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Abstract. In this paper we develop a set of stochastic numerical schemes for hyperbolic and
transport equations with diffusive scalings and subject to random inputs. The schemes are asymptotic
preserving (AP), in the sense that they preserve the diffusive limits of the equations in discrete
setting, without requiring excessive refinement of the discretization. Our stochastic AP schemes are
extensions of the well-developed deterministic AP schemes. To handle the random inputs, we employ
generalized polynomial chaos (gPC) expansion and combine it with stochastic Galerkin procedure.
We apply the gPC Galerkin scheme to a set of representative hyperbolic and transport equations
and establish the AP property in the stochastic setting. We then provide several numerical examples
to illustrate the accuracy and effectiveness of the stochastic AP schemes.
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1. Introduction. Many kinetic and hyperbolic equations often have diffusive
scaling that asymptotically leads to diffusion equations. When the equations are near
the diffusive regime, numerical simulations become prohibitively expensive, due to
the exceedingly small parameters, e.g., the particle mean free path, relaxation time,
etc., that need to be numerically resolved. Asymptotic-preserving (AP) schemes are
those that mimic the asymptotic transitions from the kinetic or hyperbolic equations
to their diffusive limits in discrete setting [25, 24, 19, 15]. Since the mid-1990’s, the
development of AP schemes for such problems has generated many interests, see, for
example, [20, 16, 17, 11, 22, 12, 26]. The AP strategy has been proved to be a powerful
and robust technique to address multiscale problems in many kinetic and hyperbolic
problems. The main advantage of AP schemes is that they are very efficient in the
diffusive regime, for they do not need to resolve the small diffusive parameters nu-
merically and yet can still capture the macroscopic behavior governed by the limiting
diffusion equations. For example, it was proved, in the case of linear transport with
a diffusive scaling, the AP scheme converges uniformly with respect to the scaling
parameter ([11]). This is expected to be true for all AP schemes [15], although spe-
cific proofs are needed for specific problems. For many multi-scale problems, carefully
constructed AP schemes avoid the difficulty of coupling a microscopic solver with a
macroscopic one, as the micro solver automatically becomes a macro solver in the
diffusive regime.

In practical applications, kinetic and hyperbolic problems almost always con-
tain parameters that are uncertain, due to modeling and/or experimental errors. In
this paper, we investigate numerical methods for such problems and aim to develop
stochastic version of the AP schemes that can quantify the uncertainty in the diffusive
regime. While well established for the deterministic kinetic or hyperbolic equations,
AP schemes have not been constructed for hyperbolic and kinetic problems with ran-
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dom inputs. The few existing work on uncertainty quantification of hyperbolic and
transport equations ([13, 8, 14, 6, 30]) focused on efficient methods in the standard
stochastic setting and did not study the asymptotic behavior of these methods. Con-
sequently, those methods do not possess AP property.

In this paper, we present a set of stochastic AP methods for kinetic and hy-
perbolic problems with random inputs. To cope with the random inputs, we employ
generalized polynomial chaos (gPC) approach [35], combined with stochastic Galerkin
(SG) method. While the gPC-SG approach has been adopted for a large variety of
stochastic problems, this paper represents the first attempt, to our best knowledge,
to construct stochastic AP (sAP) schemes. The sAP methods are constructed by
extending the idea from the deterministic AP methods ([16, 17]), and are illustrated
via three prototype kinetic equations: the linear Goldstein-Taylor model, the nonlin-
ear Carleman model, and the linear transport equation. The selected equations are
representative, as they possess features such as linearity vs. nonlinearity, represen-
tations in physical space vs. in phase space. We will demonstrate that the carefully
constructed gPC-Galerkin method can be AP, in the sense that in the diffusive regime
it automatically becomes a gPC-Galerkin approximation for the limiting stochastic
diffusion equations. This holds true for fixed time step, mesh size and order of the
gPC expansions, and without the requirement for refinement.

It is interesting to note that one obvious approach to extend the deterministic
AP methods to random domain is to adopt stochastic collocation (SC) approach.
SC methods are based on sampling and can be easily applied to any systems with
established deterministic solvers. One can apply a deterministic AP scheme to each
individual samples, solve them separately to obtain the solution ensemble, and then
construct an approximation, e.g., a gPC approximation, to the stochastic solution in
the randoms space. However, it is important to note that even though each samples
satisfy the AP properties, there is no guarantee that the global approximation is AP in
the entire random space. This is especially true in higher dimensional random spaces,
as the errors incurred by the construction (e.g., interpolation errors) can be highly
non-trivial away from the samples. On the other hand, the proposed sAP is based
on the Galerkin formulation, and can be proven to be AP throughout the random
domain, for any fixed (and even low) order of gPC expansions. (For reviews of the
basic properties of SC methods, the interested readers are referred to [33].)

The rest of the paper is organized as follows: in the next section we discuss some
preliminary materials and give a formal definition of stochastic AP. In Section 3 we
shall briefly review the three model problems under consideration and their diffusive
limits. We then present the details of the stochastic AP schemes for these equations
and establish their AP properties in next three sections. After a discussion on the use
of stochastic collocation methods in Section 7, we present several numerical examples
to illustrate the effectiveness of the sAP methods in Section 8.

2. Preliminaries. Let us consider a class of problems, e.g., kinetic and hyper-
bolic problems, with diffusive scaling. Without being specific, we illustrate the idea
of asymptotic-preserving (AP) scheme in the following manner. Consider a system

∂tu
ε = Lε(t, x, uε; ε), (2.1)

where ε is the scaling parameter. Proper initial and boundary conditions are assumed.
As ε→ 0, the diffusive limit satisfies

∂tu = L(t, x, u). (2.2)
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Let vεh be a numerical solution to (2.1), where the subscript h denotes the dis-
cretization in spatial and temporal domains. Obviously, vεh is obtained via a proper
numerical scheme. The scheme is called AP if its limiting solution vh = limε→0 v

ε
h

solves (2.2) automatically, without refining the discretization h. Such kind of AP
schemes are well studied for deterministic kinetic and hyperbolic problems, see, for
example, [20, 16, 17, 11, 22, 12, 26].

2.1. Stochastic asymptotic preserving scheme. We now consider the same
problem subject to random inputs.

∂tu
ε = Lε(t, x, z, uε; ε), (2.3)

where z ∈ Iz ⊆ Rd, d ≥ 1, are a set of random variables equipped with probability
density function ρ. These random variables characterize the random inputs into the
system. As ε→ 0, the diffusive limit becomes

∂tu = L(t, x, z, u). (2.4)

We now extend the concept of deterministic AP to the stochastic case. To avoid the
cluttering of notations, let us now focus on the discretization in the random space Iz.

Definition 2.1 (Stochastic AP). Let S be a numerical scheme for (2.3), which
results in a solution vε(z) ∈ Vz in a finite dimensional linear function space Vz. Let
v(z) = limε→0 v

ε(z) be its asymptotic limit. We say that the scheme S is strongly
asymptotic perserving if the limiting solution v(z) satisfies the limiting equation (2.4)
for almost every z ∈ Iz; and it is weakly asymptotic perserving if the limiting solution
v(z) satisfies the limiting equation (2.4) in a weak form.

The strong AP is obviously very strong to acquire, as it requires v(z) to be
(almost) the analytical solution of (2.4) in the random space. On the other hand,
the weak AP is more amenable and practical. In the finite dimensional linear space
Vz, it can be acquired via, for example, a Galerkin formulation by enforcing the
residue vt − L(t, x, z, v) to be orthogonal to Vz. Hereafter we will only discuss the
weak AP solution and commonly refer it as stochastic asymptotic preserving (sAP).
Note that, similar to the deterministic case, the limiting sAP solution v(z) becomes
a weak solution to the limiting equation (2.4) automatically, for any given space Vz
and without the need to enrich it.

2.2. Generalized polynomial chaos and stochastic Galerkin. We now
briefly review the gPC method ([9, 35]) and its Galerkin formulation for stochastic
PDEs, particularly for the random diffusion equation

∂tu = ∂x[a(x, z)∂xu], (2.5)

where 0 < amin ≤ a(x, z) ≤ amax < +∞ for all x, z.
In the most common gPC setting, one seeks a numerical solution in term of d-

variate orthogonal polynomials of degree N ≥ 1. That is, the linear space Vz is set
to be PdN , the space of d-variate orthogonal polynomials of degree up to N ≥ 1. For
random variable z ∈ Rd, one then seeks

u(x, t, z) ≈ uN (x, t, z) =

M∑
m=1

ûm(t, x)Φm(z), M =

(
d+N

d

)
, (2.6)

where {Φm(z)} ⊂ PdN are orthonormal polynomials satisfying∫
Φi(z)Φj(z)ρ(z) dz = δij , 1 ≤ i, j ≤M = dim

(
PdN
)
. (2.7)
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Here ρ(z) is the probability density function of z and δij the Kronecker delta function.
Note that when the random dimension d > 1, an ordering scheme for multiple index
is required to re-order the polynomials into a single index m here. Typically, the
graded lexicographic order is used, see, for example, Section 5.2 of [33]. The random
dimensionality d is determined by the number of random variables z used in the input
a(x, z), which is typically modeled by a linear combination of z, i.e.,

a(x, z) ≈
d∑
i=1

âi(x)zi. (2.8)

The most widely used model is the Karhunen-Loeve expansion. (See, for example,
[9, 33] for general discussions.)

In the gPC Galerkin formulation, one inserts the approximation uN (2.6) into the
governing equation and then enforces the residue to be orthogonal to PdN . Upon doing
so, one obtains a set of deterministic equations for the expansion coefficients {ûm}

∂tû(x, t) = ∂x (A(x)∂xû) , (2.9)

where

û = (û1, · · · , ûM )T ,

is the coefficient vector and A = (aij)1≤i,j≤M with

aij(x) =

∫
a(x, z)Φi(z)Φj(z)ρ(z)dz. (2.10)

Obviously, A(x) is real and symmetric. It is also straightforward to show that the
eigenvalues of A are bounded by the range of a.

Lemma 2.2. For any x, let λ1(x) ≥ λ2(x) ≥ · · · be the eigenvalues of A(x),
defined by (2.10), and amin ≤ a(x, z) ≤ amax for all x and z. Then,

amin ≤ λi(x) ≤ amax, ∀i. (2.11)

Proof. The proof is a trivial extension of the Theorem 2.1 of [13], by considering
a(x, z)− amin and a(x, z)− amax.

In the random diffusion equation (2.5), the assumption of 0 < amin ≤ a(x, z) ≤
amax < +∞ for all x, z immediately leads to the conclusion that A is positive definite
([36]).

3. Three kinetic or hyperbolic equations. In this section we present three
representative kinetic equations subject to random inputs and discuss their diffusion
limits.

3.1. The random Goldstein-Taylor model. We first consider a one dimen-
sional random Goldstein-Taylor model under diffusive scaling: ∂tu+ ∂xv = 0,

∂tv +
1

ε
a(x, z)∂xu = −1

ε
v.

(3.1)

In the deterministic Goldstein-Taylor model [10, 31], the wave speed a(x, z) ≡ 1. Here
we assume a random wave speed, a case that has many interesting applications on
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its own right [13]. In the diffusion limit ε → 0+, (3.1) can be approximated to the
leading order by the following heat equation with random diffusion coefficient a(x, z):{

v = −a(x, z)∂xu,

∂tu = ∂x(a(x, z)∂xu).
(3.2)

3.2. The random Carleman model. The second example is the one-dimensional
nonlinear random Carleman model under the diffusive scaling: ∂tu+ ∂xv = 0,

∂tv +
1

ε
∂xu = −1

ε
κ(x, z)uv.

(3.3)

In the deterministic Carleman model ([3]), κ(x, z) ≡ 1. In general, the randomness in
the source term of a hyperbolic balance law could arise from friction, topography or
random medium. Indeed, certain kinetic equations have been developed for porous
media ([27, 29]), where u on the right side of (3.3) is replaced by uβ with β ≤ −1,
to model the uncertainty in the media ([5]). The corresponding limiting nonlinear
diffusion equation, as ε→ 0+, is

v = − 1

κ(x, z)u
∂xu,

∂tu = ∂x

[
1

κ(x, z)u
∂xu

]
.

(3.4)

3.3. The linear transport equation. Finally, we consider a one-dimensional
linear transport equation with random scattering coefficients under the diffusive scal-
ing. Let f(t, x, v) be the probability density distribution of particles at position x,
time t, and with v ∈ (−1, 1) the cosine of the angle between the particle velocity and
its position variable. Then, f is governed by the following linear transport equation
([4]):

ε∂tf + v∂xf =
σ(x, z)

ε

[
1

2

∫ 1

−1
f(v′) dv′ − f

]
, (3.5)

where σ(x, z) is the random scattering coefficient. In this equation we ignored the
absorption and source terms, which can also be random. The treatment of these terms
does not add further numerical difficulties and will be neglected here for the ease of
presentation.

To understand its diffusion limit, we first split this equation into two equations
for v > 0:

ε∂tf(v) + v∂xf(v) =
σ(x, z)

ε

[
1

2

∫ 1

−1
f(v′) dv′ − f(v)

]
,

ε∂tf(−v)− v∂xf(−v) =
σ(x, z)

ε

[
1

2

∫ 1

−1
f(v′) dv − f(−v)

]
,

(3.6)

and then consider its even and odd parities

r(t, x, v) =
1

2
[f(t, x, v) + f(t, x,−v)],

j(t, x, v) =
1

2ε
[f(t, x, v)− f(t, x,−v)].

(3.7)
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The system (3.6) can then be rewritten as follows:
∂tr + v∂xj =

σ(x, z)

ε2
(r − r),

∂tj +
v

ε2
∂xr = −σ(x, z)

ε2
j.

(3.8)

where

r(t, x) =

∫ 1

0

rdv.

As ε→ 0+, (3.8) yields

r = r, j = − v

σ(x, z)
∂xr.

Substituting this into system (3.8) and integrating over v, one gets the limiting diffu-
sion equation ([23, 1]):

∂tr = ∂x

[
1

3σ(x, z)
∂xr

]
. (3.9)

4. Stochastic AP scheme for the random Goldstein-Taylor model. We
now derive a stochastic AP scheme for the random Goldstein-Taylor model (3.1). The
scheme is based on the gPC Galerkin formulation, where again we seek polynomial
approximations to the solutions, in the form of (2.6),

uN (x, z, t) =

M∑
m=1

ûm(t, x)Φm(z), vN (x, z, t) =

M∑
m=1

v̂m(t, x)Φm(z). (4.1)

Let

û = (û1, · · · , ûM )T , v̂ = (v̂1, · · · , v̂M )T ,

be the coefficient vectors and conduct the Galerkin projection on the governing equa-
tion, we obtain  ∂tû + ∂xv̂ = 0,

∂tv̂ +
1

ε
A(x)∂xû = −1

ε
v̂,

(4.2)

where A = (aij)1≤i,j≤M is defined in (2.10).

4.1. AP time splitting. We now extend the deterministic AP time splitting
introduced in [16] to the gPC Galerkin system (4.2). The procedure starts with a
reformulation of (4.2) as a (nonstiff) linear hyperbolic equation system with a stiff
relaxation term as follows: ∂tû + ∂xv̂ = 0,

∂tv̂ + α∂xû = −1

ε
[v̂ + (A− εαIM )∂xû],

(4.3)

where IM is the M × M identity matrix, and α > 0 is a real parameter, chosen
such that (A − εαIM ) remains positive definite for any ε ([21, 19]). Without loss of
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generality, we shall assume ε� 1. Since the eigenvalues of A(x) are bounded by the
range of a(x, z) (see Lemma 2.2), then it suffices to choose α < amin.

The deterministic AP time-splitting method introduced in [16] can now be applied
to (4.3). It consists of the following two steps:

• Relaxation step:  ∂tû = 0,

∂tv̂ = −1

ε
[v̂ + (A− εαIM )∂xû].

(4.4)

• Convection step: {
∂tû + ∂xv̂ = 0,

∂tv̂ + α∂xû = 0.
(4.5)

As ε→ 0+, the relaxation step yields

v̂ = −A(x)∂xû,

which, when substituted into the convection step, gives

∂tû = ∂x(A(x)∂xû).

This is exactly the gPC Galerkin scheme (2.9) for the diffusion equation (3.2). By
Definition 2.1, the time splitting method presented here is sAP (in the weak form).

4.2. AP for the fully discretized system. We now adopt a finite volume
method to discuss the sAP property of the time-splitting scheme in the fully discretized
form. For spatial discretization, we choose the spatial grids xi+1/2 with a uniform
mesh size ∆x = xi+1/2 − xi−1/2 with the spatial index i = 0, ..., Nx. The discrete
time level tn are also uniformly spaced with a time step ∆t = tn+1 − tn, where n is
the temporal index. We denote the cell average in [xi+1/2, xx−1/2] at time tn as

ûni =
1

∆x

∫ xi+1/2

xi−1/2

û(x, tn)dx.

• Relaxation step: In the relaxation step, we apply the central difference approx-
imation in space and the backward Euler method in time:

û∗i = ûni

v̂∗i − v̂ni
∆t

= −1

ε

[
v̂∗i + (Ai − εαIM )

ûni+1 − ûni−1
2∆x

]
.

(4.6)

• Convection step: In the convection step, we use the first order upwind method:
ûn+1
i = û∗i −

∆t

2∆x
(v̂∗i+1 − v̂∗i−1) +

√
α∆t

2∆x
(û∗i+1 − 2û∗i + û∗i−1),

v̂n+1
i = v̂∗i − α

∆t

2∆x
(û∗i+1 − û∗i−1) +

√
α∆t

2∆x
(v̂∗i+1 − 2v̂∗i + v̂∗i−1).

(4.7)

As ε→ 0, (4.6) gives

v̂∗i = −Ai

ûni+1 − ûni−1
2∆x

,
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which, when substituted into the first equation in the convection step (4.7), gives

ûn+1
i = ûni −∆tAi

ûni+2 − 2ûni + ûni−2
(2∆x)2

+

√
α∆t

2∆x
(ûni+1 − 2ûni + ûni−1). (4.8)

This is the first order approximation, in both space and time, of the gPC diffusion
equation (2.9). Thus, the fully discretized scheme is sAP.

Remark 4.1. Here we adopted rather low-order discretizations in space and
time to illustrate the procedure and the AP property of the fully discrete system. In
practice, one can of course employ higher-order schemes, e.g., high-order TVD in
space and high order implicit-explicit time discretization [28, 2, 18], and establish the
corresponding sAP property.

5. Stochastic AP scheme for the random Carleman Model. We now
consider the nonlinear random Carleman model (3.3). Except for the nonlinear term
of the right-hand-side, the gPC Galerkin formulation for this system is similar to that
of the random Goldstein-Taylor model. Again, let û and v̂ be the coefficient vectors
of the gPC expansion of u and v, respectively. The gPC Galerkin procedure results
in the following system  ∂tû + ∂xv̂ = 0,

∂tv̂ +
1

ε
∂xû = −1

ε
B(x, t)v̂,

(5.1)

where the matrix B(x, t) = (bij(x, t))1≤i,j≤M has entries

bij(x, t) =

∫
κ(x, z)uN (x, t, z)Φi(z)Φj(z)ρ(z)dz

=

M∑
`=1

û`

∫
κ(x, z)Φ`(z)Φi(z)Φj(z)ρ(z)dz .

(5.2)

5.1. The AP property. Let us first consider the limiting state (3.4) for the
random Carleman model. Upon applying the ansatz (4.1) in the first equation of
(3.4) and conducting the Galerkin projection, we obtain

v̂ = −B−(x, t)∂xû, (5.3)

where the matrix B− = (b−ij)1≤i.j≤M has entries

b−ij(x, t) =

∫
1

κ(x, z)uN (x, t, z)
Φi(z)Φj(z)ρ(z)dz. (5.4)

If one uses this in (3.4) to derive the gPC limiting equation, then the scheme gives a
complicated nonlinear algebraic system. Alternatively, we write the first equation of
(3.4) in an equivalent form

κ(x, z)uv = −∂xu,

which renders its gPC Galerkin projection

Bv̂ = −∂xû, (5.5)
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where B is defined in (5.2). This yields

v̂ = −B−1∂xû. (5.6)

Thus the gPC equation for limiting problem (3.4) is

∂tû = ∂x
[
B−1(x, t)∂xû

]
. (5.7)

We now consider the diffusive limit of the formulation (5.1). As ε → 0+, the
second equation leads to

v̂ = −B−1(x, t)∂xû.

Substituting into the first equation of (5.1), we obtain exactly (5.7). Therefore, (5.1)
is sAP.

5.2. Connection with the relaxation scheme for nonlinear diffusion
equation (3.4). As discussed in the previous section, the gPC approximation to
the nonlinear diffusion equation (3.4) is difficult. Yet, the above discussion of the AP
property has an analogy to the Jin-Xin relaxation scheme for nonlinear hyperbolic
conservation laws ([21]), in the sense that the nonlinear diffusion equation (3.4) is
approximated by the semi-linear hyperbolic equations (the Carleman model) (3.3),
which can be more easily solved numerically than the original equation (3.4). To
be precise, we start with the gPC Galerkin system (5.1), which, upon taking the
relaxation limit ε→ 0, leads to an effective numerical scheme for (3.4).

The scheme takes the following form,
Convection step:

ûn+1 − ûn

∆t
+

v̂nj+1/2 − v̂nj−1/2

∆x
= 0, (5.8)

Relaxation step:

v̂nj+1/2 = −(Bn
j+1/2)−1

ûnj+1 − ûnj
∆x

, (5.9)

where Bj+1/2 = 1
2 [Bj + Bj+1].

By substituting (5.9) into (5.8), we obtain

ûn+1 − ûn

∆t
=

1

(∆x)2

[
(Bn

j+1/2)−1
(
ûnj+1 − ûnj

)
− (Bn

j−1/2)−1
(
ûnj − ûnj−1

)]
. (5.10)

Clearly, this is a second order space approximation for (3.4).

6. Stochastic AP scheme for the random linear transport equation. We
now discuss the gPC Galerkin formulation for the linear transport equation (3.8) with
random cross-section σ(x, z). Let

rN (x, z, t) =

M∑
m=1

r̂m(t, x)Φm(z), jN (x, z, t) =

M∑
m=0

ĵm(t, x)Φm(z) (6.1)

be the Nth-order gPC expansion for the solutions and

r̂ = (r̂1, · · · , r̂M )T , ĵ = (ĵ1, · · · , ĵM )T ,
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be the expansion coefficient vectors. The gPC Galerkin procedure can be applied to
(3.8) in a straightforward manner and results in the following system:

∂tr̂ + v∂xĵ =
1

ε2
S(x)(r− r̂),

∂tĵ +
v

ε2
∂xr̂ = − 1

ε2
S(x)̂j,

(6.2)

where

r(x, t) =

∫ 1

0

r̂dv,

and S(x) = (sij(x))1≤i,j≤M is a M ×M matrix with entries

sij(x) =

∫
σ(x, z)Φi(z)Φj(z)ρ(z)dz. (6.3)

The remaining AP discretizations for time and space are similar to that of the
Goldstein-Taylor model and the Carleman model. For velocity discretization, we
use the discrete-ordinate method, i.e., we choose the discrete velocity vk to be the
Legendre-Gauss quadrature points and integrate r on the right hand side of (6.2)
using Gauss’s quadrature rule. See, for example, [17]. The fully discretized scheme
can be shown to be AP, similar to the two previous models. We omit the details.

7. Stochastic collocation methods. We now discuss stochastic collocation
methods using the general setup from Section 2. In stochastic collocation, one first
chooses a set of collocation nodes/samples for the input random variable z ∈ Rd,
d ≥ 1. Let {z(j)}Ns

j=1 ⊂ Iz be the set of nodes, where Ns is the total number of

nodes, one then applies a deterministic AP scheme to (2.3) for each fixed z(j), for
j = 1, . . . , Ns, and obtain the solution ensemble vεj(x, t) = vε(x, t, z(j)). This is a
straightforward non-intrusive procedure and poses no coding difficulty.

Equipped with the solution ensembles {z(j), vεj(x, t)}
Ns
j=1, one then, in the post-

processing step, seeks to construct an accurate (gPC) approximation vε(x, t, z). Most
of the construction procedures are linear and render an approximation such as,

vε(x, t, z) =

Ns∑
j=1

vεj(x, t)`j(z), (7.1)

where the form of the function {`j(z)} depends on the construction method. For
example, if the Lagrange interpolation method is used, then `j(z

(i)) = δij . For other
construction methods, e.g., least-square regression, discrete projection, etc., the func-
tions are more involved but can be constructed nevertheless. (For an overview of
stochastic collocation methods, see, for example, [32, 33].) Upon taking the diffusive
limit ε→ 0, we obtain

v(x, t, z) =

Ns∑
j=1

vj(x, t)`j(z), (7.2)

where vj(x, t) = limε→0 v
ε
j(x, t) is the limit of each sample solution and is determinis-

tically AP.
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If (7.1) is constructed via an interpolation procedure, the limiting solution (7.2)
satisfies v(x, t, z(j)) = vj(x, t), which means the method satisfies the limit equation
(2.4) at each collocation nodes z(j). And this leads to a strongly AP scheme if the
nodes fills up the random space Iz asymptotically. This is obvious not a practical
situation. For locations outside the sample set, it can be argued that the method
is AP subject to interpolation errors. Controlling interpolation errors is, however, a
quite open research topic, even for smooth problems. And the interpolation errors
can be highly non-trivial for high dimensional random space. Although it is possible
to control the errors using tensor Gauss nodes or sparse grids ([34]), they lead to fast
growth of the number of nodes in high dimensions and can be impractical to use.

If the construction (7.1) is not of interpolation type, e.g., regression, then it will
not be AP at the sample nodes. On the other hand, except in some rare cases, it is
also not possible to ensure (7.2) solves the limit problem (2.4) in a weak form. And
therefore it will not sAP, weakly or strongly. This is in contrary to the gPC Galerkin
methods presented here — the limiting gPC Galerkin solutions satisfy the limiting
problem in a Galerkin weak form, for any given order of the polynomial expansions.
Consequently, it is fair to state that the gPC Galerkin approach is much preferred
than the collocation approach, if one wishes to enforce AP properties in the random
space.

8. Numerical Examples. In this section, we present several numerical exam-
ples to illustrate the effectiveness of our method. We typically use reference solutions
to examine the performance of the numerical solutions. To examine the accuracy, two
metrics are used to quantify the errors: the differences in the mean solutions and in
the corresponding standard deviation, with L2 norm in x:

emean(t) =
∥∥E[uh]− E[u]

∥∥
L2 ,

estd(t) =
∥∥σ[uh]− σ[u]

∥∥
L2 ,

(8.1)

where uh, u are the numerical solutions and the reference solutions, respectively. The
reference solutions for the mean and standard deviation are typically computed by
high-order stochastic collocation methods, using either tensor Gauss quadrature or
sparse grids quadrature.

8.1. The Goldstein-Taylor Model. We first consider the Goldstein-Taylor
equation (3.1) with the following initial data

u(x, z, 0) = 2.0, v(x, z, 0) = 0, x ∈ [−1, 0],

u(x, z, 0) = 1.0, v(x, z, 0) = 0, x ∈ (0, 1],

and random coefficient

a(x, z) = 2 + z, z ∈ [−1, 1].

This makes the problem one dimension in random space, and allows us to examine
carefully the error behavior. The spatial and temporal discretizations discussed in
Section 4 are used.

We first set ε = 0.49 to be a relatively large number. The mean (left) and standard
deviation (right) of the solution until t = 0.25 at order N = 4 are plotted in Fig. 8.1,
where we also show the mean and standard deviation obtained by the stochastic
collocation method over 20 Legendre-Gauss quadrature points. Good agreement can
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Fig. 8.1. The Goldstein-Taylor Model: The mean (left) and standard deviation (right) of u
with ε = 0.49, obtained by 4th-order gPC Galerkin (circles) and stochastic collocation (crosses).

be seen between the two sets of results. This gives us a qualitative understanding of
the solution behavior.

We then consider the case of very small ε by setting ε = 10−12. In this case, the
analytical solution of the limiting random diffusion equation (3.2) is

u(x, t, z) =
3

2
− 1

2
erf

(
x√

4a(z)t

)
. (8.2)

This is an accurate approximation to the exact solution, with error ∼ O(ε). The
solution profiles of the mean and standard deviations are shown in Fig. 8.2, where we
again visually observe good agreement among the 4th-order gPC solutions, stochastic
collocations and the analytical solution (8.2). In Fig. 8.3, the errors at time t = 0.02
with respect to increasing gPC order are plotted, at various levels of grid resolutions,
∆x = 0.04 (squares), ∆x = 0.02 (circles), and ∆x = 0.01 (stars). The time step is
∆t = ∆x2/12. The fast exponential convergence with respect to the order of gPC
expansion can be observed. The errors quickly saturate at modest gPC orders and the
saturation levels become smaller with finer ∆x. This indicates that in this case the
errors have a larger contribution from the temporal and spatial discretization than
that from the gPC expansion. The advantage of AP methods can be seen here: even
for such an exceedingly small parameter ε = 10−12, accurate solutions can still be
obtained with very modest mesh.

While keeping the discretization in x at the same three different levels, we now
vary the value of ε and examine the solutions. We keep the stochastic AP scheme at
N = 4 gPC order. From the results above, it is obvious that at N = 4 the errors
in random space is subdominant compared to those in space and time. Hence, the
numerical solutions can be considered accurate up to the discretization errors, whereas
(8.2) is accurate up to O(ε) error. In Fig.8.4, we show the differences of the mean
(solid lines) and standard deviation (dash lines) between the analytical solution (8.2)
and the 4th-order gPC solutions with respect to varying values of ε. We observe
the reduction of the differences as ε becomes smaller, as the analytical solution (8.2)
becomes more accurate, before they become saturated as the numerical errors in the
sAP solutions start to dominate.

To further demonstrate the effectiveness of the sAP method, we now consider a
case of spatially varying ε(x) > 0 spanning a wide range of mixing scales. Specifically,
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Fig. 8.2. The Goldstein-Taylor Model: The mean (left) and standard deviation (right) of u
with ε = 10−12, obtained by 4th-order gPC Galerkin (circles) and stochastic collocation (crosses),
along with the analytical solution (8.2) (dashed lines) of the limiting diffusion equation (3.2).
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Fig. 8.3. The Goldstein-Taylor Model: Error convergence in mean (solid lines) and standard
deviation (dashed lines), with respect to gPC order for ε = 10−12. (Squares: ∆x = 0.04, circles:
∆x = 0.02, stars: ∆x = 0.01.

we consider the following

ε(x) = ε0 +
1

2

[
tanh

(
1− 11

2
x

)
+ tanh

(
1 +

11

2
x

)]
,

which is similar to the one used in [7] for simulations of deterministic Boltzmann
equation. As seen from Fig.8.5, the ε(x) varies smoothly from ε0 to ∼ O(1). Here we
set ε0 = 10−12,.

The multiscale nature of the problem requires good accuracy over the entire range
of ε, which our sAP method is able to deliver. The mean and standard deviation of
the solution u at t = 0.02 with ∆x = 0.01 and ∆t = 1

12∆x2 are shown in Fig. 8.6.
We observed good agreement between the sAP gPC-Galerkin solution at order N = 4
and the reference solution. The reference solution is computed by the stochastic
collocation method using 20 one-dimensional Legendre-Gauss quadrature points and
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Fig. 8.4. The Goldstein-Taylor Model: Differences in mean (solid lines) and standard deviation
(dashed lines) with respect to ε between the analytical solution (8.2) of the limiting diffusion equation
(3.2) and the 4th-order gPC solution with ∆x = 0.04 (squares), ∆x = 0.02 (circles), and ∆x = 0.01
(stars).
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Fig. 8.5. The Goldstein-Taylor Model: illustration of the spatially varying ε(x) over the physical
domain.

also based on the first order deterministic AP method in Section 4 with the same ∆x
and ∆t. The errors in the gPC-Galerkin solutions are plotted in Fig. 8.7, where the
exponential convergence is clearly observed with increasing order of gPC expansion.

8.2. The Carleman Model. We now consider the nonlinear Carleman model
and the corresponding stochastic AP scheme (see section 5). We focus on the diffusive
regime and fix ε = 10−12.

In the first case study, we employ the same random coefficient, initial data and
boundary condition as in the previous section. Lacking an analytical solution, we em-
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Fig. 8.6. The Goldstein-Taylor Model with the spatially varying ε(x): The mean (left) and
standard deviation (right) of u with ε0 = 10−12, obtained by 4th-order gPC Galerkin (circles) and
stochastic collocation (crosses).

0 1 2 3 4
10

−15

10
−10

10
−5

10
0

 

 

Fig. 8.7. The Goldstein-Taylor Model with the spatially varying ε(x): Error convergence
in mean (solid lines) and standard deviation (dashed lines), with respect to gPC order for ε0 =
10−12,∆x = 0.01,∆t = 1

12
∆x2.

ploy the high-order stochastic collocation method with 20 Legendre-Gauss quadrature
points to compute the reference mean and standard deviation solutions. In Fig. 8.8,
the errors of the mean (solid lines) and standard deviation (dash lines) of u (circle)
and v (triangle) are plotted at increasing gPC expansion order. Spectral convergence
is clearly observed. All of the numerical solutions are computed until t = 0.04 with
∆x = 0.02 and ∆t = 1

12∆x2.

In Fig. 8.9, we plot the mean and standard deviation of u, obtained by the 4th-
order gPC Galerkin and collocation, as well as a “semi-exact” solution. Here the
“semi-exact” solution is obtained by solving the limiting nonlinear diffusion equation
(3.4) by the stochastic collocation method over 20 one dimensional Legendre-Gauss
quadrature points, using the Euler forward in time and central difference in space
with the same ∆t and ∆x. Good agreement can be observed among these different
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methods.
We now examine the difference between our gPC-AP solution at t = 0.04 with

∆x = 0.02,∆t = 1
12∆x2 and the numerical solution from the limiting nonlinear

diffusion equation (3.4). This is shown in Fig. 8.10, at different values of ε. The
errors clearly decrease as ε becomes smaller, as expected, before they saturate at a
level where the numerical errors become dominant.
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Fig. 8.8. The Carleman Model: Error convergence with respect to gPC order for ε = 10−12.
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Fig. 8.9. The Carleman Model: The mean (left) and standard deviation (right) of u at ε =
10−12, obtained by N = 4 order gPC Galerkin (circles), the stochastic collocation method (crosses),
and the limiting random diffusion equation (3.4) (dashed line).

We now consider a more general case, where the random input κ is a random field
with the following form,

κ(x, z) = 1 + σ

d∑
i=1

1

iπ
cos (2πix)zi.

This resembles the form of the well known Karhunen-Loeve expansion, widely used
for modeling random fields. For benchmarking purpose, we set σ = 2, d = 2.
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Fig. 8.10. The Carleman Model: Errors in the mean (solid line) and standard deviation (dash
line) of u by the gPC solution with order N = 4 at varying ε values. The reference solution is
obtained by solving the limiting random diffusion equation (3.4).

The mean and standard deviation of the solution are shown in Fig. 8.11, where
we observe good agreement between the AP gPC-Galerkin at order N = 5 and the
reference solutions obtained a stochastic collocation over 8d tensor Legendre-Gauss
quadrature points. The errors in the gPC-Galerkin solutions are plotted in Fig.8.12,
where again we observe the expected exponential convergence. All of the numerical
solutions are computed until t = 0.02 with a modest mesh of ∆x = 0.02 and ∆t =
1
12∆x2.
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Fig. 8.11. The Carleman Model: Mean (left) and standard deviation (right) of u by gPC
Galerkin with order N = 5 (circles) and the stochastic collocation method (crosses) for ε = 10−12.

8.3. The linear transport equation. We now consider the linear transport
equation (3.8) with the random coefficient σ = 2 + z, where z ∈ [−1, 1] is uniformly
distributed. The initial conditions are

r(x, v, z, 0) = 0, j(x, v, z, 0) = 0, (8.3)
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Fig. 8.12. The Carleman Model: Errors with respect to gPC Galerkin order for ε = 10−12.

and the boundary conditions are (see [17])

σj = −vrx. (8.4)

and

r − ε

σ
vrx

∣∣∣
x=0

= 1, r +
ε

σ
vrx

∣∣∣
x=1

= 0. (8.5)

The analytical solution for the limiting random diffusion equation (3.9) with the above
initial and boundary condition in the diffusive regime is

r(x, t, z) = 1− erf

 x√
4
3σ t

 . (8.6)

When ε is small, we use this as the reference solution, as it is accurate with an error of
O(ε2). Hereafter we set ε = 10−8. In addition, the standard 16-points Gauss-Legendre
quadrature set is used for the velocity space to compute r̄ in (6.2) in the following
example.

In Fig. 8.13, we plot the errors in mean and standard deviation of the gPC
numerical solutions at t = 0.01 with different gPC orders. Three sets of results
are included: solutions with ∆x = 0.04 (squares), ∆x = 0.02 (circles), ∆x = 0.01
(stars) and ∆t = 0.0002/3. We observe that the errors become smaller with finer
mesh. And at the finest mesh with ∆x = 0.01, fast convergence with respect to the
gPC expansion order can be seen. It is then obvious that the errors due to gPC
expansion can be neglected at order N = 4. The solution profiles of the mean and
standard deviation are shown on the left and right of Fig. 8.14, respectively. Here we
observe good agreement among the gPC-Galerkin sAP method, stochastic collocation
method with 20 Gauss-Legendre quadrature points, and the analytical solution (8.6).

In Fig. 8.15, we examine the difference between the solution t = 0.01 obtained
by the 4th-order gPC AP method with ∆x = 0.01,∆t = 1

12∆x2 and the limiting
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Fig. 8.13. The linear transport equation: Errors of the mean (solid line) and standard deviation
(dash line) of r (circle) with respect to the gPC order at ε = 10−8: ∆x = 0.04 (squares), ∆x = 0.02
(circles), ∆ = 0.01 (stars).
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Fig. 8.14. The linear transport equation: The mean (left) and standard deviation (right) of
r at ε = 10−8, obtained by the gPC Galerkin at order N = 4 (circles), the stochastic collocation
method (crosses), and the limiting analytical solution (8.6).

analytical solution (8.6). As expected, we observe the differences become smaller as ε
is smaller, before they saturate at a level where the numerical errors in the gPC sAP
solutions become dominant.

We then model the random input as a random field, similar to the previous
example, in the following form,

σ(x, z) = 1 + σ

d∑
i=1

1

(iπ)2
cos (2πix)zi, (8.7)

where we set σ = 4, and d = 5. This represents a modestly high dimensional random
inputs. The mean and standard deviation of the solution r at t = 0.01 obtained by
the 5th-order gPC Galerkin with ∆x = 0.025,∆t = 0.0002/3 are shown in Fig. 8.16.
We then use the high-order stochastic collocation method over 5-dimensional sparse
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Fig. 8.15. The linear transport equation: Differences in the mean (solid line) and standard
deviation (dash line) of r with respect to ε2, between the limiting analytical solution (8.6) and the
4th-order gPC solution with ∆x = 0.04 (squares), ∆x = 0.02 (circles) and ∆x = 0.01 (stars).

quadrature points with level 5 Clenshaw-Curtis rules (cf., [34]) to compute the refer-
ence mean and standard deviation of the solutions. In Fig. 8.17, we show the errors
of the mean (solid lines) and standard deviation (dash lines) of r with respect to the
order of gPC expansion. The fast exponential convergence of the errors can be clearly
seen.

To illustrate the effectiveness of the sAP method, we also computed the mean
and standard deviation of the solution r̄ for d = 10. This represents a relatively high
dimensional stochastic problem. The results are shown in Fig.8.18, where we observed
good agreement between the sAP gPC-Galerkin solution at the order N = 3 and
the reference solution obtained by the level 2 Clenshaw-Curtis sparse grids solution.
Detailed error convergence requires much higher resolutions and is not practical for
such a high dimensional problem (d = 10).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fig. 8.16. The linear transport equation: The mean (left) and standard deviation (right) of
r at ε = 10−8, obtained by 5th-order gPC Galerkin (circles) and the stochastic collocation method
(crosses). The randome input has dimension d = 5.
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Fig. 8.17. The linear transport equation: Errors of the mean (solid line) and standard deviation
(dash line) of r with respect to gPC order, with the d = 5 dimensional random input.
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Fig. 8.18. The linear transport equation in high dimension d = 10: The mean (left) and
standard deviation (right) of r at ε = 10−8, obtained by 3rd-order gPC Galerkin (circles) and the
level-2 sparse grids stochastic collocation method (crosses).

9. Summary. In this paper, we proposed a class of stochastic asymptotic pre-
serving (sAP) schemes for multiscale kinetic and hyperbolic equations with diffusive
scalings. The new schemes are built upon the deterministic AP schemes. They em-
ploy the generalized polynomial chaos (gPC) expansion, combined with stochastic
Galerkin projection. We show that the new schemes are AP in the stochastic setting.
We also discussed the use of stochastic Galerkin and stochastic collocation. We made
it clear that the Galerkin approach is preferred as it guarantees the AP property in
the entire random space, regardless of the order of the approximation. On the other
hand, if one is only interested in the solution statistics (e.g., mean, variance, etc),
then stochastic collocation is easier to implement in practice. This paper serves as
the first attempt to develop AP schemes in stochastic setting, and we intend to study
more in-depth issues in future studies.
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