdω
∣

∣

∣

p
dxds

)
1

p

≤
∫

Sd−1

(

∫ T

0

∫

Rd

|K ∗x (fn − f)|pdxds
)

1

p
dω

≤ C
(

∫ T

0

∫

Sd−1

‖K ∗x (fn − f)‖p
Lp(Rd)

dωds
)

1

p

≤ C‖K‖L1(Rd)‖fn − f‖Lp((0,T )×D).
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Similarly we have

‖J̃n − J̃‖Lp((0,T )×Rn) =
(

∫ T

0

∫

Rd

∣

∣

∣

∫

Sd−1

ω(fn − f)dω
∣

∣

∣

p
dxds

)
1

p

≤
∫

Sd−1

(

∫ T

0

∫

Rd

|fn − f |pdxds
)

1

p
dω

≤ C‖fn − f‖Lp((0,T )×D).

�

4. Proof of Theorem 2.1

In this section, we use the a priori estimates and compactness property in previous lem-
mas to prove Theorem 2.1. For this end, we intend to use iteration scheme to construct a
sequence of solutions (fn) to linear approximate equation of (2.6), for which at n-th step,
Ω(fn−1) in the force term will be given from previous (n−1)-th step. In this iteration, even
if we suppose (2.7) or (2.8), since the linear approximate equation is different from the orig-
inal equation (2.6), the corresponding momentum J(fn) of the solution fn of approximate
equation at n-th step can be zero, which fails in defining Ω(fn) at next step. In order to
remove this issue of singularity, we need to first regularize the equation (2.6).

4.1. Regularized equation. We first regularize (1.1) and (1.2) by adding ε > 0 to the
denominator of Ω as follows.

∂tfε + ω · ∇xfε = −∇ω ·
(

fεν(ω · Ωε)Pω⊥Ωε

)

+∆ωfε,

Ωε(x, t) =
Jε(x, t)

|Jε(x, t)|+ ε
,

fε(x, ω, 0) = f0(x, ω), x ∈ R
d, ω ∈ S

d−1, t > 0.

(4.22)

where Jε(x, t) denotes one of either J̄(fε)(x, t) or J̃(fε)(x, t).

4.2. Construction of approximate solutions. We now construct a sequence of approx-
imate solutions to the regularized equation (4.22) by using the following iteration scheme.
We define a initial function f1 by

f1(x, ω, t) = f0(x, ω), (x, ω) ∈ D, t ≥ 0.

Then, we find f2 solving

∂tf2 + ω · ∇xf2 = −∇ω ·
(

f2ν(ω · Ω1)Pω⊥Ω1

)

+∆ωf2,

Ω1(x, t) =
J1(x, t)

|J1(x, t)|+ ε
, J1(x, t) = either J̄(f1)(x, t) or J̃(f1)(x, t),

f2(x, ω, 0) = f0(x, ω).

Inductively, we define fn+1 as a solution of

∂tfn+1 + ω · ∇xfn+1 = −∇ω ·
(

fn+1ν(ω · Ωn)Pω⊥Ωn

)

+∆ωfn+1,

Ωn(x, t) =
Jn(x, t)

|Jn(x, t)|+ ε
, Jn(x, t) = either J̄(fn)(x, t) or J̃(fn)(x, t),

fn+1(x, ω, 0) = f0(x, ω),

(4.23)
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We have omitted ε-dependence in fε,n above for the notational simplicity. First of all, we
need to justify the solvability of the approximate equations (4.23) for n ≥ 1 as follows.

Lemma 4.1. For any T > 0 and fixed n ≥ 1, assume that fn is a given integrable function
and f0 satisfies (2.9). Then, there exists a unique solution fn+1 ≥ 0 to the linear equation
(4.23) satisfying the Lp-estimates:

(4.24) ‖fn+1‖L∞(0,T ;Lp(D)) +
2(p− 1)

p
‖∇ωf

p
2

n+1‖
2

p

L2((0,T )×D)
≤ e

CT p

p−1 ‖f0‖Lp(D),

and

(4.25) ‖fn+1‖L∞((0,T )×D) ≤ eCT ‖f0‖L∞(D).

The proof of Lemma 4.1 follows the same argument as Degond’s proof in [5]. We postpone
its proof in Appendix for the reader’s convenience.

4.3. Passing to the limit as n → ∞. We now show that fn converges to the solution
of regularized equation (4.22), which provides the existence of weak solution to (4.22) as
follows.

Proposition 4.1. For a given T > 0 and ε > 0, if f0 satisfies (2.9), then there exists a
weak solution fε ≥ 0 to the (4.22) satisfying the Lp-estimates: for 1 ≤ p <∞,

(4.26) ‖fε‖L∞(0,T ;Lp(D)) +
2(p − 1)

p
‖∇ωf

p
2

ε ‖
2

p

L2((0,T )×D)
≤ e

CT p
p−1 ‖f0‖Lp(D),

and

(4.27) ‖fε‖L∞((0,T )×D) ≤ eCT ‖f0‖L∞(D).

Proof. Since the sequence (Ωn) defined in (4.23) is bounded in L∞((0, T ) × R
d), we can

apply Lemma 3.2 with Fn = Ωn. Then, there exists a limit function fε such that up to a
subsequence,

fn → fε as n→ ∞ in Lp((0, T ) × R
d) ∩ L2((0, T )× R

d;H1(Sd−1)),

Jn → Jε as n→ ∞ in Lp((0, T ) × R
d),

where the pair (Jn, Jε) is either (J̄(fn), J̄(fε)) or (J̃(fn), J̃(fε)).
Moreover, this yields

Ωn → Ωε :=
Jε

|Jε|+ ε
as n→ ∞ in L∞(0, T ;Lp(D)).

Indeed, this is derived from
∫

Rd

|Ωn − Ωε|pdx

=

∫

Rd

∣

∣

∣

ε(Jn − Jε) + |Jε|(Jn − Jε) + Jε(|Jε| − |Jn|)
(|Jn|+ ε)(|Jε|+ ε)

∣

∣

∣

p
dx

≤ 1

εp

∫

Rd

∣

∣

∣

ε(Jn − Jε) + |Jε|(Jn − Jε) + Jε(|Jε| − |Jn|)
|Jε|+ ε

∣

∣

∣

p
dx

≤ C(ε)

∫

Rd

(

|Jn − Jε|p + |Jn − Jε|p + ||Jn| − |Jε||p
)

dx

≤ C(ε)

∫

Rd

|Jn − Jε|pdx,
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Therefore, those imply that the limit fε satisfies the following weak formulation of (4.22):
for all φ ∈ C∞

c ([0, T ) × R
d × S

d−1),
∫ t

0

∫

D
fε∂tφ+ fεω · ∇xφ+ fεFε · ∇ωφ−∇ωfε · ∇ωφdxdωds

+

∫

D
f0φ(0, ·)dxdω = 0,

Fε = ν(ω · Ωε)Pω⊥Ωε, Ωε(x, t) =
Jε(x, t)

|Jε(x, t)|+ ε
,

Jε(x, t) = either J̄(fε) or J̃(fε).

In addition, we use the proof of Lemma 3.1 and the boundedness of Ωε above, to complete
the Lp estimates (4.26) and (4.27). �

4.4. Passing to the limit as ε→ 0. In this part, we complete the proof of Theorem 2.1 by
showing the convergence of (4.22) to (2.6) in the weak sense, as ε→ 0. For the convenience,
we denote a sequence fn := fεn for a convergent sequence εn → 0, then consider a sequence

Fn :=
Jn

|Jn|+ εn
, Jn =

∫

Sd−1

ωfndω.

Since the sequence (Fn) defined above is bounded in L∞((0, T )×R
d), we can apply Lemma

3.2. Then, there exists a limit function f such that up to a subsequence,

fn → f as n→ ∞ in Lp((0, T ) ×R
d) ∩ L2((0, T ) × R

d;H1(Sd−1)),

Jn → J as n→ ∞ in Lp((0, T ) × R
d),

(4.28)

where the pair (Jn, J) is either (J̄(fn), J̄(f)) or (J̃(fn), J̃(f)).
We may show that f is the weak solution to (2.6), that is, f satisfies the weak formulation
(2.10) as the limit of the following formulation for (4.22):

∫ t

0

∫

D
fn∂tφ+ fnω · ∇xφ+ fnν

( ω · Jn
|Jn|+ εn

)

Pω⊥

Jn

|Jn|+ εn
· ∇ωφ−∇ωfn · ∇ωφdxdωds

+

∫

D
f0φ(0, ·)dxdω = 0,

for any φ ∈ C∞
c ([0, T ) × R

d × S
d−1).

By the convergence of fn in (4.28), we can easily show that all terms in the formulation
above except for the nonlinear force term converge to the corresponding terms in (2.10).
On the other hand, the convergence of the nonlinear term requires further justification as
follows.

Lemma 4.2. As n→ ∞,
∫ t

0

∫

D
fnν

( ω · Jn
|Jn|+ εn

)

Pω⊥

Jn

|Jn|+ εn
·∇ωφdxdωds →

∫ t

0

∫

D
fν

(ω · J
|J |

)

Pω⊥

J

|J | ·∇ωφdxdωds,

when |J(x, t)| > 0 by the assumption (2.7) and (2.8).

Proof. We here omit the projection operator Pω⊥ thanks to (2.14) for convenience, i.e., we
show that

∫ t

0

∫

D
fnν

( ω · Jn
|Jn|+ εn

) Jn

|Jn|+ εn
· ∇ωφdxdωds →

∫ t

0

∫

D
fν

(ω · J
|J |

) J

|J | · ∇ωφdxdωds,
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First of all, since (4.27) and ν is bounded, there is a uniform constant C such that
∥

∥

∥
fnν

( ω · Jn
|Jn|+ εn

) Jn

|Jn|+ εn

∥

∥

∥

L∞((0,T )×D)
≤ ‖fn‖L∞((0,T )×D)‖ν‖L∞ ≤ C.

which implies that for some F ,

fnν
( ω · Jn
|Jn|+ εn

) Jn

|Jn|+ εn
⇀ F weakly− ∗ in L∞((0, T ) ×D).

Thus it remains to show

F = fν
(ω · J

|J |
) J

|J | ,

on {(t, x, ω) ∈ (0, T ]× R
d × S

d−1 | |J(x, t)| > 0}.
For that, we consider a bounded set

XR,δ := {(t, x, ω) ∈ (0, T ]×BR(0)× S
d−1 | |J(x, t)| > δ},

where R and δ are any positive constants, and BR(0) denote the ball with radius R, centered
at 0 in R

d.
Since fn → f and Jn → J a.e. on XR,δ by (4.28), we use Egorov’s theorem to have that for
any η > 0, there exists Yη ⊂ XR,δ such that |XR,δ\Yη| < η and

fn → f, Jn → J in L∞(Yη).

Thus, for sufficiently large n,

|Jn(x, t)| >
δ

2
for (x, t) ∈ Yη,

which allows us to get
∥

∥

∥

Jn

|Jn|+ εn
− J

|J |
∥

∥

∥

L∞(Yη)

=
∥

∥

∥

|J |(Jn − J) + J(|J | − |Jn|)− εnJ

(|Jn|+ εn)|J |
∥

∥

∥

L∞(Yη)

≤ 2

δ

∥

∥

∥

|J |(Jn − J) + J(|J | − |Jn|)− εnJ

|J |
∥

∥

∥

L∞(Yη)

≤ 2

δ

(

‖Jn − J‖L∞(Yη) + ‖|Jn| − |J |‖L∞(Yη) − εn

)

→ 0.

This yields
∥

∥

∥
fnν

( ω · Jn
|Jn|+ εn

) Jn

|Jn|+ εn
− fν

(ω · J
|J |

) J

|J |
∥

∥

∥

L∞(Yη)

=
∥

∥

∥
fn

[

ν
( ω · Jn
|Jn|+ εn

)

− ν
(ω · J

|J |
)] Jn

|Jn|+ εn

∥

∥

∥

L∞(Yη)

+
∥

∥

∥
fnν

(ω · J
|J |

)( Jn

|Jn|+ εn
− J

|J |
)
∥

∥

∥

L∞(Yη)
+

∥

∥

∥
(fn − f)ν

( ω · Jn
|Jn|+ εn

) Jn

|Jn|+ εn

∥

∥

∥

L∞(Yη)

≤ C‖fn‖L∞(‖ν ′‖L∞ + ‖ν‖L∞)
∥

∥

∥

Jn

|Jn|+ εn
− J

|J |
∥

∥

∥

L∞(Yη)
+ C‖fn − f‖L∞(Yη)‖ν‖L∞

→ 0.
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Thus we have

F = fν
(ω · J

|J |
) J

|J | on Yη.

Since η, R and δ are arbitrary, taking η, δ → 0 and R→ ∞,

F = fν
(ω · J

|J |
) J

|J | on {(t, x, ω) ∈ (0, T ]× R
d × S

d−1 | |J(x, t)| > 0}.

Therefore, we complete the convergence. �

Thanks to lemma above and (4.28), we conclude that f satisfies the weak formulation
(2.10).
On the other hand, the estimates (2.11) and (2.12) follow directly from the estimates (4.26)
and (4.27).

Appendix A. Proof of Lemma 4.1

We here prove the existence of solution f to the linear equation

∂tf + ω · ∇xf = −∇ω ·
(

fν(ω · Ω̄)Pω⊥Ω̄
)

+∆ωf,

Ω̄ =
J̄(x, t)

|J̄(x, t)|+ ε
, J̄(x, t) =

∫

Sd−1

ωg(x, ω, t)dω,

f(x, ω, 0) = f0(x, ω),

(A.29)

where g is a given integrable function.
We begin by rewriting (A.29) as

∂tf + ω · ∇xf + ν(ω · Ω̄)Pω⊥Ω̄ · ∇ωf

+ fν ′(ω · Ω̄)|Pω⊥Ω̄|2 − (d− 1)fν(ω · Ω̄)ω · Ω̄−∆ωf = 0,

f(x, ω, 0) = f0(x, ω),

(A.30)

where we have used the formula (2.15).
Then we consider a new function f̄(x, ω, t) := e−λtf(x, ω, t) for a given λ > 0, which leads
to

∂tf̄ + ω · ∇xf̄ + ψ1 · ∇ω f̄ +
(

λ+ ψ2 + ψ3

)

f̄ −∆ωf̄ = 0,

f̄(x, ω, 0) = f0(x, ω),
(A.31)

where the functions ψ1, ψ2 and ψ3 are given by

ψ1(x, ω, t) = ν(ω · Ω̄)Pω⊥Ω̄,

ψ2(x, ω, t) = ν ′(ω · Ω̄)|Pω⊥Ω̄|2,
ψ3(x, ω, t) = −(d− 1)ν(ω · Ω̄)ω · Ω̄.

Since |Ω̄| ≤ 1 and the smooth function ν is bounded, ψ1, ψ2 and ψ3 are also all bounded.
Therefore, the Lions’ theorem [19] guarantees the existence of (A.31) by the same argument
as [5]. More precisely, the equation (A.31) has a solution f̄ in the space

Y := {f ∈ L2([0, T ]× R
d;H1(Sd−1)) | ∂tf + ω · ∇xf ∈ L2([0, T ]× R

d;H−1(Sd−1))}.
Furthermore, by the Green formula in [5], we have the fact that for any f ∈ Y ,

< ∂tf + ω · ∇xf, f >=
1

2

∫

D
(|f(x, ω, T )|2 − |f(x, ω, 0)|2)dxdω,(A.32)
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where <,> denotes the pairing of L2([0, T ]×R
d;H−1(Sd−1)) and L2([0, T ]×R

d;H1(Sd−1)).
We use (A.32) to show the uniqueness of solutions f in Y as follows.
Let us consider a solution f̄ ∈ Y to (A.31) with initial data f0 = 0. Then by using (A.32),
we have

0 =< ∂tf̄ + ω · ∇xf̄ + ψ1 · ∇ωf̄ + (λ+ ψ2 + ψ3)f̄ −∆ωf̄ , f̄ >

=
1

2

∫

D
|f̄(x, ω, T )|2dxdω − 1

2

∫

D
∇ω · ψ1|f̄ |2dxdω

+

∫

D
(λ+ ψ2 + ψ3)|f̄ |2dxdω +

∫

D
|∇ω f̄ |2dxdω

≥
(

λ− 1

2
‖∇ω · ψ1‖L∞([0,T ]×D) − ‖ψ2‖L∞([0,T ]×D) − ‖ψ3‖L∞([0,T ]×D)

)

∫

D
|f̄ |2dxdω.

(A.33)

Since

∇ω · ψ1 = ν ′(ω · Ω̄)∇ω(ω · Ω̄) · Pω⊥Ω̄ + ν(ω · Ω̄)∇ω · Pω⊥Ω̄

= ν ′(ω · Ω̄)|Pω⊥Ω̄|2 − (d− 1)ν(ω · Ω̄)ω · Ω̄,
∇ω · ψ1 is bounded. Thus we choose λ such that

(A.34) λ >
1

2
‖∇ω · ψ1‖L∞([0,T ]×D) + ‖ψ2‖L∞([0,T ]×D) + ‖ψ3‖L∞([0,T ]×D),

then (A.33) yields f̄ = 0, which proves the uniqueness of the linear equation (A.31).
Therefore, (A.31) has a unique solution f̄ ∈ L2([0, T ] × R

d;H1(Sd−1)).
Furthermore, since f0 ≥ 0 and f0 ∈ L∞(D), by using the similar argument as (A.33), we
can show

f̄ ≥ 0 and f̄ ∈ L∞([0, T ] ×D).

For that, we use the following fact in [5], for any f ∈ Y ,

< ∂tf + ω · ∇xf, f− >=
1

2

∫

D
(|f−(x, ω, 0)|2 − |f−(x, ω, T )|2)dxdω,

where f− := max(−f, 0).
Then, since f−(x, ω, 0) = 0 by f0 ≥ 0, we have

0 =< ∂tf̄ + ω · ∇xf̄ + ψ1 · ∇ωf̄ + (λ+ ψ2 + ψ3)f̄ −∆ωf̄ , f̄− >

= −1

2

∫

D
|f̄−(x, ω, T )|2dxdω +

1

2

∫

D
∇ω · ψ1|f̄−|2dxdω

−
∫

D
(λ+ ψ2 + ψ3)|f̄−|2dxdω −

∫

D
|∇ωf̄−|2dxdω

≤ −
(

λ− 1

2
‖∇ω · ψ1‖L∞([0,T ]×D) − ‖ψ2‖L∞([0,T ]×D) − ‖ψ3‖L∞([0,T ]×D)

)

∫

D
|f̄−|2dxdω.

By the same choice as (A.34), we f̄− = 0, which proves f̄ ≥ 0.
The same argument also deduces

‖f̄‖L∞([0,T ]×D) ≤ ‖f0‖L∞(D).

We now go back to (A.30) by using the transformation f(x, ω, t) = eλtf̄(x, ω, t). Since our
results for f̄ are invariant under this transformation, we conclude the proof, together with
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the estimates (4.24) and (4.25), which is estimated by using the proof of Lemma 3.1 and
the boundedness of Ω̄.
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[15] G. Grégoire and H. Chaté, Onset of collective and cohesive motion, Phys. Rev. Lett. 92 (2004) 025702.
[16] S.-Y. Ha, E. Jeong, M.-J. Kang, Emergent behaviour of a generalized Viscek-type flocking model, Non-

linearity, 23 (2010) pp. 3139–3156.
[17] E.P. Hsu, Stochastic Analysis on Manifolds. Graduate Series in Mathematics. Am. Math. Soc., Provi-

dence (2002)
[18] T. K. Kapper, A. Mellet and K. Trivisa, Existence of weak solutions to kinetic flocking models, SIAM

J. Math. Anal. 45 (2013), pp. 215–243.
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