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Abstract

Nonlinear hyperbolic systems with relaxations may encounter different scales of relaxation
time, which is a prototype multiscale phenomenon that arises in many applications. In such a
problem the relaxation time is of O(1) in part of the domain and very small in the remaining
domain in which the solution can be approximated by the zero relaxation limit which can be
solved numerically much more efficiently. For the Jin-Xin relaxation system in such a two-
scale setting, we establish its well-posedness and singular limit as the (smaller) relaxation time
goes to zero. The limit is a multiscale coupling problem which couples the original Jin-Xin
system on the domain when the relaxation time is O(1) with its relaxation limit in the other
domain through interface conditions which can be derived by matched interface layer analysis.
As a result, we also establish the well-posedness and regularity (such as boundedness in sup
norm with bounded total variation and L1-contraction) of the coupling problem, thus provide
a rigorous mathematical foundation, in the general nonlinear setting, to the multiscale domain
decomposition method for this two-scale problem originally proposed in [16].

Keywords: Multiscale problems, Kinetic-fluid interface coupling, Milne problem, Bardos-Leroux-
Nédélec condition, Matched asymptotics, Conservation laws, Jin-Xin relaxation framework, BV
estimate, L1-contraction.

1 Introduction

Consider the hyperbolic relaxation system proposed by Jin and Xin [17]
{

∂tu
ǫ + ∂xv

ǫ = 0, (1.1a)

∂tv
ǫ + a2∂xu

ǫ = −λ(x, ǫ)(vǫ − f(uǫ)), (1.1b)

for some small relaxation parameter ǫ. Here the relaxation rate λ depends on the space variable x
in the following way:

λ(x, ǫ) =

{

1, x < 0,
1
ǫ
, x > 0, 0 < ǫ≪ 1.

(1.2)
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This is a prototype example of multiscale problems in which one encounters a drastic change of time
or spatial scales within one problem. One famous example is the space shuttle reentry problem
in which the space shuttle encounters transition from rarefied gas (described by the Boltzmann
equation) to dense gas (described by fluid equations) [19, 4], transport equations between differential
materials or media [1, 9, 14], and other multiscale problems [12]. While a complete mathematical
theory for the coupling between the (mesoscopic) Boltzmann equation and the (macroscopic) fluid
dynamics equations remains one of the major challenges in PDEs and mathematical physics, a
thorough mathematical analysis on the problem under study sheds some lights in this direction,
and is of significant interest in understanding some of the multiscale computational methods.

In the relaxation parameter λ(x, ǫ) were uniform in x with λ(x, ǫ) = 1/ǫ for all x ∈ R and under
the well-known sub-characteristic condition:

|f ′(u)| < a, (1.3)

for all the u under consideration, it has been proved [3, 7, 18, 21, 25, 26] that the solution
{

(uǫ, vǫ)
}

ǫ>0
of (1.1) converges as ǫ goes to zero to a limit (u, v) with v = f(u) where u is the

entropy weak solution to the nonlinear scalar conservation law

∂tu+ ∂xf(u) = 0, t > 0 . (1.4)

Since (1.4) is the macroscopic equation that does not depend on the small parameter ǫ, it is
computationally more efficient to solve this equation rather than the original system (1.1) in the
domain x > 0. However, one needs to couple this equation with the original system (1.1) for x < 0
through some interface condition at x = 0 that provides the transmission of data from one scale to
the other, or from one domain to the other.

In [16], such a domain coupling method was provided as the following:

When f ′(u) < 0 for all u in between u(t, 0−) and u(t, 0+),










∂tu+ ∂xf(u) = 0, x > 0, t > 0, (1.5a)

v(t, x) = f(u(t, x)), (1.5b)

u(0, x) = u0(x), (1.5c)



















∂tu+ ∂xv = 0, x < 0, t > 0, (1.6a)

∂tv + a2∂xu = f(u)− v, (1.6b)

u(0, x) = u0(x), v(0, x) = v0(x), (1.6c)

v(t, 0−) = v(t, 0+) = f(u(t, 0+)); (1.6d)

When f ′(u) > 0 for all u in between u(t, 0−) and u(t, 0+)


















∂tu+ ∂xv = 0, x < 0, t > 0, (1.7a)

∂tv + a2∂xu = f(u)− v, (1.7b)

u(0, x) = u0(x), v(0, x) = v0(x), (1.7c)

v(t, 0−) = f(u(t, 0−)), (1.7d)



















∂tu+ ∂xf(u) = 0, x > 0, t > 0, (1.8a)

v(t, x) = f(u(t, x)), (1.8b)

u(0, x) = u0(x), (1.8c)

u(t, 0+) = u(t, 0−). (1.8d)
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Based on the condition that the flux v is continuous across the interface, here the interface
condition is constructed through a matched interface layer analysis, which depends on the sign of
f ′(u) at the interface. Specifically, when f ′(u) < 0, there will be an interface layer in u but not in
v around x = 0+, then one should solve the conservation law in the right domain first and then
transfers the value of v(t, 0) to the left, see (1.6d). On the other hand, when f ′(u) > 0, there is
no interface layer in u or v to the leading order, one just uses v(t, 0) = f(u(t, 0−)) as the interface
condition for the relaxation system in the left domain, and then uses the value u(t, 0−) as the
boundary condition for the right region, see (1.7d).

An important property of the domain coupling method is that the two domains are now com-
pletely decoupled, and it can be solved numerically in one domain first and then the second domain,
using any high resolution shock capturing method. The method can be easily extended to more
complicated cases such as dynamic interfaces. See [16].

For the linear case when f(u) = λu with |λ| < 1, the authors in [16] showed that the solution of
the original system (1.1) and (1.2) is strictly well-posed in the sense that the L2 norm of solution is
bounded by the L2 norm of the initial and boundary data. And then they proved the asymptotic
convergence of (1.1) and (1.2) to the decoupled system (1.5)–(1.6) or (1.7)–(1.8) as ǫ → 0 and
obtained the optimal convergence rate.

This paper studies the case of nonlinear flux f(u). We first establish the well-posedness of the
or relaxation system (1.1) with a discontinuous relaxation rate (1.2), and then prove asymptotic
limit as ǫ → 0. To deal with possible strong oscillations developed at the interface x = 0 in the
limit ǫ → 0, for technical reason, we assume that the interface is not characteristic, that is wave
velocities do not vanish: namely for some real constant C0 > 0, either

0 < C0 ≤ f ′(u), for all u ∈ R, (1.9)

or
f ′(u) ≤ −C0 < 0, for all u ∈ R. (1.10)

Under this assumption, no shock wave can stick to the interface. Without real restriction, we will
assume throughout the paper that the flux function f belongs to C1(R) with f(0) = 0. The initial
data u0 is assumed to be compactly supported with

u0(x) ∈ L∞(R) ∩ BV(R). (1.11)

Then, v0 is chosen well-prepared (the initial data are in the equilibrium state)

v0(x) = f(u0(x)), (1.12)

so that v0 ∈ L∞(R)∩BV(R), and is also compactly supported since f(0) = 0. This condition is not
mandatory on the left part of the domain, here we make this assumption for simplicity. Introduce

N0 = max
(

‖u0 ‖L∞(R), ‖f(u0)‖L∞(R)

)

, (1.13)

F (N0) = sup
|ξ|<N0

|f(ξ)|, B(N0) = 2N0 + F (2N0)

M(N0) = sup
|ξ|≤B(N0)

|f ′(ξ)|,

the sub-characteristic condition is specified as follows [21]

a > M(N0). (1.14)

Under these assumptions, we also obtain the well-posedness of the coupling problem, as well as the
regularity of its solution. The results are summarized by the following theorem.
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Theorem 1. Given initial data u0 satisfying (1.11) and v0 well-prepared according to (1.12).
Assume (1.9) or (1.10) and let T > 0 be any real number.

1. For any given ǫ > 0, there exists a unique global solution (uǫ, vǫ) to the original two-scale
problem (1.1) and (1.2).

2. There exists a unique solution (u, v) in L1 ∩ L∞ ∩BV ((0, T )×Rx)
2 of the coupling problem

(1.16)-(1.17). Moreover, two such solutions (u1, v1) and (u2, v2) verify for almost all t in
(0, T ) the L1-contraction property:

1

2a
‖r1+(t, ·)− r2+(t, ·)‖L1(R−

x ) +
1

2a
‖r1−(t, ·)− r2−(t, ·)‖L1(R−

x ) + ‖u1(t, ·)− u2(t, ·)‖L1(R+
x )

≤‖u10 − u20 ‖L1(Rx), (1.15)

where ri± = (aui ± vi)(t, x), i = 1, 2.

3. As ǫ → 0, the family of two-scale solutions
{

(uǫ, vǫ)
}

ǫ>0
converges in the L1((0, T ) ×Rx)

2

topology to the unique solution (u, v) of the initial value problem (1.16)-(1.17) with initial
data (u0, f(u0)).

Let us briefly report on the technical difficulties and the tools we have developed to overcome
them. As expected, the multiscale nature of the PDEs (1.1)–(1.2) is responsible for the difficulties:
the relaxation rate λ(., ǫ) in (1.2) is non-homogeneous in the space variable x and furthermore
discontinuous. These two original features actually make it challenging to derive a uniform BV
estimate for the sequences {uǫ}ǫ>0 and {vǫ}ǫ>0. First, the lack of smoothness in the space variable
of the coefficients of the PDEs (1.1) obviously makes the standard approach based on a direct
differentiation of the equations with respect to x (see [26] for instance) impossible. In the case
of a constant relaxation rate, such a procedure allows to readily infer L1 estimates of the space
derivatives of the unknowns uǫ and vǫ from the quasi-monotone property of the differentiated
equations. Another classical approach directly makes use of the L1-contraction principle underlying
the Jin-Xin model with a single relaxation scale ǫ [22],[18]. This approach heavily relies on the
invariance of those PDEs with respect to shift in the space variable: shifting any given solution
(u, v) in x gives birth to a new solution while shifting correspondingly the initial data (u0, v0).
Uniform BV estimates for uǫ and vǫ are then easily inferred. However in the present setting, the
non-homogeneity of the relaxation rate λ in x clearly prevents the multiscale equations from the
reported invariance property.

To bypass these obstacles, we propose to take advantage of the fact that the coefficients in
these equations are independent of the time variable. The leading idea is to derive L1 estimates
for the time derivatives of the unknowns in order to infer corresponding estimates for the space
derivatives from the governing PDEs. Let us immediately stress that the resulting estimate fails
to be uniform in ǫ regarding the sequence {uǫ}ǫ>0. Nevertheless, we will be a position to get the
strong convergence of this sequence in a relevant topology using the property that the interface
x = 0 is not characteristic thanks to either assumption (1.9) or (1.10).

To implement this program, a first suitable regularization of the coefficients and data for the
multiscale system (1.1)–(1.2) yields a Cauchy problem for which the standard theory (see Protter-
Weinberger [24]) ensures existence and uniqueness of smooth solutions uǫ,δ and uǫ,δ for any given
regularizing parameter δ > 0 while by essence, the scale ǫ > 0 is kept fixed. Differentiating the
regularized equations in the time variable gives rise to a system for governing the time derivatives of
uǫ,δ and uǫ,δ which is quasi-monotone under a natural sub-characteristic condition. Such a property
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allows to derive uniform L1 estimates for the time derivatives under consideration since the well-
prepared initial data prevents us from any boundary layer at t = 0. The governing equations in the
original PDEs (1.1) then provides natural L1 estimates of the space derivatives of the unknown.
Letting the regularizing parameter δ go to zero, we establish that uniform L1 in time continuity
holds for both uǫ and vǫ. We further obtain a uniform BV estimate for the sequence {vǫ}ǫ>0.
But a corresponding uniform BV estimate for {uǫ}ǫ>0 stays unknown. Nevertheless, we prove that
the entropy dissipation rate coming with the multiscale relaxation procedure allows to recover the
strong convergence of {uǫ}ǫ>0 to a limit u in L1([0, T ]×R), for any given T > 0, from the strong
convergence of the sequence {vǫ}ǫ>0 in this topology. Here, the property that the interface x = 0 is
not characteristic in view of either (1.9) of (1.10) plays a central role. Again thanks to the entropy
dissipation estimate and the non-characteristic property, the limit u is proved to be bounded in
BV semi-norm. Both limits u and v are identified in each half-plane R+

t × R−
x and R+

t × R+
x .

The structure of the interface relaxation layer at x = 0 is revealed using a blow-up technique in
order to perform a matched asymptotic analysis. The profile solutions (U ǫ,δ,Vǫ,δ) are proved to be
bounded in sup-norm with bounded local total variation. It is nevertheless enough to pass to the
limit thanks to the ODE dynamics underlying the problem with a stable attractive critical state at
infinity. The natural monotonicity property of the relaxation profile in U and underlying Kruzkov
like entropy inequalities show a perfect match to the outer solution (u, v).

Other than its value for the understanding of a multiscale and multiphysics coupling computa-
tional method, the problem under study also provides a mathematical foundation for the following
interesting mathematical problem: given a 2× 2 hyperbolic system (1.1) (with λ = O(1) for x < 0
and the scalar conservation law (1.4) for x > 0, how does one couple these two sets of equations
through an interface condition at x = 0 in a mathematically well-posed way, assuming that the flux
v is continuous across x = 0? Our study provides such a mathematical framework: first one lifts
(or regularizes) the problem in the domain x > 0 via the relaxation (1.1) with relaxation rate given
by (1.2), and then takes the limit ǫ→ 0. One then ends up with the coupling system (1.5)–(1.8).

Finally, we also propose a coupling for general nonlinear flux f (regardless of the sign of f ′(u(t, 0+)):



















∂tu+ ∂xv = 0, x < 0, t > 0 (1.16a)

∂tv + a2∂xu = f(u)− v, (1.16b)

v(t, 0−) = f(u(t, 0+)), (1.16c)

u(0, x) = u0(x), v(0, x) = v0(x), (1.16d)























∂tu+ ∂xf(u) = 0, x > 0, t > 0 (1.17a)

v(t, x) = f(u(t, x)), (1.17b)

u(t, 0+)
BLN
:= u(t, 0−) (1.17c)

u(0, x) = u0(x), (1.17d)

where (1.17c) holds in the sense of the well-known Bardos-Leroux-Nédélec condition (BLN) [2]:

sgn
(

u(t, 0+)− u(t, 0−)
) (

f(u(t, 0+))− f(k)
)

≤ 0, for all k between u(t, 0−) and u(t, 0+). (1.18)

Then notice that in the limit equations (1.16)–(1.17), the equality of the flux at the interface is
verified

v(t, 0−) = v(t, 0+) = f(u(t, 0+)). (1.19)
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We point out that the solution u on x > 0 obeys by construction and in the usual weak sense the
Kruzkov’s entropy inequalities

∂t|u− k|+ ∂xsgn(u− k)(f(u)− f(k)) ≤ 0, x > 0, t > 0, (1.20)

for all k ∈ R. Our coupling (1.16)-(1.17) is more general than (1.5)-(1.8) since we do not assume

the sign of f ′(u) at the interface.

To prove the ǫ-convergence to the coupled problem (1.16)–(1.17) and to infer BLN, one needs to
match the left and right solutions through an interface layer of thickness O(ǫ) and blows up the
transition profile by introducing a fast variable y = x/ǫ to get in limit ǫ → 0+ the following ODE
that describes that interface layer connecting the left trace u(t, 0−) to the flux v(t, 0+) = f(u(t, 0+))
:







a2
d

dy
U(t, y) = f(U(t, y))− v(t, 0+), y > 0, (1.21a)

U(t, 0) = u(t, 0−). (1.21b)

We shall see that by construction :

U(t, y) ≡ U(t, 0), y < 0, t > 0 so that U(t,−∞) = u(t, 0−), t > 0. (1.22)

It is important to point out that there is no need to solve the inner problem (1.21) to close the
coupling problem under consideration: namely the left and right IBVP problems (1.16)–(1.17)
form a closed and well posed Cauchy problem. This is in sharp contrast with the kinetic-fluid
coupling problem where the knowledge of the solution of the Milne’s problem [5, 6, 27], governing
the interface layer, is needed to close the coupling problem.

In [27] Vasseur studied the coupling of the Perthame-Tadmor kinetic model [23] with the Burgers
equation. As already emphasized, a kinetic layer has to be solved in this framework to determine
the coupling conditions between the left and right solutions. In addition, Vasseur’s analysis makes
use of a comparison principle for special initial data while we rely on a space-time BV framework
for general well-prepared initial data.

Let us highlight the reason why the coupling problem (1.16)–(1.17) is an extension of (1.5)–(1.8)
to a more general flux. Namely

(i) if f ′(u) > 0 for u in between u(t, 0−) and u(t, 0+), then BLN gives u(t, 0−) = u(t, 0+). In this
case U(t, y) ≡ u(t, 0−) = u(t, 0+), so there is no interface layer.

(ii) if f ′(u) < 0 in between u(t, 0−) and u(t, 0+), then BLN always holds and f ′(u(t, 0−)) 6=
f ′(u(t, 0+)). In this case, (1.21) gives a monotone interface profile starting from u(t, 0−) and
exponentially converges to u(t, 0+) as y → ∞. This property is crucially used in the proof of
Lemma 10.

These two cases correspond to (1.5)-(1.8).

(iii) if f ′(u) changes signs between u(t, 0−) and u(t, 0+), BLN can give rise to to complicated
behaviors, specifically, there is a possible steady shock sticked to the interface layer, separating
U(t,+∞) from u(t, 0+). Observe that such a shock has to be entropy satisfying since every
value along the jump is subject to BLN (1.18). Such a standing shock (having zero shock
speed) comes with the property that f(U(t,+∞)) = f(u(t, 0+)). As an example, let us
consider the setting of the Burger’s equation f(u) = u2/2 with the initial data

u0(x) =

{

+1, x < 0,
−1, x > 0,

v0(x) = f(u0(x)), x ∈ R. (1.23)

6



Choosing a = 1, then the (unique) solution of the coupling problem (1.16)–(1.17) is given by:

u(t, x) = u0(x), v(t, x) = f(u0(x)), x ∈ R, t > 0 while U(t, y) ≡ 1, y > 0, t > 0.
(1.24)

This solution is nothing but a steady shock sticked at the coupling interface layer U(t, y) ≡ 1.
In general, the situation where u(t, 0−) 6= U(t,+∞), a non-constant interface layer U exists

and in addition a standing shock can be attached to it : u(t, 0+) 6= U(t,+∞). This results
in a non trivial compound inner structure to connect the outer values u(t, 0−) with the inner
one u(t, 0+).

While cases (i) and (ii) are fully studied in this paper, we leave case (iii) to the future.

The rest of the paper is organized as follows. Section 2 proves well-posedness of the original two
scale equations (1.1) and provides all the necessary a priori estimates used in Section 3 to pass to
the limit in L1((0, T ) × R), T > 0, as ǫ goes to 0. It is also proved in Section 3 that the limit
function (u, v) satisfies the coupling equations (1.16)-(1.17) in the left and right domains R+

t ×R−
x

and R+
t × R+

x . Along the justification of this limit we are also able to establish the regularity
of the solution (u, v). Section 4 provides the matching interface layer analysis, proving the BNL
connection for the outer solution. The proof of the main Theorem 1 is given at the end of Section
4. We conclude the paper in section 5.

2 Well-posedness of the original two-scale hyperbolic system

2.1 A regularized system

Existence and stability of the solution to the Cauchy problem (1.1), (1.2)–(1.12) will rely on a
suitable regularization of the equations and the data. Let ρ(x) be a non-negative symmetric kernel
with

ρ ∈ C∞
c (R), ρ ≥ 0, supp(ρ) ⊂ [−1, 1],

∫

R

ρ(x)dx = 1, (2.1)

and consider the sequence of mollifiers {ρδ}δ>0 generated by ρ

ρδ(x) =
1

δ
ρ
(x

δ

)

, x ∈ R. (2.2)

The discontinuous relaxation coefficient in (1.2) is given by the following classical regularization

Λ(x, ǫ, δ) = (ρδ ∗ λ(·, ǫ)) (x) (2.3)

with the property min(1, 1
ǫ
) ≤ Λ(x, ǫ, δ) ≤ max(1, 1

ǫ
). More precisely

Λ(x, ǫ, δ) =







1
ǫ
, x ≥ δ,

smooth transition, −δ < x < δ,
1, x ≤ −δ,

(2.4)

so that for any given fixed ǫ > 0, ‖Λ(·, ǫ, δ) − λ(·, ǫ) ‖L1(R) stays uniformly bounded w.r.t. δ > 0
with the following well-known property

lim
δ→0

‖Λ(·, ǫ, δ)− λ(·, ǫ)‖L1(R)= 0, (2.5)
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which will be heavily used in the forthcoming analysis. The main strategy is to recover uniform
estimates in ǫ when sending the regularization parameter δ to 0 while keeping ǫ fixed. The initial
data u0 in (1.11) is smoothed according to

uδ0(x) = ρδ ∗ u0(x) (2.6)

so that uδ0 ∈ C∞
c (R) for all δ > 0. Recall that (see Guisti [13] for a proof)

ρδ ∗ u0 → u0 in L1(R) as δ → 0 with TV(ρδ ∗ u0) ≤ TV(u0), ‖uδ0 ‖L∞(R)≤‖u0 ‖L∞(R) . (2.7)

Hence, the sequence {uδ0}δ>0 has uniformly bounded total variation and sup norm. The initial data
v0 is also regularized in a well-prepared manner by setting

vδ0 = f(uδ0), with vδ0 uniformly bounded in L∞(R) ∩ BV(R). (2.8)

In view of (2.7), we clearly have that vδ0 → v0 = f(u0) in L1(R) as δ → 0. Equipped with these
regularizations, we propose the following regularized Cauchy problem

{

∂tu
ǫ,δ + ∂xv

ǫ,δ = 0, (2.9a)

∂tv
ǫ,δ + a2∂xu

ǫ,δ = −Λ(x, ǫ, δ)(vǫ,δ − f(uǫ,δ)), (2.9b)

with initial data

uǫ,δ(0, x) = uδ0(x), v
ǫ,δ(0, x) = f(uδ0(x)). (2.10)

The existence theory for the smooth solution to Cauchy problem (2.9)–(2.10) is classical, and we
refer the reader to Protter-Weinberger [24] for instance for the following result. To simplify the
notations, we omit the superscripts ǫ and δ when they are fixed.

Theorem 2. Given initial data u0 and v0 in C1(R) that vanish outside the interval [−M,M ] for
M > 0, there exists a unique classical solution (u, v) to the Cauchy problem (2.9) defined on a
maximal time interval [0, Tc). If the maximal time Tc is finite, then necessarily:

lim
t→Tc

sup
x∈R

(

|u(t, x)|+ |v(t, x)|
)

= +∞. (2.11)

The solution (u, v) belongs to C1
(

[0, Tc)×R
)

and vanishes outside
⋃

t∈[0,Tc)
[−(M + at),M + at].

Under the sub-characteristic condition (1.14), the global in time existence of the classical solution
(uǫ,δ, vǫ,δ) of (2.9)-(2.10) for any given δ > 0 and ǫ > 0 is guaranteed by the following result due to
Natalini [21].

Proposition 3. Under the sub-characteristic condition (1.14), the classical solution (uǫ,δ, vǫ,δ) of
(2.9)-(2.10) is bounded in sup norm for all time, uniformly w.r.t. ǫ and δ with

|uǫ,δ(t, x)| ≤ B(N0), |vǫ,δ(t, x)| ≤ aB(N0), for (t, x) ∈ (0,∞)×R. (2.12)

The smooth non-homogeneity in the space variable x in the relaxation parameter Λ(x, ǫ, δ) > 0
does not affect the proof given by Natalini [21] which was for constant Λ. In fact, exactly the same
steps apply.
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2.2 Existence and stability of the solution

The main results of this section ensures existence and stability for the two scale Cauchy problem
(1.1), (1.2)–(1.12).

Theorem 4. Given well-prepared initial data u0 and v0 satisfying the assumption (1.11)-(1.12).
Assume the sub-characteristic condition (1.14). Then for any given fixed parameter ǫ > 0 and time
T > 0, the sequence

{

(uǫ,δ, vǫ,δ)
}

δ>0
of classical solutions of the regularized problem (2.9)-(2.10)

converges as δ → 0 to a unique weak solution (uǫ, vǫ) of the Cauchy problem (1.1), (1.2)–(1.12) in
L1
(

(0, T ) × R)
)

. This weak solution satisfies the following a priori estimates, for a real constant
C > 0 independent of ǫ:

(i) ‖uǫ(t, ·)‖L∞(R)≤ B(N0), ‖vǫ(t, ·)‖L∞(R)≤ aB(N0); (2.13)

(ii) TV (vǫ(t, ·)) ≤ C; (2.14)

(iii) TV{x<0}(u
ǫ(t, ·)) ≤ C(1 + T ), TV{x>0}(u

ǫ(t, ·)) ≤ C

(

1 +
T

ǫ

)

; (2.15)

(iv) ||uǫ − f−1(vǫ)||L1((0,T );L2(R+
x )) ≤ CT

√
ǫ; (2.16)

for all time T > 0 while

(v)

∫

R

|uǫ(t2, x)− uǫ(t1, x)|dx ≤ C|t2 − t1|, 0 ≤ t1 ≤ t2 ≤ T ; (2.17)

∫

R

|vǫ(t2, x)− vǫ(t1, x)|dx ≤ C|t2 − t1|. (2.18)

Let us stress that the first estimate in (2.13) ensures from the definition (1.14) of a that

|f ′(u)| < a. (2.19)

It is important to point out that the BV estimate (2.15) for {uǫ}ǫ>0 in the right half line {x > 0}
is non uniform with respect to ǫ. The additional estimate (2.16) will be shown as a consequence
of the entropy dissipation estimation. The time and space uniform BV properties satisfied by the
sequence {vǫ}ǫ will imply on the first hand that {vǫ}ǫ converges to a limit function v in the strong
L1((0, R) × (0, T )) topology for any given R > 0 and T > 0, while on the second hand the limit
u = f−1(v) is in BV ([0, T ]×Rx) as a consequence of (iv).

The proof of this statement relies on the use of the characteristic variables

r±(t, x) = a u(t, x)± v(t, x), (2.20)

where we temporarily skip the small parameters in the notations for simplicity. Then the relaxation
system (1.1) or (2.9) can be written in the convenient diagonal form:

{

∂tr− − a∂xr− = −Λ(x, ǫ, δ)G(r−, r+), (2.21a)

∂tr+ + a∂xr+ = Λ(x, ǫ, δ)G(r−, r+), (2.21b)

where

G(r−, r+) = f

(

r− + r+
2a

)

− r+ − r−
2

. (2.22)

A key point of the analysis is that the sub-characteristic condition (1.14) (see Katsoulakis-Tzavaras
[18], Natalini [21] for instance) makes the mapping G quasi-monotone in the sense that

∂r−G(r−, r+) > 0, ∂r+G(r−, r+) < 0 (2.23)
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for any given pair (r−, r+) with |r− + r+|/2a < B(N0) and thus satisfying |f ′((r− + r+)/2a))| < a
with a prescribed according to (1.14). In other words et equivalently, as soon as the solution (uǫ, vǫ)
belongs to D(u0) in (??) then the quasi-monotone property (2.23) is satisfied. In addition, there
exists a unique C1 curve (r+, h(r+)) of equilibria locally which satisfies

G(h(r+), r+) = 0 (2.24)

for all r+ in R such that |r+ + h(r+)|/2a < B(N0) and hence (1.14) holds. For all the r+ under
consideration,

h(r+) is strictly increasing, (2.25)

and we have h(0) = 0. It is worth observing that the (well-defined) unique solution ℓ of ℓ+ h(ℓ) =
2ak for any given k with |k| < B(N0) satisfies the identity ℓ− h(ℓ) = 2f(k).

Let us also recall the L1 contraction property which will be heavily used later on. Given two clas-
sical solutions of the equations (2.21), the differences r−− r̄− and r+− r̄+ satisfy, once respectively
multiplied by sgn(r− − r̄−) and sgn(r+ − r̄+):

∂t|r− − r̄−| − a∂x|r− − r̄−| = −Λ(x, ǫ, δ)
(

G(r−, r+)−G(r̄−, r̄+)
)

sgn(r− − r̄−), (2.26)

∂t|r+ − r̄+|+ a∂x|r+ − r̄+| = +Λ(x, ǫ, δ)
(

G(r−, r+)−G(r̄−, r̄+)
)

sgn(r+ − r̄+). (2.27)

Thus adding these two identities gives

∂t
(

|r+ − r̄+|+ |r− − r̄−|
)

+ a∂x
(

|r+ − r̄+| − |r− − r̄−|
)

= Λ(x, ǫ, δ)
(

G(r−, r+)−G(r̄−, r̄+)
)(

sgn(r+ − r̄+)− sgn(r− − r̄−)
)

≤ 0, (2.28)

thanks to the quasi-monotonicity property (2.23). For any given ℓ ∈ R with |ℓ+h(ℓ)|/2a < B(N0),
choosing r̄+ = ℓ and r̄− = h(ℓ) in (2.28) yields

∂t
(

|r+ − ℓ|+ |r− − h(ℓ)|
)

+ a∂x
(

|r+ − ℓ| − |r− − h(ℓ)|
)

≤ 0. (2.29)

A first consequence of these inequalities is

Proposition 5. Under the assumption of Theorem 4, the pair (uǫ,δ, vǫ,δ) satisfies for all ǫ, δ > 0
the following entropy like inequalities expressed in terms of the characteristic variables

∫∫

R
+
t
×Rx

[

(

|rǫ,δ+ − ℓ|+ |rǫ,δ− − h(ℓ)|
)

∂tϕ+ a
(

|rǫ,δ+ − ℓ| − |rǫ,δ− − h(ℓ)|
)

∂xϕ
]

dtdx ≥ 0, (2.30)

for any given non negative test function ϕ in C1
c (R

+ ×R) and all ℓ ∈ R such that |ℓ+ h(ℓ)|/2a <
B(N0),

A second consequence is the following L1 contraction property (see also [18], [21]).

Proposition 6. Assume the sub-characteristic condition (1.14). Let (uǫ,δ, vǫ,δ) and (ūǫ,δ, v̄ǫ,δ)
be two classical solutions of the equations (2.9) with initial data (uδ0, v

δ
0) and (ūδ0, v̄

δ
0) respectively

that vanish outside the cone
⋃

t≥0[−(M + at), (M + at)]. Then for all time t > 0, the associated
characteristic variables satisfy the following inequality

∫ M

−M

(

|rǫ,δ+ − r̄ǫ,δ+ |+ |rǫ,δ− − r̄ǫ,δ− |
)

(t, x)dx ≤
∫ M+at

−(M+at)

(

|(r+)δ0 − (r̄+)
δ
0|+ |(r−)δ0 − (r̄−)

δ
0|
)

(x)dx. (2.31)
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For a problem invariant by translation in x, the above L1 contraction principle is known to imply
a uniform BV estimate for the solution to (2.9) as long as the initial data (u0, v0) is chosen in
BV (see [21] for instance). However, the dependence of the relaxation coefficient Λ(x, ǫ, δ) in the
space variable obviously prevents the classical solution of the regularized equation (2.9) from being
translation invariant in x. Thus the expected uniform BV estimate can no longer be inferred from
(2.31), neither can it be derived from the direct differentiation w.r.t. x of the governing equations
(2.9) (see [26]) since in the limit δ → 0, ∂xΛ(x, ǫ, δ) concentrates in a Dirac mass at the interface
x = 0. Instead, we can take advantage of the invariance w.r.t. time variable of the classical solutions
of (2.9) and we prove hereafter that some uniform BV estimates can be inferred from it. The key
estimates are gathered in the following statement.

Proposition 7. Under the assumption of Theorem 4, the classical solution (uǫ,δ, vǫ,δ) of the regu-
larized Cauchy problem (2.9)-(2.10) satisfies, for any given ǫ > 0 and δ > 0,

(i) ‖uǫ,δ(t, ·)‖L∞(R)≤ B(N0), ‖vǫ,δ(t, ·)‖L∞(R)≤ aB(N0); (2.32)

(ii) ‖∂tuǫ,δ(t, ·)‖L1(R)≤ C, ‖∂tvǫ,δ(t, ·)‖L1(R)≤ C; (2.33)

(iii) TV (vǫ,δ(t, ·)) ≤ C; (2.34)

(iv) TV {x≤0}

(

uǫ,δ(t, ·)
)

≤ CT

(

1+ ‖λ(·, ǫ)− Λ(·, ǫ, δ)‖L1(R)

)

; (2.35)

TV {x≥0}

(

uǫ,δ(t, ·)
)

≤ CT

(

1+ ‖λ(·, ǫ)− Λ(·, ǫ, δ)‖L1(R)

)

(

1 +
1

ǫ

)

; (2.36)

for t ∈ (0, T ), for any given time T > 0 and some constant CT > 0 independent of ǫ and δ.
Moreover, under the assumption (1.9) or (1.10), introducing the inverse function f−1 of f , the
following estimate holds

(v) ||uǫ,δ − f−1(vǫ,δ)||L1([0,T ],L2(R+)) ≤ CT

√
ǫ+ δ. (2.37)

Notice that the BV estimate for uǫ,δ in the right half line {x > 0} is uniform only with respect
to δ for fixed ǫ > 0.

Proof. (i) (2.32) is nothing but the estimate (2.12) stated in Propositon 3.
(ii) Deriving the uniform L1 estimate for the time derivative of the classical solutions (uǫ,δ, vǫ,δ)
relies on differentiating system (2.9) w.r.t. time. Define

sǫ,δ− (t, x) = a∂tu
ǫ,δ(t, x)− ∂tv

ǫ,δ(t, x), (2.38)

sǫ,δ+ (t, x) = a∂tu
ǫ,δ(t, x) + ∂tv

ǫ,δ(t, x), (2.39)

then they solve the system

{

∂ts
ǫ,δ
− − a∂xs

ǫ,δ
− = −Λ(x, ǫ, δ)R(sǫ,δ− , sǫ,δ+ ), (2.40a)

∂ts
ǫ,δ
+ + a∂xs

ǫ,δ
+ = Λ(x, ǫ, δ)R(sǫ,δ− , sǫ,δ+ ), (2.40b)

with

R(s−, s+) = f ′(u)
s− + s+

2a
− s+ − s−

2
, (2.41)

where we again omit the superscripts ǫ, δ for simplicity. Under the sub-characteristic condition
(1.14), R obeys the quasi-monotonicity property

∂s−R(s−, s+) > 0, ∂s+R(s−, s+) < 0 (2.42)
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for any given ǫ > 0 and δ > 0. Similar steps to those used in the derivation of the L1 contraction
principle from quasi-monotonicity yields

∫

|x|<M

(

|sǫ,δ+ (t, x)|+ |sǫ,δ− (t, x)|
)

dx ≤
∫

|x|<M+at

(

|sǫ,δ+ (0, x)|+ |sǫ,δ− (0, x)|
)

dx (2.43)

for any given real number M > 0 such that the initial data sǫ,δ+ (0, x), sǫ,δ− (0, x) vanish for all x with
|x| ≥M . Next observe that the governing equations (2.9) expressed at time t = 0 reads











∂tu
ǫ,δ(0, x) = − d

dx
vδ0(x), (2.44a)

∂tv
ǫ,δ(0, x) = −a2 d

dx
uδ0(x) + Λ(x, ǫ, δ)(f(uδ0)(x)− vδ0(x)), (2.44b)

then by the choice of the well-prepared initial data vδ0 = f(uδ0), we get

‖∂tuǫ,δ(0, ·)‖L1(R) ≤ ‖f ′(uδ0)‖L∞(R) TV(uδ0), (2.45)

‖∂tvǫ,δ(0, ·)‖L1(R) ≤ a2TV(uδ0) (2.46)

which implies the bound

max
(

‖sǫ,δ+ (0, ·)‖L1(R), ‖sǫ,δ− (0, ·)‖L1(R)

)

≤ a
(

‖f ′(uδ0)‖L∞(R) +a
)

TV(uδ0) ≤ C, (2.47)

where C > 0 is independent of δ. We therefore deduce from the L1 contraction property (2.43)
that

‖sǫ,δ− (t, ·)‖L1(R)≤ C, ‖sǫ,δ+ (t, ·)‖L1(R)≤ C. (2.48)

These uniform estimates clearly imply (2.33).
(iii) The expected BV estimate (2.34) of vǫ,δ immediately follows from the identity

∂xv
ǫ,δ(t, x) = −∂tuǫ,δ(t, x).

(iv) Let us now establish the uniform BV estimate (2.35). Rewrite the second PDE as

a2∂xu
ǫ,δ = −∂tvǫ,δ + λ(x, ǫ)(f(uǫ,δ)− vǫ,δ) + Θǫ,δ, (2.49)

where we have set

Θǫ,δ(t, x) = (Λ(x, ǫ, δ)− λ(x, ǫ))(f(uǫ,δ)− vǫ,δ). (2.50)

Observe that
∫

R

|Θǫ,δ(t, x)|dx ≤ ‖(f(uǫ,δ)− vǫ,δ)(t, .)‖L∞(R)‖λ(., ǫ)− Λ(., ǫ, δ)‖L1(R)

≤ C ‖λ(., ǫ)− Λ(., ǫ, δ)‖L1(R) (2.51)

for some constant C > 0 independent of ǫ and δ. First focusing on negative values of x so that
λ(x, ǫ) = 1, we give the easy estimate:

a2TV{x<0}(u
ǫ,δ(t, .)) ≤ ||∂tvǫ,δ||L1(R) + ||f(uǫ,δ)− vǫ,δ||L1(R) + C ‖λ(., ǫ)− Λ(., ǫ, δ)‖L1(R) . (2.52)
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That is, for all T > 0 and a.e. t ∈ [0, T ]

TV{x<0}(u
ǫ,δ(t, .)) ≤ CT (1+ ‖λ(., ǫ)− Λ(., ǫ, δ)‖L1(R)), (2.53)

for some constant CT > 0 independent of ǫ and δ since uǫ,δ(t, .) and vǫ,δ(t, .) have compact support
for all finite time t > 0. Considering positive values of x for which λ(x, ǫ) = 1/ǫ and following
identical steps, one gets, for all T > 0 and a.e. t ∈ [0, T ],

TV{x>0}(u
ǫ,δ(t, .)) ≤ CT (1+ ‖λ(., ǫ)− Λ(., ǫ, δ)‖L1(R))

(

1 +
1

ǫ

)

, (2.54)

again for some constant CT > 0 independent of ǫ and δ.
(v) The derivation of the last estimate (2.37) relies on estimating the entropy dissipation rate taking
place on the positive half line, for some convenient smooth entropy pairs first proposed by Chen,
Levermore and Liu [7] (see also Natalini [21]). These are smooth functions Φ,Ψ such that Φ is
strictly convex with

∂vvΦ(u, v) ≥ ηΦ > 0, for all (u, v), |u| ≤ B(N0), |v| ≤ aB(N0), (2.55)

for some strictly positive real number ηφ > 0. One also has

∂vΦ(u, f(u)) = 0, for all u ∈ R. (2.56)

Without loss of generality, we assume that Φ(0, 0) = 0. Those properties will suffice to our purpose
and readers are referred to [7], [21] for additional ones. By construction, the smooth solutions
(uǫ,δ, vǫ,δ) obey the following entropy differential equation:

∂tΦ(u
ǫ,δ, vǫ,δ) + ∂xΨ(uǫ,δ, vǫ,δ) = −Λ(x, ǫ, δ)∂vΦ(u

ǫ,δ, vǫ,δ) ·
(

vǫ,δ − f(uǫ,δ)
)

. (2.57)

Observe from (2.56) that

∂vΦ(u
ǫ,δ, vǫ,δ) = ∂vΦ(u

ǫ,δ, vǫ,δ)− ∂vΦ(u
ǫ,δ, f(uǫ,δ)) = ∂vvΦ(u

ǫ,δ, θǫ,δ1 )
(

vǫ,δ − f(uǫ,δ)
)

, (2.58)

for some uniformly bounded value θǫ,δ1 in between vǫ,δ and f(uǫ,δ). Hence the entropy balance law
(2.57) reads

∂tΦ(u
ǫ,δ, vǫ,δ) + ∂xΨ(uǫ,δ, vǫ,δ) = −Λ(x, ǫ, δ)∂vvΦ(u

ǫ,δ, θǫ,δ1 ) {f ′(θǫ,δ2 )}2 |f−1(vǫ,δ)− uǫ,δ|2, (2.59)

for some θǫ,δ2 in between uǫ,δ and f−1(vǫ,δ). Given T > 0, integrating the above identity over the
time space domain (0, T )×R+ clearly yields

∫

R+

Φ(uǫ,δ, vǫ,δ)(T, x)dx+ C2
0 ηΦ

∫ T

0

∫

R+

Λ(x, ǫ, δ)|f−1(vǫ,δ)− uǫ,δ|2dtdx ≤
∫

R+

Φ(uǫ,δ0 , f(uǫ,δ0 ))(x)dx+

∫ T

0
Ψ(uǫ,δ, vǫ,δ)(t, 0)dt,

(2.60)

where C0 comes from non-vanishing wave velocity assumption (1.9) or (1.10), ηΦ > 0 is the convexity
modulus of Φ introduced in (2.55). Uniform bounded sup-norm for uǫ,δ and vǫ,δ then ensures the
following upper bound for the right hand side

∫

R+

Φ(uǫ,δ0 , f(uǫ,δ0 ))(x)dx+

∫ T

0
Ψ(uǫ,δ, vǫ,δ)(t, 0)dt ≤ C (1 + T ), (2.61)
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for some constant C > 0 independent of ǫ and δ. We therefore infer from (2.60) the estimate:

∫ T

0

∫ +∞

δ

|f−1(vǫ,δ)− uǫ,δ|2dtdx ≤ C(1 + T )ǫ, (2.62)

for some uniform constant C > 0, since for all x > δ, ǫΛ(x, ǫ, δ) = 1. Arguing again from the
uniform sup norm estimates, we arrive at:

∫ T

0

∫

R+

|f−1(vǫ,δ)− uǫ,δ|2dtdx ≤ C(1 + T )(ǫ+ δ). (2.63)

This ends the proof.

Now we are ready to prove the main theorem in this section.

Proof the Theorem 4. First we show the existence of the limit (uǫ, vǫ). Since uǫ,δ(t, 0−) = uǫ,δ(t, 0+),
first observe from the estimates (iv) in Proposition 7 that, for fixed ǫ > 0 and any given δ > 0

TVR

(

uǫ,δ(t, ·)
)

= TV{x<0}

(

uǫ,δ(t, ·)
)

+TV{x>0}

(

uǫ,δ(t, ·)
)

+ |uǫ,δ(t, 0+)− uǫ,δ(t, 0−)|

≤ C
(

1+ ‖λ(·, ǫ)− Λ(·, ǫ, δ)‖L1(R)

)

(

1 +
1

ǫ

)

, (2.64)

and also
‖∂tuǫ,δ(t, ·)‖L1(R)≤ C, ‖∂tvǫ,δ(t, ·)‖L1(R)≤ C, (2.65)

for some positive constant C independent of ǫ and δ. Now let ǫ be fixed, these estimates ensure
that {uǫ,δ}δ>0 and {vǫ,δ}δ>0 stay uniformly w.r.t. δ in BV ([0, T ] × Rx) for all time t ∈ (0, T )
with T > 0 given, while being uniformly bounded in sup-norm. The well-known Helly’s theorem
asserts that for any given compact K in [0, T ]× Rx, the canonical embedding of L1(K) ∩ BV (K)
is compact in L1(K). A classical diagonal extraction procedure gives the existence of an extracted
subsequence, still labeled by

{ (

uǫ,δ, vǫ,δ
) }

δ>0
which converges in L1([0, T ], L1(Rx)) to some limit

(uǫ, vǫ) with bounded sup-norm as δ goes to 0. Let us conclude by showing that all extracted
subsequences actually converge to the same limit which proves in turn the uniqueness. Start from
the L1 contraction principle (2.31) which is valid in view of (2.19), one has for all time t ∈ (0, T )
and M > 0

∫ M

−M

(

|rǫ,δ+ − r̄ǫ,δ+ + |rǫ,δ− − r̄ǫ,δ− |
)

(t, x)dx ≤
∫ M+at

−(M+at)

(

|(r+)δ0 − (r̄+)
δ
0|+ |(r+)δ0 − (r̄+)

δ
0|
)

(x)dx. (2.66)

The above convergence results assert that there exists an extracted subsequence (rǫ,δ+ , rǫ,δ− ) (resp.

(r̄ǫ,δ+ , r̄ǫ,δ− )) which converges to some limit (rǫ+, r
ǫ
−) (resp. (r̄

ǫ
+, r̄

ǫ
−)) in L

1((0, T ), L1
loc(Rx)) as δ goes

to 0. These limits are seen to satisfy

∫ M

−M

(

|rǫ+ − r̄ǫ+|+ |rǫ− − r̄ǫ−|
)

(t, x)dx ≤
∫ M+at

−(M+at)

(

|r0+ − r̄0+|+ |r0− − r̄0−|
)

(x)dx, (2.67)

which gives the expected uniqueness property. Let us now characterize the limit (uǫ, vǫ). First
observe from the inequality (2.28) that for any given non-negative test function ϕ ∈ C1

c

(

(0, T ]×R
)

∫∫

[0,T ]×R

[

(

|rǫ,δ+ − r̄ǫ,δ+ |+ |rǫ,δ− − r̄ǫ,δ− |
)

∂tϕ+ a
(

|rǫ,δ+ − r̄ǫ,δ+ | − |rǫ,δ− − r̄ǫ,δ− |
)

∂xϕ
]

dtdx ≥ 0. (2.68)
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Now choose well-prepared initial data ū0 and v̄0 with compact support such that (r̄+)
δ
0 = ψδ(x)ℓ and

(r̄−)
δ
0 = ψδ(x)h(ℓ) for any given ℓ ∈ R with |ℓ+ h(ℓ)|/2a < B(N0). Observe that uǫ(t, x) = ℓ+h(ℓ)

2a ,

vǫ(t, x) = ℓ−h(ℓ)
2 trivially solve the Cauchy problem (1.1) so that by uniqueness we have in the

limit δ → 0: r̄ǫ+(t, x) = ℓ and r̄ǫ−(t, x) = h(ℓ). Therefore we have proved (2.30) for all the ℓ under
consideration. An additional characterization of the limit (uǫ, vǫ) comes as follows. Let us consider
test function ϕ ∈ C1

c

(

(0, T ]×R
)

, then the weak form of (2.9) reads


















∫∫

[0,T ]×Rx

uǫ,δϕt + vǫ,δϕxdxdt = 0, (2.69a)

∫∫

[0,T ]×Rx

vǫ,δϕt + a2uǫ,δϕx + Λ(x, ǫ, δ)(f(uǫ,δ)− vǫ,δ)ϕdxdt = 0. (2.69b)

Notice that since f is smooth with f(0) = 0 and {uǫ,δ} stays uniformly bounded in sup norm,
one has f(uǫ,δ(t, x))| ≤ C|uǫ,δ|. Moreover, f(uǫ,δ(t, x)) → f(uǫ(t, x)) a.e. in t and x. Therefore
by Lebesgue’s dominated convergence theorem, f(uǫ,δ(t, x)) → f(uǫ(t, x)) in L1([0, T ]×Rx). Now
passing to the limit in (2.69), notice that

∫∫

[0,T ]×Rx

Λ(x, ǫ, δ)(f(uǫ,δ)−vǫ,δ)ϕdtdx

=

∫∫

[0,T ]×Rx

(Λ(x, ǫ, δ)−λ(x, ǫ))(f(uǫ,δ)− vǫ,δ)ϕdtdx+

∫∫

[0,T ]×Rx

λ(x, ǫ)(f(uǫ,δ)−vǫ,δ)ϕdtdx, (2.70)

and by (2.5) and the sup norm estimate (2.32), the limit (uǫ, vǫ) indeed solves














∫∫

uǫϕt + vǫϕxdxdt = 0, (2.71a)
∫∫

vǫϕt + a2uǫϕx + λ(x, ǫ)(f(uǫ)− vǫ)ϕdxdt = 0, (2.71b)

for any given test function ϕ in C1
c

(

(0, T ]×R
)

.

Now let us conclude this section by proving the expected a priori estimates stated in Theorem 4.
(i) It has been proved when we showed the existence of the limit.
(ii) Concerning the uniform BV estimate for vǫ, first observe from the estimate (2.34) that for any
given ϕ ∈ C1

c (Rx) with ‖ϕ‖L∞(R)≤1,
∫

R

vǫ,δ(t, x)∂xϕdx ≤ sup
ϕ∈C1

c (Rx)

∫

Rx

vǫ,δ∂xϕdx = TVR(v
ǫ,δ) ≤ C. (2.72)

Sending δ to 0 with ǫ > 0 kept fixed yields
∫

Rx

vǫ(t, x)∂xϕdx ≤ C (2.73)

with the same uniform constant C above which does not depend on ǫ. We therefore conclude that

TVR

(

vǫ(t, ·)
)

= sup
ϕ∈C1

c (Rx),||ϕ||L∞(R)≤1

∫

Rx

vǫ(t, x)∂xϕdx ≤ C. (2.74)

(iii) In view of the uniform in δ > 0 BV estimate (2.35) satisfied by uǫ,δ in the left half-line {x < 0},
ǫ being fixed, similar steps apply to get

TV{x<0}

(

uǫ(t, ·)
)

= sup
ϕ∈C1

c (R
−
x ),||ϕ||L∞(R)≤1

∫

R
−
x

uǫ(t, x)∂xϕdx ≤ C(1 + T ), (2.75)
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for some constant C > 0 independent of ǫ. Identical steps equally apply to infer the following
non-uniform in ǫ BV estimate for uǫ,δ in the right half-line

TV{x>0}

(

uǫ(t, ·)
)

= sup
ϕ∈C1

c (R
+
x ),||ϕ||L∞(R)≤1

∫

R
+
x

uǫ∂xϕdx ≤ C

(

1 +
T

ǫ

)

. (2.76)

(iv) For any given fixed ǫ > 0, the expected last estimate

||f−1(vǫ)− uǫ||L1((0,T );L2(R+
x )) ≤ CT

√
ǫ, (2.77)

follows by passing to the limit δ → 0 in (2.37), from the L1 convergence of {uǫ,δ}δ>0 to uǫ and
strong L1 convergence of {f−1(vǫ,δ)}δ>0 to f

−1(vǫ) derived from Lebesgue’s dominated convergence
theorem, using uniform sup norm boundedness for the sequence {vǫ,δ}δ>0.
(v) At last, let us write that for all times t1, t2 with 0 < t1 < t2 < T , for some T > 0
∫

Rx

|uǫ,δ(t2, x)− uǫ,δ(t1, x)|dx ≤
∫ t2

t1

∫

Rx

|∂tuǫ,δ(t, x)|dxdt ≤‖∂tuǫ,δ(t, .)‖L1(R) (t2 − t1) (2.78)

which yields the required L1 Lipschitz continuity property (2.17) for uǫ by sending δ → 0. The
estimate (2.18) for vǫ is derived the same way. This concludes the proof of Theorem 4.

3 Strong convergence in L1
(

(0, T )×R
)

In this section, we show the limit behavior when sending the relaxation parameter ǫ to 0. The
following theorem is an extension of Theorem 1.

Theorem 8. Being given any initial condition u0, v0 satisfying (1.11)-(1.12) and assume the sub
characteristic condition (1.14).

i There is a subsequence (uǫ, vǫ) that converges to a limit (u, v) in L1
(

(0, T )×R
)2
, for all T > 0

with for all t ∈ (0, T ) :

||u(t, .)||L∞(R) ≤ B(N0), ||v(t, .)||L∞(R) ≤ aB(N0), (3.1)

so that (2.19) is again valid.

ii On the left half line {x < 0}, the limit is a weak solution in the sense that it verifies for any
test function ϕ ∈ C1

c ((0, T )×R−
x ) :

∫

[0,T ]×R−
x

uϕt + vϕx dxdt = 0, (3.2)

∫

[0,T ]×R−
x

vϕt + a2uϕx − (f(u)− v)ϕ dxdt = 0. (3.3)

iii In the right half line {x > 0}, the limit obeys

v(t, x) = f(u(t, x)), a.e. t > 0, x > 0, (3.4)

and for any given non-negative test function ϕ ∈ C1
c ((0, T )×R+

x ), the limit function u solves
∫

[0,T ]×R+
x

|u− k|ϕt + sgn(u− k)(f(u)− f(k))ϕxdxdt ≥ 0, ϕ ≥ 0, (3.5)

for all k ∈ R with |k| ≤ B(N0).
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iv The following conservation law holds in the weak sense over the whole real line
∫

[0,T ]×Rx

uϕt + vϕxdxdt = 0, (3.6)

for all ϕ ∈ C1
c ((0, T )×Rx).

v u and v are in L∞ ∩ BV ((0, T ) × Rx). For a.e. t > 0, there exist left and right traces at
the coupling interface, denoted by u(t, 0−), u(t, 0+), and v(t, 0−), v(t, 0+) with the property
v(t, 0−) = v(t, 0+).

vi The L1 contraction principle (1.15) holds and the estimates (i)-(iii) in Theorem 4 are satisfied
for (u, v) as well.

Proof. For any given T > 0 and sufficiently large RT > 0 with the support of the solutions included
in (−RT ,+RT ) at time T , define the time-space domain Q = (0, T )× (−RT , RT ). First we consider
the convergence of the sequence {vǫ}ǫ>0 to a limit function v in L1(Q). Theorem 4 asserts that vǫ is
L1 Lipschitz continuous in time uniformly in ǫ while TV(−R,R)(v

ǫ(t, ·)) remains uniformly bounded
in ǫ and time t ∈ [0, T ], so that vǫ is in BV (Q). Helly’s theorem then ensures the existence of an
extracted subsequence, still labelled by {vǫ}ǫ which converges to a limit function v in L1(Q) as ǫ
goes to zero, and a.e. up to another extracted subsequence. Since {vǫ}ǫ has uniformly bounded
L∞(Q)-norm, the Lebesgue dominated convergence theorem ensures that the family {f−1(vǫ)}ǫ
converges as ǫ goes to zero to the limit f−1(v) in L1(Q).

Let us now introduce the time-space domain Q− = (0, T ) × (−RT , 0) and prove the strong
convergence of {uǫ}ǫ>0 in the limit ǫ→ 0 to a limit u in L1(Q−). Again the uniform boundedness
w.r.t. ǫ and time t ∈ (0, T ) of TV(−RT ,0)(u

ǫ(t, ·)) and the uniform in ǫ L1 Lipschitz continuity of
uǫ imply a uniform estimate in ǫ for TVQ−(uǫ), and hence yield the existence of a subsequence,
denoted by {uǫ}ǫ>0, which converges in L1(Q−) and a.e. to some limit function u.

Then introduce Q+ = (0, T )× (0, RT ), and consider the following triangle inequality

||uǫ − f−1(v)||L1((0,T ),L2(R+)) ≤ ||uǫ − f−1(vǫ)||L1((0,T );L2(R+)) + ||f−1(vǫ)− f−1(v)||L1((0,T );L2(R+)),
(3.7)

we easily deduce from the estimate ||uǫ − f−1(vǫ)||L1((0,T );L2(R+)) ≤ CT

√
ǫ and the property that

f−1(vǫ) → f−1(v) in the strong L1(Q+) topology while being compactly supported that {uǫ}ǫ>0

actually converges to f−1(v). As a conclusion uǫ converges to its limit u, strongly and a.e. in
Q+. Gathering the above two results, we have proved that uǫ actually converges strongly in
L1(Q) = L1(Q−)∪L1(Q+) and a.e. to a limit u. Let us then recall that for any given test function
ϕ ∈ C1

c ((0, T ]×Rx), one has:
∫

[0,T ]×Rx

uǫϕt + vǫϕxdxdt = 0, (3.8)

so that passing to the limit ǫ→ 0 gives the expected conservation law (3.6):
∫

[0,T ]×Rx

uϕt + vϕxdxdt = 0. (3.9)

As an immediate consequence, the well-defined left and right traces of v at the interface x = 0
verify v(t, 0−) = v(t, 0+) for a.e. t > 0. In addition, u is seen to inherit bounded total variation
from v from:

TV (u) = TV (f−1(v)) ≤ 1

C0
TV (v).
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Let us now prove that the limit function (u, v) under consideration solves (3.2), (3.3), (3.5) and
(3.6) in the usual sense of distribution. Namely choosing any test function ϕ ∈ C1

c (Q−) in















∫

uǫϕt + vǫϕxdxdt = 0, (3.10a)
∫

vǫϕt + a2uǫϕx + (f(uǫ)− vǫ)ϕdxdt = 0, (3.10b)

a direct application of Lebesgue’s dominated convergence theorem proves that the sequence {f(uǫ)}ǫ>0

converges to f(u) in L1(Q−) and yields the expected conclusion.

In order to prove that in the time-space domain Q+, the limit u is an entropy weak solution of
the underlying scalar conservation law, let us first derive the expected L1 contraction principle from
the one established in (2.31). Keeping unchanged the notations, arguing of the strong convergence
of (rǫ+, r

ǫ
−) to the limit (r+ = au + v, r− = au − v) in L1(Q), we pass to the limit ǫ → 0 in the

reported inequality to get:

∫ 0

−M

(

|r+ − r̄+|+ |r− − r̄−|
)

(t, x)dx+

∫ M

0

(

|r+ − r̄+|+ |h(r+)− h(r̄+)|
)

(t, x)dx

≤
∫

|x|<M+at

(

|r0+ − r̄0+|+ |h(r0+)− h(r̄0+)|
)

(x)dx (3.11)

since the initial data is well-prepared. Now by the increasing monotonicity property of h, one has

(r+ − r̄+)(h(r+)− h(r̄+)) ≥ 0 (3.12)

so that

|r+ − r̄+|+ |h(r+)− h(r̄+)| = |r+ − r̄+ + h(r+)− h(r̄+)| = 2a|u− ū|. (3.13)

Therefore we can write

∫ M

0

(

|r+ − r̄+|+ |h(r+)− h(r̄+)|
)

(t, x)dx = 2a

∫ M

0
|u− ū|(t, x)dx, (3.14)

and correspondingly

∫

|x|≤M+at

(

|r0+ − r̄0+|+ |h(r0+)− h(r̄0+)|
)

(x)dx = 2a

∫

|x|≤M+at

|u0 − ū0|(x)dx. (3.15)

We thus have for any given M > 0 and time t > 0

∫ 0

−M

(

|r+ − r̄+|+ |r−−r̄−|
)

(t, x)dx+ 2a

∫ M

0
|u− ū|(t, x)dx ≤ 2a

∫

|x|≤M+at

|u0 − ū0|(x)dx, (3.16)

which proves the L1 contraction principle (1.15). This principle implies uniqueness of the limit
(u, v). Let us at last derive (3.5) from inequality (2.30) focusing on the non-negative test function
ϕ with compact support in R+

x . Taking the limit ǫ→ 0 provides

∫

[0,T ]×R+
x

(

|r+ − ℓ|+ |h(r+)− h(ℓ)|
)

ϕt + a
(

|r+ − ℓ| − |h(r+)− h(ℓ)|
)

ϕxdtdx ≥ 0 (3.17)
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for any given ℓ ∈ R such that k = ℓ+h(ℓ)
2a verifies |k| < B(N0). Observe that ℓ−h(ℓ)

2 = f(k). The
increasing property met by h ensures

|r+ − ℓ|+ |h(r+)− h(ℓ)| = |r+ + h(r+)− (ℓ+ h(ℓ))| = 2a|u− k| (3.18)

as well as

|r+ − ℓ| − |h(r+)− h(ℓ)| = sgn(r+ − ℓ)(r+ − ℓ− h(r+) + h(ℓ)) = 2sgn(u− k)(f(u)− f(k)) (3.19)

since (u− k)(r+ − ℓ) ≥ 0. This yields the expected Kruz̆kov entropy inequalities.

4 Matched asymptotic analysis

So far we only showed that the solution of the original system (1.1) converges to the weak solution
of (3.2)–(3.5) in Q− ∪ Q+. However, since the test function ϕ vanishes in a neighborhood of the
interface, we missed the information at x = 0. In this section, we want to derive the interface
condition by matched asymptotic analysis in a rigorous way, which is the generalization of the one
used in the domain decomposition system (1.5)-(1.8).

Since an interface layer may develop at the interface, we propose to reveal its structure in the
limit ǫ → 0 using a blow-up technique (see [27] in a related setting). Fix ǫ > 0 and δ > 0, define
the fast variable y = x

ǫ
so that x = ǫy and let

U ǫ,δ(t, y) = uǫ,δ(t, ǫy), Vǫ,δ(t, y) = vǫ,δ(t, ǫy), y ∈ R. (4.1)

Observe that U ǫ,δ(t, .) and uǫ,δ(t, .) (resp. Vǫ,δ(t, .) and vǫ,δ(t, .)) have the same sup norm and total
variation, so that Proposition 7 ensures

‖U ǫ,δ(t, ·)‖L∞(R)≤ C, (4.2)

TV{y≤0}

(

U ǫ,δ(t, ·)
)

≤ C
(

1+ ‖λ(·, ǫ)− Λ(·, ǫ, δ)‖L1(R)

)

(1 + T ), (4.3)

‖Vǫ,δ(t, ·)‖L∞(R)≤ C, TV
(

Vǫ,δ(t, ·)
)

≤ C, (4.4)

for some constant C > 0 independent of ǫ and δ. Since again U ǫ,δ and uǫ,δ have identical sup norm,
the following sub-characteristic condition holds uniformly in ǫ and δ :

|f ′(U ǫ,δ)| < a, (4.5)

with a prescribed according to (1.14). Hence, the quasi-monotone property (2.23) and the mono-
tonicity of h expressed in (2.25) apply for all the values of U ǫ,δ under consideration. This will play
an important role hereafter. Note that

∫ T

0

∫

R+

|U ǫ,δ(t, y)− f−1(Vǫ,δ(t, y))|2dydt =

∫ T

0

∫

R+

|uǫ,δ(t, ǫy)− f−1(vǫ,δ(t, ǫy))|2 dǫy
ǫ
dt

=
1

ǫ

∫ T

0

∫

R+

|uǫ,δ(t, x)− f−1(vǫ,δ(t, x))|2dxdt ≤ C.

(4.6)
The entropy dissipation rate estimate thus no longer implies the strong convergence of sequence
{U ǫ,δ}ǫ,δ in L1((0, T ), L2(R+

y )), but a direct analysis allows to infer a uniform BV (R+
y ) estimate
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for {U ǫ,δ(t, ·)}ǫ,δ for a.e. t ∈ [0, T ], T > 0. Such an estimate is derived from the governing equations
for the rescaled profiles U ǫ,δ and Vǫ,δ that are are easily seen to be C1 solutions of

{

ǫ∂tU ǫ,δ + ∂yVǫ,δ = 0, t > 0, y ∈ R, (4.7a)

ǫ∂tVǫ,δ + a2∂yU ǫ,δ = ǫΛ(ǫy, ǫ, δ)(f(U ǫ,δ)− Vǫ,δ), (4.7b)

for any given positive ǫ and δ.

Lemma 9. For all T > 0 and almost every time t ∈ [0, T ], for all R > 0, the following BV estimate
holds

TV(−R,R)

(

U ǫ,δ(t, ·)
)

≤ CR (4.8)

for some constant C > 0 independent of ǫ and δ.

Proof. Let us recast the second equation in (4.7):

a2∂yU ǫ,δ = ǫΛ(ǫy, ǫ, δ)(f(U ǫ,δ)− Vǫ,δ)− ǫ∂tVǫ,δ, (4.9)

to infer the crude upper-bound

a2|∂yU ǫ,δ| ≤ |(f(uǫ,δ)− vǫ,δ)(t, ǫy)|+ ǫ|∂tVǫ,δ|, (4.10)

since ǫΛ(ǫy, ǫ, δ) ≤ 1. Integrating the above inequality for y ∈ (0, R) clearly yields the expected
conclusion

a2TV(−R,R)

(

U ǫ,δ(t, ·)
)

≤ 2||(f(uǫ,δ)− vǫ,δ)(t, ·)||L∞(R) R+ ||∂tvǫ,δ(t, ·)||L1(Rx), (4.11)

since uǫ,δ and vǫ,δ are uniformly in ǫ and δ bounded in sup norm.

In view of the estimates (4.3)-(4.4)-(4.8), sending δ to 0 with ǫ fixed and then letting ǫ go to 0,
the sequence

{ (

U ǫ,δ(t, ·),Vǫ,δ(t, ·)
) }

ǫ,δ>0
can be shown to converge to some limit (U(t, ·),V(t, ·)) in

L1
loc(Ry) for any given t > 0. Clearly (U(t, ·),V(t, ·)) have bounded sup norm and locally bounded

total variation. They will be referred hereafter to as the inner interface layer or the inner solution
for short, while (u(t, ·), v(t, ·)) will be called the outer solution.

Let us first establish the following results only concerned with the inner solutions.

Lemma 10. For a.e. t > 0, the inner solution (U(t, ·), V(t, ·)) is Lipschitz continuous in y and
admits bounded asymptotic limits (U(t,±∞), V(t,±∞)). It verifies

V(t, y) ≡ V(t,+∞) = V(t,−∞), y ∈ R, (4.12)

and

U(t, y) ≡ U(t,−∞), y < 0, (4.13)
{

a2dyU(t, y) = f(U(t, y))− V(t,+∞), y > 0,
U(t, 0) = U(t,−∞).

(4.14)

Moreover, we have :
f(U(t,+∞)) = V(t,+∞) = V(t,−∞). (4.15)

If at time t > 0, the solution U(t, ·) to (4.14) is not locally constant in the half line {y > 0}, then
it must be strictly monotone for y > 0 with

f ′(U(t,+∞)) < 0. (4.16)
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Observe that the time t acts as a parameter for the inner solution. The asymptotic limits
U(t,±∞) and V(t,±∞) will be determined in the forthcoming matching analysis (see Proposition
11) with the left and right traces at x = 0 of the outer solution u(t, x) and v(t, x).

Proof. The weak form of (4.7) reads


















∫∫

[0,T ]×[−R,R]
ǫ U ǫ,δ∂tϕ+ Vǫ,δ∂yϕ dtdy = 0, (4.17a)

∫∫

[0,T ]×[−R,R]
ǫ Vǫ,δ∂tϕ+ a2U ǫ,δ∂yϕ+ ǫΛ(ǫy, ǫ, δ)(f(U ǫ,δ)− Vǫ,δ)ϕ dtdy = 0, (4.17b)

for any given test function ϕ ∈ C1
c

(

(0, T )× (−R,R)
)

. We clearly have

lim
δ→0

ǫΛ(ǫy, ǫ, δ) := α(y, ǫ) =

{

ǫ, y < 0,
1, y > 0,

(4.18)

so that for any given time t > 0 the uniform sup norm and local total variation estimates (4.3)-(4.8)
clearly ensure, up to some diagonal extraction procedure, that in the limit δ → 0, ǫ fixed, and then
ǫ → 0, there exists a limit (U ,V) which is bounded in sup norm and has locally bounded total
variation. This limit verifies



















∫∫

[0,T ]×[−R,R]
V(t, y)∂yϕ(t, y) dtdy = 0, (4.19a)

∫∫

[0,T ]×[−R,R]
a2U(t, y)∂yϕ(y) + α(y, 0)(f(U(t, y))− V(t, y))ϕ(t, y) dtdy = 0. (4.19b)

Choosing test function ϕ(t, y) = φ(t)ψ(y) for φ ∈ C1
c ([0, T ]) and ψ ∈ C1

c ([−R,R]) yields for a.e.
t > 0



















∫

[−R,R]
V(t, y)ψ′(y) dy = 0, (4.20a)

∫

[−R,R]
a2U(t, y)ψ′(y) + α(y, 0)(f(U(t, y))− V(t, y))ψ(y) dy = 0, (4.20b)

since φ can be chosen arbitrarily. Obviously V(t, y) is constant in y for a.e. t > 0 and thus (4.12)
holds. Then choosing ψ with compact support in [−R, 0], (4.18) immediately gives that U(t, .) also
stays constant in the half line {y < 0}

U(t, y) ≡ U(t,−∞) y < 0. (4.21)

Then choosing ψ with compact support in [0, R], one easily infers that U(t, .) is a classical solution
of the ordinary differential equation

a2
d

dy
U(t, y) = f(U(t, y))− V(t,+∞), y > 0. (4.22)

To derive the required interface data U(t, 0+), we choose at last ψ ∈ C1
c (Ry) and argue the property

that U(t, y) is constant with α(y, 0) = 0 for y < 0 while being a smooth solution of (4.22) for y > 0.
Integrations by part in (4.19) which we recast as follows
∫

[−R,0]
a2U(t, y)ψ′(y) dy +

∫

[0,R]
a2U(t, y)ψ′(y) + α(y, 0)(f(U(t, y))− V(t, y))ψ(y) dy = 0, (4.23)
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gives rise to
a2(U(t, 0+)− U(t, 0−)) ψ(0) = 0, (4.24)

which is, in view of (4.21)
U(t, 0+) = U(t, 0−) = U(t,−∞). (4.25)

This identifies the initial data of the ODE Cauchy problem (4.22) and proves by the way the
Lipshitz continuity property of U(t, ·) in the fast variable y.

Let us prove that the solution U(t, ·) of the ODE Cauchy problem (4.22)–(4.25) is either trivial,
that is U(t, y) ≡ U(t,−∞) for all y > 0 (and thus all y in R), or strictly monotone in the half line
{y > 0}. Indeed assume that dyU(t, y) vanishes for some y⋆ > 0 so that U(t, y⋆) is a critical point of
(4.19), i.e. f(U(t, y⋆))−V(t,+∞) = 0. But classical properties of scalar autonomous ODE problem
ensure that a critical point cannot be achieved for finite y > 0, so that if y⋆ is finite, necessarily
U(t, y) stays constant for all y. Conversely assume the inner solution to be non-trivial, then it is
necessarily strictly monotone for all finite y > 0 with

lim
y→+∞

dyU(t, y) = 0. (4.26)

By the Hartman-Grobman’s Theorem [15], we observe that the critical point U(t,+∞) cannot be
unstable, namely f ′(U(t,+∞)) > 0 cannot hold, so that the last claim of Lemma 10

f ′(U(t,+∞)) < 0,

must be valid in the present setting.

We now derive the following matching conditions to link the inner solution (U ,V) with the outer
solution (u, v).

Proposition 11. For a.e. t > 0, V and v perfectly match

V(t, y) ≡ v(t, 0−) = v(t, 0+), for all y ∈ R. (4.27)

U and u are linked according to

U(t, y) ≡ u(t, 0−), y < 0. (4.28)

Defining R±(t, y) = aU(t, y)± V(t, y), the following inequalities hold

1

2

(

|R+(t, y)− ℓ| − |R−(t, y)− h(ℓ)|
)

≥ sgn(u(t, 0+)− k)(f(u(t, 0+))− f(k)), y > 0, (4.29)

for any given ℓ ∈ R such that k = (ℓ+ h(ℓ))/2a verifies |k| < B(N0).

Proof. Let (rǫ,δ− , rǫ,δ+ ) denote the solution of the Cauchy problem (2.21) in diagonal form, with initial
data (r±)

δ
0 = auδ0 ± vδ0. Then for any given ℓ ∈ R with |(ℓ+ h(ℓ))/2a| ≤ B(N0), let us consider the

following entropy like inequality (2.29)

∂t
(

|rǫ,δ+ − ℓ|+ |rǫ,δ− − h(ℓ)|
)

+ a∂x
(

|rǫ,δ+ − ℓ| − |rǫ,δ− − h(ℓ)|
)

≤ 0. (4.30)

To condense the notations, let pǫ,δℓ = |rǫ,δ+ − ℓ|+ |rǫ,δ− − h(ℓ)| and qǫ,δℓ = a
(

|rǫ,δ+ − ℓ| − |rǫ,δ− − h(ℓ)|
)

,

so that (4.30) reads

∂tp
ǫ,δ
ℓ + ∂xq

ǫ,δ
ℓ ≤ 0. (4.31)
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Given ǫ > 0 and fix y > 0, consider any b > 0 satisfying

0 < ǫy < b. (4.32)

For any given time T > 0, multiply (4.31) by any given non-negative test function ϕ(t) ∈ C1
c

(

(0, T )
)

and integrate (t, x) over [0, T ]× [ǫy, b] to obtain:

∫ T

0

∫ b

ǫy

−pǫ,δℓ (t, x)ϕ′(t)dtdx+

∫ T

0

(

qǫ,δℓ (t, b)− qǫ,δℓ (t, ǫy)
)

ϕ(t)dt ≤ 0. (4.33)

Define Rǫ,δ
± (t, y) = aU ǫ,δ(t, y)± Vǫ,δ(t, y) = rǫ,δ± (t, ǫy) and set

Qǫ,δ
ℓ (t, y) = a

(

|Rǫ,δ
+ −Rǫ,δ

+,ℓ| − |Rǫ,δ
− −Rǫ,δ

−,ℓ|
)

(t, y),

we have the identity Qǫ,δ
ℓ (t, y) = qǫ,δℓ (t, ǫy). Hence changing the sign in (4.33) gives:

∫ T

0

∫ b

ǫy

pǫ,δℓ (t, x)ϕ′(t)dtdx+

∫ T

0

(

Qǫ,δ
ℓ (t, y)− qǫ,δℓ (t, b)

)

ϕ(t)dt ≥ 0. (4.34)

Choose η > ǫy and average the above inequality (valid for all b > ǫy) for b ∈ (η, 2η) to get

1

η

∫ T

0

∫ 2η

η

∫ b

ǫy

pǫ,δℓ (t, x)ϕ′(t)dtdbdx+

∫ T

0

(

Qǫ,δ
ℓ (t, y)− 1

η

∫ 2η

η

qǫ,δℓ (t, b)db

)

ϕ(t)dt ≥ 0. (4.35)

Observe that

∣

∣

∣

∣

1

η

∫ T

0

∫ 2η

η

∫ b

ǫy

pǫ,δℓ (t, x)ϕ′(t)dtdbdx

∣

∣

∣

∣

≤ sup
0≤t≤T

‖pǫ,δℓ (t, ·)‖L∞(R)‖ϕ′ ‖L1(0,T )
1

η

∫ 2η

η

(b− ǫy)db ≤ C

(

3

2
η − ǫy

)

(4.36)

for some uniform constant C > 0 in ǫ and δ thanks to the corresponding uniform sup norm estimates
satisfied by the solutions (uǫ,δ, vǫ,δ) and (uǫ,δℓ , vǫ,δℓ ) of the regularized problem (2.9). Recall that the
sequence {Qǫ,δ}ǫ,δ>0 has uniformly in ǫ and δ bounded local total variation, it converges by sending
first δ → 0, then ǫ→ 0 in L1

loc(Ry) to a limit Qℓ and almost everywhere. For fixed time t, the limit
is smooth in the fast variable y and thus left and right traces coincide. For fixed ǫ > 0, passing to
the limit δ → 0 and then to the limit ǫ→ 0 in (4.35) thus yield

∫ T

0
ϕ(t)

(

Qℓ(t, y)−
1

η

∫ 2η

η

qℓ(t, b)db

)

dt ≥ −3

2
Cη. (4.37)

Observe that this inequality now holds for any η > 0 since the ordering condition (4.32) implies
b > 0. In (4.37), we have

Qℓ(t, y) = a (|R+(t, y)− ℓ| − |R−(t, y)− h(ℓ)|) (4.38)

with R±(t, y) = aU(t, y)± V(t, y) while

qℓ(t, b) = a (|r+(t, b)− ℓ| − |h(r+(t, b))− h(ℓ)|) (4.39)
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since all b under consideration are positive, i.e. we deal with the equilibrium half line {b > 0} with
the property that r−(t, b) = h(r+(t, b)). Arguments based on the monotonicity of h and equation
(3.19) that have already been developed in the proof of Theorem 8 ensure the identity

qℓ(t, b) = 2a sgn
(

u(t, b)− k
)

(f(u(t, b))− f(k)) , k =
ℓ+ h(ℓ)

2a
. (4.40)

Passing to the limit η → 0 in (4.37) yields (recall that u(t, b) has bounded total variation by
Theorem 8.iv, and thus admits a right trace at b = 0+)

∫ T

0
ϕ(t)

(

Qℓ(t, y)− qℓ(t, 0
+)
)

dt ≥ 0. (4.41)

This inequality is valid for any given non-negative test function ϕ in C1
c ((0, T )), so that we deduce

the inequality (4.29). Now let us prove that the next matching condition V(t, y) ≡ v(t, 0+) for
y > 0 and a.e. t > 0. To this aim, we start from the equation ∂tu

ǫ,δ + ∂xv
ǫ,δ = 0 and repeat the

same arguments as previously to get

∫ T

0
ϕ(t)

(

V(t, y)− 1

η

∫ 2η

η

v(t, b)db

)

= 0, y > 0, a.e. t > 0 (4.42)

for all η > 0 and all test function ϕ ∈ C1
c ((0, T )). Sending η → 0 yields V(t, y) = v(t, 0+). To derive

the condition U(t, y) ≡ u(t, 0−) when y < 0, we proceed mutatis mutandis the same way choosing
ǫ > 0, some fixed y < 0 and negative real number b satisfying the ordering condition b < ǫy < 0
and apply the above steps to the equation ∂tv

ǫ,δ + a2∂xu
ǫ,δ = f(uǫ,δ)− vǫ,δ to get

∫ T

0

(

U ǫ,δ(t, y)− 1

|η|

∫ −|η|

−2|η|
uǫ,δ(t, b)db

)

ϕ(t)dt

+
1

|η|a2
∫ T

0

∫ −|η|

−2|η|

∫ b

ǫy

(

vǫ,δ(t, x)ϕ′(t) +
(

f(uǫ,δ(t, x))− vǫ,δ(t, x)
)

ϕ(t)
)

dxdtdb = 0 (4.43)

for any given test function ϕ ∈ C1
c ((0, T )). Uniform sup norm estimates for uǫ,δ and vǫ,δ again

apply to prove that the second term vanishes in the limit δ → 0 then ǫ → 0 and η → 0, while the
first term gives rise to

∫ T

0

(

U(t, y)− u(t, 0−)
)

ϕ(t)dt = 0, y < 0. (4.44)

This implies U(t, y) = u(t, 0−). Proving that V(t, y) = v(t, 0−), y < 0, t > 0, follows similar steps.
Hence the identities (4.27) are readily inferred from the property that V(t, y) stays constant for all
y.

Observe that the matching condition (4.27) together with the identity V(t,−∞) = f(U(t,+∞))
stated in (4.15) actually ensures

f(U(t,+∞)) = v(t, 0+) = v(t, 0−). (4.45)

In the sequel and for any given real numbers a and b, ⌊a, b⌉ denotes the interval (min(a, b),max(a, b)).
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Corollary 12. For a.e. t > 0, the following Kruz̆kov inequalities hold

sgn
(

U(t,+∞)− k
)(

f(U(t,+∞))−f(k)
)

≥ sgn(u(t, 0+)− k)(f(u(t, 0+))−f(k)), (4.46)

for all k ∈ ⌊U(t,+∞), u(t, 0+)⌉. In particular, we have:

f(U(t,+∞)) = f(u(t, 0+)) = v(t, 0−). (4.47)

At last U(t,+∞) and u(t, 0+) necessarily match

U(t,+∞) = u(t, 0+). (4.48)

Proof. Sending y to +∞ in (4.29), one has for any given l ∈ R such that k = (ℓ+ h(ℓ))/2a verifies
|k| < B(N0) :

1

2

(

|R+(t,+∞)− ℓ| − |R−(t,+∞)− h(ℓ)|
)

≥ sgn(u(t, 0+)− k)(f(u(t, 0+))− f(k)). (4.49)

In particular, these inequalities are valid for specially chosen ℓ such that k belongs to ⌊U(y,+∞), u(t, 0+)⌉.
This will suffice to our purpose. Note from (4.15) that R±(t,+∞) = aU(t,+∞) ± f(U(t,+∞)),
thus the identity R−(t,+∞) = h(R+(t,+∞)) holds. Rephrasing arguments developed in the
course of Theorem 8 (see (3.19)), the left hand side of the inequality (4.49) is seen to boil down
to sgn

(

U(t,+∞) − k
)(

f(U(t,+∞)) − f(k)
)

for all the k under consideration, which is noth-
ing but (4.46). It then suffices to choose successively k = U(t,+∞) and k = u(t, 0+) to get
(4.47). From the first equality stated in (4.47), the assumption (1.9) or (1.10) immediately implies
U(t,+∞) = u(t, 0+).

To further explore the matching conditions in between U and u in the setting of a general flux
function f , let us state another consequence of the entropy inequalities (4.29) :

Lemma 13. For a.e. t > 0, the following inequalities are met :

sgn
(

u(t, 0+)− k
)(

f(u(t, 0+))− f(k)
)

≤ 0, (4.50)

for all k in ⌊u(t, 0−), u(t, 0+)⌉.

Proof. Let us first observe from the reported matching properties that R±(t, y) = aU(t, y) ±
V(t, y) = aU(t, y)±f(U(t,+∞)) for a.e. t > 0, from the matching condition (4.27). Now given y > 0
fixed, choose ℓy = aU(t, y)+f(U(t, y)) in (4.29) with the properties that h(ℓy) = aU(t, y)−f(U(t, y)),
ky = (ℓy + h(ℓy))/2a = U(t, y) with |ky| < B(N0). Observe that :

|R+(t, y)− ℓy| = |f(U(t, y))− f(U(t,+∞))|,
|R−(t, y)− h(ℓy)| = |f(U(t, y))− f(U(t,+∞))|,

so that (4.29) ensures

0 ≥ sgn(u(t, 0+)− U(t, y))(f(u(t, 0+))− f(U(t, y))), y > 0, t > 0, (4.51)

since again ky = U(t, y). But by construction, U(t, y) covers monotonically the range ⌊u(t, 0−), u(t, 0+)⌉
as y runs over R+ since U(t, y) is monotone and continuous with U(t, 0) = u(t, 0−) and U(t,+∞) =
u(t, 0+). This readily implies that for all y > 0, sgn(u(t, 0+) − U(t, y)) = sgn(u(t, 0+) − k) for all
k ∈ ⌊u(t, 0−), u(t, 0+)⌉.
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As a direct consequence of Lemma 13, the most important outcome of the matching analysis is
the last result of this section :

Proposition 14. For a.e. t > 0, left and right traces of the outer solution u(t, x) at x = 0 obey :

sgn
(

u(t, 0+)− u(t, 0−)
)(

f(u(t, 0+))− f(k)
)

≤ 0, k ∈ ⌊u(t, 0−), u(t, 0+)⌉, (4.52)

while
v(t, 0−) = f(u(t, 0+)). (4.53)

Proof. It just follows from the fact that sgn
(

u(t, 0+) − u(t, 0−)
)

= sgn
(

u(t, 0+) − k
)

for all k ∈
⌊u(t, 0−), u(t, 0+)⌉.

Rephrasing this statement, the traces of the outer solution u(t, x) at x = 0 are linked by the
so-called Bardos-Leroux-Nédélec boundary condition (1.18). With this respect and as already
emphasized along the introduction, the detailed knowledge of the inner solution U can be bypassed.

To conclude, let us deduce Theorem 1 as a consequence of the main results of the present and
previous sections.

Proof of Theorem 1. Theorem 4 ensures existence and uniqueness of global solution (uǫ, vǫ) of the
original two-scale problem. This is part 1. Then Theorem 8.i gives the existence of a limit (u, v) in
L1((0, T )×R) for a subsequence (uǫ, vǫ) as ǫ goes to 0. From part (iv) of the above Theorem, the
limit (u, v) belongs to L∞ ∩BV ((0, T )×R). In addition, the lower semi-continuity of the L1-norm
implies for any given t ∈ (0, T ), T > 0 :

||u(t, .)− u0||L1(R) ≤ lim inf
ǫ→0

||uǫ(t, .)− u0||L1(R), ||v(t, .)− v0||L1(R) ≤ lim inf
ǫ→0

||vǫ(t, .)− v0||L1(R).

(4.54)
Then the estimates (2.17)–(2.18) yield choosing t2 = t and t1 = 0 :

||u(t, .)− u0||L1(R) ≤ C t, ||v(t, .)− v0||L1(R) ≤ C t, (4.55)

so that (1.5c)-(1.6c) or (1.7c)–(1.8c) holds.

By Theorem 8.ii, (1.6a)–(1.6b) or (1.7a)–(1.7b) holds in the sense of the distributions. Then (3.4)
is nothing but (1.5b) or (1.8b). To prove that u(t, x) for x > 0 solves (1.5a) or (1.8a) in the sense of
the distributions and in view of (3.1), it suffices to choose successively k = B(N0) and k = −B(N0)
in (3.5). The identity (4.53) reads as the transmission condition stated in (1.6d) or (1.7d). Turning
considering the transmission condition (1.8d), it directly follows from (4.52) under the assumption
(1.9). To summarize, all the conditions stated from (1.5a) to (1.8d) are valid. Theorem 8.vi gives
the L1-contraction property (1.15) and implies uniqueness. This concludes the proof of parts (2)
and (3) of Theorem 1.

5 Conclusion

The present work has been devoted to the analysis of the Jin-Xin relaxation system in a two- scale
setting. We have established its well-posedness and singular limit as the smaller relaxation time
goes to zero. The limit is a multiscale coupling problem which couples the original Jin-Xin system
on the domain when the relaxation time is O(1) with its relaxation limit in the other domain
through interface conditions which can be derived by matched interface layer analysis. This sets up
a theoretical foundation of multiscale computation for hyperbolic systems with drastically different
relaxation time scales.
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Our analysis is based on the assumption that the interface is non-characteristic. This allows to
prevent possible strong oscillations to develop at the interface. It has also ruled out any standing
shock sticking to the interface. An interesting problem for the future is to analyze the coupling
system (1.16) and (1.17) which allows the intricate interplay between an interface layer and a
standing shock, and to more general hyperbolic systems.
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