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Abstract

We propose an asymptotic-preserving (AP) scheme for kinetic equations that is efficient also
in the hydrodynamic regimes. This scheme is based on the BGK-penalty method introduced by
Filbet-Jin [13], but uses the penalization successively to achieve the desired asymptotic property.
This method possesses a stronger AP property than the original method of Filbet-Jin, with the
additional feature of being also positivity preserving. It is also general enough to be applicable to
several important classes of kinetic equations, including the Boltzmann equation and the Landau
equation. Numerical experiments verify these properties.

1 Introduction

In the study of rarefied gas or plasma physics, the distribution function f(t, x, v) is usually used
to describe the density of the particles at time t and position x, with velocity v. This distribution
can be modeled by the kinetic equation [5],

∂f

∂t
+ v · ∇xf =

1

ε
Q(f), (1)

For molecules with primarily binary short range collisions, Q(f) is given by the Boltzmann
collision operator

Q(f) =

∫∫

RN×SN−1

B(|v − v∗|, cos θ)(f ′f ′
∗ − ff∗) dv∗ dσ. (2)

Here we use the shorthanded notations f = f(v), f∗ = f(v∗), f ′ = f(v′) and f ′
∗ = f(v′

∗). The
post-collision velocities can be computed by

v′ = v − 1

2

(

(v − v∗) − |v − v∗|σ
)

, v′
∗ = v − 1

2

(

(v − v∗) + |v − v∗|σ
)

,

where σ is a unit vector varying in the sphere S
N−1.
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We focus on the Variable Hard Sphere model in this work,

B(|u|, cos θ) = C|u|r.

For charged particles in plasma physics, where the long range interaction dominates, Q(f) is
given by the Landau collision operator [21, 22]

Q(f) = ∇v ·
∫

RNv

A(v − v∗)(f(v∗)∇vf(v) − f(v)∇v∗
f(v∗))dv∗, (3)

where the semi-positive definite matrix A(z) is given by

A(z) = Ψ(z)

(

I − z ⊗ z

|z|2
)

, Ψ(z) = |z|γ+2. (4)

The parameter γ is determined by the type of interaction between particles. In the case of inverse
power law relationship, that is, when two particles at distance r interact with a force proportional
to 1/rs, γ = s−5

s−1 . For example, in the cases of the Maxwell molecules γ = 0 (corresponding to
s = 5) and for the Coulomb potential γ = −3 (corresponding to s = 2). The Landau equation is
derived as a limit of the Boltzmann equation when all the collisions become grazing [1, 6, 7, 14, 25].
We refer to [20] and references therein for details. In this article we will always take γ = −3.

Both operators (2) and (3) satisfy some important properties:

• Conservation of mass, momentum and energy:

∫

φQ(f) dv = 0, with φ = 1, v,
|v|2
2

;

• Entropy dissipation:
d

dt

∫

f log f dv =

∫

Q(f) log f dv ≤ 0

with equality holds if and only if f = M ;

• Well balancedness:
Q(f) = 0 ⇔ f = M .

Here the Maxwellian M is the local equilibrium,

M =
ρ

(2πT )N/2
exp

(

− (v − u)2

2T

)

, (5)

with density ρ, macroscopic velocity u and temperature T defined by

ρ =

∫

f dv, ρu =

∫

vf dv, ρT =
1

N

∫

|v − u|2f dv.

The Knudsen number ε in (1) is the ratio between the mean free path and the typical physical
length scale.

As ε → 0, the moments of solution to (1) can be approximated by the macroscopic compressible
Euler equations [2, 4],







∂tρ + ∇x · ρu = 0

∂t(ρu) + ∇x · (ρu ⊗ u + pI) = 0

∂tE + ∇x · ((E + p)u) = 0

(6)

with total energy E

E =
1

2
ρu2 +

N

2
ρT =

∫ |v|2
2

fdv
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and pressure p given by the constitutive relation to close the system (6)

p = ρT.

Since the kinetic equation (1) approaches the Euler equations (6) asymptotically as ε → 0, it is a
natural request that a good scheme designed for (1) can capture the asymptotic limit (6) as ε → 0,
with time step and mesh sizes in space and velocity spaces fixed. A scheme with this property is
called Asymptotic Preserving (AP) [17]. Such schemes are able to remove the stiffness for small ε,
and can capture the macroscopic hydrodynamic behavior without numerically resolving the small
ε. We refer to a recent review [18] on AP schemes for kinetic and hyperbolic equations.

More specifically, for Boltzmann type equation, let fn be the numerical solution approximating
f(tn). Then the AP property is equivalent to require

fn − Mn = O(ε), for any n ≥ 1, (7)

for any initial data, equilibrium or non-equilibrium. As in [18], we call this result a strong AP
property.

One of the main challenges to the development of AP schemes for the kinetic equation (1) is the
implicit collision term, if the time step is required to be larger than ε. The collision operator Q(f) is
typically nonlinear, nonlocal and high dimensional, thus its numerical inversion is computationally
difficult and expensive. Recently Filbet and Jin [13] introduced a BGK-penalty method for (1)
with the Boltzmann operator (2) that overcomes this difficulty. The idea was to penalize Q(f) by
the BGK-operator

P (f) = M − f , (8)

which can be inverted easily, and treat Q(f) explicitly. This results a scheme that has the relaxed
AP property in the sense that for any ε > 0, there exists an integer N > 0,

fn − Mn = O(ε), for any n ≥ N. (9)

This means that the AP property is satisfied after an initial transient time.
Later the authors [20] extended this result to the nonlinear Landau equation (1) with (3), based

on a Fokker-Planck penalization. A similar relaxed AP property was obtained. This method was
also extended to the quantum cases [9, 16] and multispecies case [19]. A rigorous analysis on the
application of this method to hyperbolic system was given in [12].

The BGK-penalty method can be implemented differently. In the work of Dimarco and Pareschi
[8] for the Boltzmann equation, a time-splitting approach was introduced, so the convection is solved
in a separate step from the collision step. The collision step, using the fact that local Maxwellian is
invariant for space homogeneous Boltzmann equation, can be solved using the exponential Runge-
Kutta method. Their method is positivity-preserving and has the exponential AP property, in the
sense that there exists some constant c > 0, such that for any initial data,

fn − Mn = O(e−
c∆t

ε ), for any n ≥ 1. (10)

This method is also generalized to the diffusion limit [3]. However this method is not easy to be
extended to the Landau equation (1)(3), or other more general collision operators, since it uses a
special property of the BKG operator in the space homogeneous case which may not be available
for other collision operators such as the Fokker-Planck operator.

The goal of this work is to improve the Filbet-Jin method in two aspects: 1) positivity preserving
and 2) a strong AP peoperty (7). This new method is based on successive penalizations, namely the
penalty operators will be utilized more than once in each time step. This gives a method in between
that of Filbet-Jin and Dimarco-Pareschi, and that combines the advantages of both methods in
terms of positivity, asymptotic-preserving and generality. With the positivity this formulation is
also suitable for a Monte-Carlo simulation [8].
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This paper is organized as follows. We briefly review the penalty method of Filbet-Jin and
the exponential method of Dimarco-Pareschi in section 2, and introduce a positivity-preserving
improvement for the Filbet-Jin method. In section 3 we introduce the new successive penalty
method in the first and second order formulations, and study its asymptotic property. Finally
numerical experiments are carried out in section 4 for both the Boltzmann and Landau equations
to study the properties of the new method. The paper is concluded in section 5.

2 Penalty based methods

2.1 The Filbet-Jin method

2.1.1 For the Boltzmann equation

First we briefly review the work of Filbet and Jin [13] for the Boltzmann equation (1)(2). The idea
in Filbet-Jin’s method is to penalize Q(f) by another operator P (f),

∂f

∂t
+ v · ∇xf =

1

ε
(Q(f) − βP (f))
︸ ︷︷ ︸

less stiff

+
1

ε
βP (f)
︸ ︷︷ ︸

stiff

, (11)

then the less stiff term can be solved explicitly and the new stiff term is solved implicitly. A scheme
with first order accuracy in time reads

fn+1 − fn

∆t
+ v · ∇xfn =

1

ε

(
Q(fn) − βP (fn) + βP (fn+1)

)
. (12)

A second order scheme is obtained by







f∗ − fn

∆t/2
+ v · ∇xfn =

Q(fn) − βnP (fn)

ε
+

βnP (f∗)

ε
,

fn+1 − fn

∆t
+ v · ∇xf∗ =

Q(f∗) − β∗P (f∗)

ε
+

β∗(P (fn) + P (fn+1))

2ε
.

(13)

One wants P (f) to be easy to invert while at the same time to preserve the good properties of
Q(f). A good choice used by Filbet-Jin is the BGK operator (8). Then scheme (12) reads

fn+1 − fn

∆t
+ v · ∇xfn =

1

ε

(
Q(fn) − β(Mn − fn) + β(Mn+1 − fn+1)

)
. (14)

Mn+1 can be solved explicitly first thanks to the fact that the right side of (14) preserves density,

momentum and energy. Multiplying φ = 1, v, |v|2

2 to (14) and integrating over velocity space, one
obtains ∫

φ

(
fn+1 − fn

∆t
+ v · ∇xfn

)

dv = 0 .

Then the moments at tn+1 can be derived explicitly,

(ρ, ρu,E)n+1 =

∫

φ(fn − ∆tv · ∇xfn) dv. (15)

and Mn+1 is obtained. Then fn+1 can be solved,

fn+1 = Mn+1 +
1

1 + β∆t
ε

(

fn − ∆tv · ∇xfn − Mn+1 +
∆t

ε
(Q(fn) − β(Mn − fn))

)

. (16)

Therefore the implicit scheme (12) can be solved explicitly. The implementation for (13) is similar.
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The stability condition for (14) can be derived,

β >
1

2
‖∇vQ(f)‖ , (17)

where ∇vQ(f) is the Frechet derivative of Q.
At last we give the weak-AP property proved in [13].

Theorem 2.1 Consider the numerical solution given by (14). Then

1. If ε → 0 and fn = Mn +O(ε), then fn+1 = Mn+1 +O(ε). Thus, when ε → 0, the (moments
of the) scheme becomes a consistent discretization of the Euler system (6).

2. Assume ε ≪ 1 and fn = Mn + O(ε). If there exists a constant C > 0 such that

∥
∥
∥
∥

fn+1 − fn

∆t

∥
∥
∥
∥

+

∥
∥
∥
∥

Un+1 − Un

∆t

∥
∥
∥
∥
≤ C,

then the scheme asymptotically becomes a first order in time approximation of the compressible
Navier-Stokes equations.

2.1.2 A positivity-preserving improvement

For numerical purpose, we assume that f has a compact support in ΩV = [−vmax, vmax]
N ∈ R

N in
v direction. The computation in this article is always performed on ΩV . However the results can
be extended to any other compact domain.

One question unsolved in the Filbet-Jin paper is the positivity of the scheme. More specifically,
when initial data f I is nonnegative over R

N×ΩV , one hopes the distribution f is always nonnegative
during the time evolution.

(14) can be positive preserving after a small correction. The key idea is that the two β’s in
(14) do not have to have the same value. A difference of O(∆t) is permitted to keep the first order
convergence. A simple calculation shows that the scheme is positive if one puts a little more weight
on the second β. Besides, all the other good properties of (14), like AP and stability, remain valid.

Note that the Boltzmann operator (2) can be split to a gain term and a loss term:

Q(f) = Q+(f) − fQ−(f), (18)

with

Q+(f) =

∫∫

RN×SN−1

C|v − v∗|rf ′f ′
∗ dv∗ dσ,

Q−(f) =

∫∫

RN×SN−1

C|v − v∗|rf∗ dv∗ dσ.

(19)

Consider the first order scheme (12) with the Boltzmann collision operator Q(f) = Q+(f) −
fQ−(f) and the BGK operator βP (f) = β(M − f). We choose different β for each P (f),

fn+1 − fn

∆t
+ v · Dxfn =

1

ε

(
Q(fn) − βn(Mn − fn) + βn(1 + ∆tκn)(Mn+1 − fn+1)

)
, (20)

where Dx is some positive preserving discretization of ∇x (for example the upwind scheme). βn

and κn are x-dependent only and given by

βn = max
v

Q−(fn), (21)

κn = max{max
v

−(Mn+1 − Mn)

∆tMn+1
, 0}, (22)

where v ∈ ΩV is bounded.
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Lemma 2.2 The time discrete scheme (20)(21)(22) is well defined and first order in time. Besides,
if the CFL condition vmax∆t ≤ ∆x is satisfied, then,

1. If the initial data is close to the local Maxwellian f I = M I + O(ε), then the scheme is
asymptotic preserving.

2. If the initial data is nonnegative, then fn remains positive, for any n ≥ 1.

Proof. One can easily find an upper bound for Q−(fn),

Q−(fn) =

∫

ΩV ×SN−1

C|v − v∗|rf∗ dv∗ dσ ≤ C|vmax|r
∫

ΩV

f∗ dv∗ = Cρ,

which gives a well defined βn by (21).

Next, one can compute the term Mn+1 without κn, due to the fact that βn and κn are not
v dependent. More specifically, this can be done by multiplying (20) with φ = 1, v, |v|2/2 and
integrating with respect to v, which gives exactly (15). Then Mn+1 is defined and κn can be found
by (22).

To show that the scheme is first order in time, one only needs κn = O(1) which is true since

Mn − Mn+1

∆tMn+1
≈ log Mn − log Mn+1

∆t
= O(1).

A more precise estimate on κ is given by the following remark.

Remark 2.3 One might expect that the value of κ could be very large since its definition has a
term Mn+1 in the denominator, which is close to 0 near the artificial boundary {|v| = vmax} ⊂ V .
However the value of Mn/Mn+1 is fairly close to ρn(Tn+1)N/2/(ρn+1(Tn)N/2). It does not “blow
up” near the artificial boundary. We leave a detailed computation in the appendix.

The AP property is part of Theorem 2.1.

Next we show the positivity, when the CFL condition is satisfied.

Suppose fn is nonnegative. fn+1 can be solved from (20)

(

1 +
∆tβn(1 + ∆tκn)

ε

)

fn+1 = (fn − ∆tv · Dxfn) +

∆t

ε

(
Q+(fn) + (βn − Q−(fn))fn + (βn(1 + ∆tκn)Mn+1 − βnMn)

)
.

The transport term (fn − ∆tv · Dxfn) is positive if the CFL condition is satisfied. The term
Q+(fn) is positive by its definition. To get a positive fn+1, one also needs

βn − Q−(fn) ≥ 0,

κn +
Mn − Mn+1

∆tMn+1
≥ 0.

Clearly these conditions are satisfied if one chooses βn and κn as in (21)(22).

Remark 2.4 From the proof of Theorem 2.2, a sufficient condition for (20) to be positive preserv-
ing is, for any v,

βn ≥Q−(fn),

κn ≥− Mn − Mn+1

∆tMn+1
.

(23)
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However, larger β and κ can reduce the accuracy of the scheme. A simple numerical analysis shows
that the local truncation error is given by

f((n + 1)∆t) − fn+1 =
∆t2

2
∂ttf

n

+ βn ∆t2

ε

(

κnfn − v · ∇xfn +
Qn

ε
−
(

Mn+1 − Mn

∆t
+ κnMn+1

))

+ low order terms.

Therefore (21)(22) give the best choices.

2.1.3 For the Landau equation

The Filbet-Jin method was extended to the Landau equation (1)(3) in [20]. The BGK operator (8)
is not a suitable choice for penalization for this equation, since the diffusive nature of the Landau
operator (3) introduces extra stiffness. Instead the Fokker-Planck operator was used:

PFP (f) = PM
FP f = ∇v ·

(

M∇v

(
f

M

))

. (24)

The first order scheme reads

fn+1 − fn

∆t
+ v · ∇xfn =

1

ε

(
Q(fn) − βPnfn + βPn+1fn+1

)
(25)

where Pnfn = PMn

FP fn is the FP operator (24) and β is given by

β = β0 max
v

λ(DA(f)). (26)

Here β0 is a constant satisfying β0 > 1
2 . A good choice is β0 = 1. λ(DA) is the spectral radius of

the positive symmetric matrix DA, with DA(f) defined by

DA(f) =

∫

A(v − v∗)f∗dv∗. (27)

A second order implicit-explicit (IMEX) type scheme reads






f∗ − fn

∆t/2
+ v · ∇xfn =

Q(fn) − βPnfn

ε
+

βP ∗f∗

ε
,

fn+1 − fn

∆t
+ v · ∇xf∗ =

Q(f∗) − β∗P ∗f∗

ε
+

β∗Pnfn + β∗Pn+1fn+1

2ε
.

(28)

with P (f) the FP operator (24). Suggested by numerical experiments, one can take

β = β0 max
v,λ

λ(DA(f)),

β∗ = β0 max
v,λ

λ(DA(f∗)).
(29)

Again the constant coefficient satisfies β0 > 1
2 . A good choice is β0 = (2 +

√
2).

An efficient method to invert the FP operator PFP was also introduced in [20].

2.2 The Dimarco-Pareschi method for the Boltzmann equation

Utilizing on this BGK penalization, Dimarco and Pareschi introduced a class of exponential Runge-
Kutta methods in [8] for the Boltzmann equation, which are exponentially AP in the sense of (10).
The starting point is to split the Boltzmann equation (1) into a relaxation step

∂f

∂t
=

1

ε
Q(f), (30)

7



and a transport step,
∂f

∂t
+ v · ∇xf = 0. (31)

Ignoring the convection operator in (11), then (11) and (8) can be written as

∂f

∂t
=

1

ε

(

Q̃(f) − βM
)

+
β

ε
(M − f), (32)

where

Q̃(f) = Q(f) + βf,

with some constant β.

Noting that the macroscopic quantities ρ, u and T (hence M) are not changed in this step. (32)
can be reformulated as

∂(f − M)eβt/ε

∂t
=

1

ε

(

Q̃(f) − βM
)

eβt/ε. (33)

A class of explicit exponential Runge-Kutta schemes can be obtained. For example, one can apply
the explicit Euler method to this system

(f∗ − M∗)eβ(tn+∆t)/ε − (fn − Mn)eβtn/ε

∆t
=

1

ε

(

Q̃(fn) − βMn
)

eβtn/ε.

Since M∗ = Mn, one obtains,

f∗ = e−β∆t/εfn +
β∆t

ε
e−β∆t/ε Q̃(fn)

β
+

(

1 −
(

1 +
∆t

ε
β

)

e−β∆t/ε

)

Mn. (34)

Then the transport step (31) can be solved by an explicit scheme, for example the upwind
method.

As ε → 0, one has f∗ = Mn. Then the moments of the transport step give a kinetic scheme
for the Euler system (6). One obtains an exponentially AP scheme, in the sense of (10) with the
constant c = β.

The positivity of f∗ is guaranteed as long as Q̃(fn) is positive, which holds under the condition

βn ≥ Q−(fn). (35)

This is exactly the first equation in (23).

A remarkable feature is that, (34) solves f∗ as a convex combination of positive functions fn,
Q̃(fn) and Mn. Hence the Monte Carlo technique can be applied based on this formulation (see
[8]).

Higher order schemes can be derived by applying high order temporal operator splitting on
(1), high order Runge-Kutta method on the system (33) and high order methods on the transport
equation (31). See [8] for details.

The extension of the Dimarco-Pareshi method to the Landau equation (1)(3) is not easy, since
the exact solution of Fokker-Planck operator P is not easy to find. The Filbet-Jin method requires
the (implicit) numerical solution, which is relatively easier than the Dimarco-Pareschi method.
However, as discussed before, only a relaxed AP property is obtained for the Filbet-Jin method.

3 A successive penalty method

Let us think about these two penalty methods in a different way.
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3.1 A toy model

Consider the toy model,
df

dt
= −1

ε
f. (36)

We can apply the Filbet-Jin method and the Dimarco-Pareschi method on this equation. Both
methods start with the reformulation

df

dt
= −1 − β

ε
f − β

ε
f.

After a time splitting, one obtains
df

dt
= −1 − β

ε
f, (37)

df

dt
= −β

ε
f. (38)

(37) is a non-stiff (or less stiff) part, hence solved explicitly,

f∗ − fn

∆t
= −1 − β

ε
fn.

The difference of the two methods lies in how to solve the stiff part (38). The Filbet-Jin method
solves this step implicitly,

fn+1 − f∗

∆t
= −β

ε
fn+1.

Therefore

fn+1 =
1 + β−1

ε ∆t

1 + β
ε ∆t

fn. (39)

The Dimarco-Pareschi method solves this step exactly,

fn+1 = e−
β

ε
∆tf∗.

Therefore

fn+1 =
1 + β−1

ε ∆t

e
β

ε
∆t

fn. (40)

It is natural to design a method which solves the stiff part (38) in a different way. One can
divide the time interval [tn, tn+1] into k subintervals, and apply the implicit Euler method in each
subinterval, i.e.







fn+1,1 − f∗

∆t/k
= −β

ε
fn+1,1,

fn+1,2 − fn+1,1

∆t/k
= −β

ε
fn+1,2,

. . .

fn+1 − fn+1,k−1

∆t/k
= −β

ε
fn+1.

Hence

fn+1 =

(

1 +
β

ε

∆t

k

)−k

f∗.

Therefore

fn+1 =
1 + β−1

ε ∆t
(

1 + β
ε

∆t
k

)k
fn. (41)
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Noting that
(

1 +
β

ε

∆t

k

)k

≥ 1 +
β

ε
∆t,

this method is unconditionally stable if β ≥ 1
2 . The positivity is preserved under a stronger

condition β ≥ 1.
When k = 1, this gives the Filbet-Jin method (39). When k → ∞, this gives the Dimarco-

Pareschi method (40). Here we take k = 2, which gives an intermediate method between these two
methods. In this case one obtains the strong AP property

fn = O(ε), for any n ≥ 1.

We call this the successive penalty method, due to the fact that the implicit part is solved in
two (or more) successive steps.

3.2 A successive penalty method for kinetic equations

We can apply this idea to kinetic equation (1) with a penalization operator P .
The Dimarco-Pareschi method applies an operator splitting between the relaxation step and

the transport step, while the Filbet-Jin method is based on an unsplit version. It turns out that
whether to apply this operator splitting plays an important role.

The split version

The operator splitting between the relaxation step and the transport step is necessary for the
Dimarco-Pareschi method since the key idea in their method is that the BGK operator P can
be solved exactly when the Maxwellian M is time independent. With this splitting, we give the
following successive penalty method,







f∗ − fn

∆t
=

Q(fn) − βP (fn)

ε
+

(1 − α)βP (f∗)

ε
,

f∗∗ − f∗

∆t
=

αβP (f∗∗)

ε
,

fn+1 − f∗∗

∆t
+ v · ∇xf∗∗ = 0,

(42)

with a constant α ∈ (0, 1). One can simply choose α = 1
2 , as what we do for the toy model.

This can be seen as an approximation of the Dimarco-Pareschi method, with easier extension to
more complicated problems. (42) can be applied to both the Boltzmann equation and the Landau
equation, with the penalization P to be the BGK operator (8) or the Fokker-Planck operator (24),
and the penalization weight β given by (17) or (26), respectively.

It is easy to show that the strong AP property (7) is satisfied.
In the case of the Boltzmann equation, i.e., Q(f) is the Boltzmann operator (2) and P (f) is the

BGK operator, the relaxation step gives,

f∗∗ = Bfn +
β∆t

ε
B

Q̃(fn)

β
+

(

1 − B − β∆t

ε
B

)

Mn, (43)

where

B =
1

(

1 + αβ∆t
ε

)(

1 + (1−α)β∆t
ε

) .

Noting that Q̃(fn) = Q(fn) + βfn is non-negative under the condition (35) and
(

1 + β∆t
ε

)

B ≤ 1,

(43) also solves f∗∗ as a convex combination of positive functions fn, Q̃(fn)
β and Mn, as in the

10



Dimarco-Pareschi method (34). Hence f∗∗ is non-negative and the Monte Carlo technique can be
applied.

The nonsplit version

Following the Filbet-Jin method, we can give the successive penalty method without operator
splitting: 





f∗ − fn

∆t
+ v · ∇xfn =

Q(fn) − βP (fn)

ε
+

(1 − αn)βP (f∗)

ε
,

fn+1 − f∗

∆t
=

αnβP (fn+1)

ε
,

(44)

where the time dependent αn ∈ (0, 1) will be specified later.
Note that the solution is given by

fn+1 =

(

1 − α
β∆t

ε
P

)−1(

1 − (1 − α)
β∆t

ε
P

)−1(

fn − ∆tv · Dxfn +
∆t

ε
(Q(fn) − βP (fn))

)

.

If one takes a constant α, with initial data f0 = M0 + O(ε), one would have a much stronger AP
property

fn = Mn + O(ε2). (45)

This is between the strong AP property (7) and the exponential AP property (10). To derive the
typical strong AP property (7), one can choose a time dependent α which is O(ε) when f is close
to the equilibrium M . In practice the following choice works well

αn = αn(x) = min

{ ||fn − Mn||
∆t

,
1

2

}

, (46)

where the norm || · || is taken over the velocity space.
With this choice one can show that the strong AP property (7) is satisfied.

Remark 3.1 In the case of the Boltzmann equation, i.e., Q(f) is the Boltzmann operator (2) and
P (f) is the BGK operator, (44) gives,







f∗ − fn

∆t
+ v · ∇xfn =

Q(fn) − β(Mn − fn)

ε
+ (1 − α)

β(Mn+1 − f∗)

ε
,

fn+1 − f∗

∆t
= α

β(Mn+1 − fn+1)

ε
.

(47)

This is solved in a similar way as in the Filbet-Jin method. The result is

fn+1 = Mn+1+
1

(

1 + αβ∆t
ε

)(

1 + (1−α)β∆t
ε

)

(

fn − ∆tv · Dxfn − Mn+1 +
∆t

ε
(Q(fn) − β(Mn − fn))

)

.

(48)

Compared with the Filbet-Jin method (16), we simply change the bottom
(

1 + β∆t
ε

)

to a larger

number
(

1 + αβ∆t
ε

)(

1 + (1−α)β∆t
ε

)

. Therefore this successive penalty method is (at least) not worse

than the Filbet-Jin scheme in stability. The resulting scheme is strongly AP, since fn = Mn +O(ε)
for any n ≥ 1, as ε → 0. Besides, the positivity of fn+1 is preserved with the same technique and
conditions introduced in section 2.1.2.

Compared with the Dimarco-Pareschi method, the exact solution for operator P is not needed.
This scheme is applicable to a general P , as long as one can numerically solve the system implicitly.
With Q(f) the Landau operator (3) and P (f) the Fokker-Planck operator (24), (44) gives a first
order strongly AP scheme. Here β is given by (26).

11



Remark 3.2 On the computation cost.

In the case of solving the Boltzmann equation by the BGK penalization, the three methods require
the same amount of computation. The main cost is on the evaluation of the Boltzmann operator
(2), which is solved by a fast spectral method proposed in [24, 10].

In the case of solving the Landau equation by the Fokker-Planck penalization, compared to the
Filbet-Jin method, the successive penalty method requires one extra inversion of the Fokker-Planck
operator at each x in every time step. However the cost of evaluating the Landau operator (3) is
O(N log N) by the spectral method in [11]; while the cost of inverting the Fokker-Planck operator
(24) is O(N), with a conjugate-gradient method (see [20] for details). In practice the computational
cost does not increase significantly. As for the Dimarco-Pareschi method which requires the exact
solution of Fokker-Planck operator, the computation could be costly.

3.3 A second order successive penalty method

Both Filbet-Jin’s and Dimarco-Pareschi’s methods have second order extensions. To find a second
order successive method, we again start with the toy model (36).

Both methods apply a midpoint scheme in time discretization, i.e., the first order methods are
applied to find an approximation of f∗ ≈ f(tn+ 1

2 ). Then the non-stiff (or less stiff) part (37) is

evaluated explicitly at tn+ 1
2 by f∗. The Filbet-Jin method solves the stiff part (38) by a trapezoidal

rule; The Dimarco-Pareschi method solves it exactly. Therefore both methods give second order
accuracy.

We start with a lemma to illustrate the idea in designing a second order successive penalty
method with the strong AP property.

Lemma 3.3 Consider the ODE equation

du

dt
= f(u).

The method
u∗ − un

∆t
= α1f(un) + (1 − α1 − α2)f(u∗),

un+1 − u∗

∆t
= α2f(un+1),

is second order accurate if α1 and α2 satisfy

α1 ≥ 0, α2 ≥ 0, 1 − α1 − α2 ≥ 0,

α1 =
1
2 − α2 + (α2)

2

1 − α2
.

(49)

The proof is straightforward if one studies the local truncation error.

For the purpose of stability, we hope the weight on the explicit term f(un) could be as small as
possible, and the weight on the implicity terms f(u∗) and f(un+1) could be big.

One possible choice is α1 = α2 = 1
2 . Then 1 − α1 − α2 = 0. One obtains the trapezoidal rule.

Here we suggest the following choice

α1 =
√

2 − 1, α2 =
2 −

√
2

2
, 1 − α1 − α2 =

2 −
√

2

2
. (50)

This gives the smallest α1 satisfying the condition (49).
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Then the second order successive penalty method for the toy model is,






f∗ − fn

∆t/2
= −1 − β

ε
fn − β

ε
f∗,

f∗∗ − fn

∆t
= −1 − β

ε
f∗ − β

ε
(α1f

n + (1 − α1 − α2)f
∗∗),

fn+1 − f∗∗

∆t
= −α2

β

ε
fn+1,

(51)

where α1 and α2 are given by (50). Note that when computing f∗ in the first step, we still use the
the Filbet-Jin method.

Now we can give the second order strong AP schemes for kinetic equation (1).
The split version

One can apply the Strang splitting between the transport step and the relaxation step. The
transport step is solved by a second order TVD type scheme. The relaxation step is solved by the
same α-splitting technique as in the toy model (51).

We give the detailed algorithm for reader’s convenience. With fn given,






fn,1 − fn

∆t/2
= −v · ∇xfn,

fn,2 − fn,1

∆t/2
=

Q(fn,1) − βn,1P (fn,1)

ε
+

βn,1P (fn,2)

ε
,

fn,3 − fn,1

∆t
=

Q(fn,2) − βn,2P (fn,2)

ε
+

βn,2

ε
(α1P (fn,1) + (1 − α1 − α2)P (fn,3)),

fn,4 − fn,3

∆t
= α2

βn,2P (fn,4)

ε
,

fn+1 − fn,4

∆t/2
= −v · ∇xfn,4,

(52)

where P is the BGK operator (if Q is the Boltzmann operator) or the Fokker-Planck operator (if
Q is the Landau operator). Here α1 and α2 are given by (50). The choice of β is the same as in
the Filbet-Jin method.

The nonsplit version

The nonsplit version is a modification of the Filbet-Jin second order method.






f∗ − fn

∆t/2
+ v · ∇xfn =

Q(fn) − βnP (fn)

ε
+

βnP (f∗)

ε
,

f∗∗ − fn

∆t
+ v · ∇xf∗ =

Q(f∗) − β∗P (f∗)

ε
+

β∗

ε
(α1P (fn) + (1 − α1 − α2)P (f∗∗)),

fn+1 − f∗∗

∆t
= α2

β∗P (fn+1)

ε
.

(53)

The choice of α1 and α2 in (50) gives a stronger AP property as in (45). To have the strong AP
property (7), one can take

α2 = αn
2 (x) = min

{

||fn − Mn||
∆t

,
2 −

√
2

2

}

,

α1 =
1
2 − α2 + (α2)

2

1 − α2
.

(54)

Again the norm || · || is taken over the velocity space.
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Remark 3.4 Another choice of α1 and α2 is illustrated by the idea in [15]. Simply speaking, the
second order accuracy is not destroyed if one applies the splitting with α2 = O(∆t),

α1 =
1

2
, α2 =

∆t

tmax
.

4 Numerical Tests

We always use the following settings, unless otherwise specified. The computation is performed
on (x, v) ∈ [0, 1] × [−vmax, vmax]

2, with vmax = 8. We take Nx = 100 grid points x direction and
Nv = 32 grid points in each v direction. We apply the van Leer type slope limiter [23] on the
discretization of the transport parts, and take ∆t = ∆x

2vmax
, which guarantees the stability.

4.1 The AP property

We test the AP property of the first order Filbet-Jin method, Dimarco-Pareschi method and the
successive penalty methods, in both split and nonsplit versions. The Boltzmann equation is solved
with the BGK penalization. The AP properties for second order methods are similar.

The tests start with a non-equilibrium initial data,

f0(x, v) =
ρ0(x)

2πT 0(x)

1

2

(

e
−
|v−u0(x)|2

2T0(x) + e
−
|v+u0(x)|2

2T0(x)

)

, (55)

where






ρ0(x) =
2 + sin(2πx)

3
,

u0(x) =

(
1
5 cos(2πx)

0

)

,

T 0(x) =
3 + cos(2πx)

4
.

(56)

The periodic boundary condition is applied.

Figure 1 shows the time evolution of ||f − M ||1 (after the relaxation step) for the Dimarco-
Pareschi method and the split version of the successive penalty method, for different ε. The
solution from the Dimarco-Pareschi method has a much stronger compression effect on ||f − M ||
as given in (10), while the solution of the successive penalty method has exactly the (strong) AP
property we need.

Figure 2 shows the time evolution of ||f − M ||1 for the Filbet-Jin method and the nonsplit
version of successive method with α given by (46) and α = 1

2 , for different ε. The solution by
the Filbet-Jin method shows the relaxed AP property, with the initial transient time, while the
solution by the successive penalty method has the strong AP property we need. Note that with
the constant α = 1

2 , the method shows the over strong property

fn − Mn = O(ε2).

We also give the AP results for the Landau equation. Figure 3 shows the time evolution of
||f − M ||1 for different methods, with different ε. As in the Boltzmann equation, the Filbet-Jin
method gives a relaxed AP property, with an initial transient time. The split successive penalty
method with α = 1

2 and the nonsplit successive method with α given by (46) show the strong AP
property. The Dimarco-Pareschi method cannot be applied in this case.
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(a) The Dimarco-Pareschi method.
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(b) The split successive penalty method.

Figure 1: The time evolution of ||f − M ||1 for split methods for the Boltzmann equation.
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(b) The nonsplit successive penalty method with α given by (46).
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(c) The nonsplit successive penalty method with α = 1/2.

Figure 2: The time evolution of ||f − M ||1 for nonsplit methods for the Boltzmann equation.16
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(b) The split successive penalty method with α = 1/2.
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(c) The nonsplit successive penalty method with α by (46).

Figure 3: The time evolution of ||f − M ||1 for different methods with different ε, for the Landau
equation.
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(a) The split successive penalty method.
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(b) The nonsplit successive penalty method.

Figure 4: The test of convergence order with initial data (55)(56). This figure shows the l1 errors (57)
for two versions of the successive penalty method, with different ε.

4.2 Convergence order

Now we test the accuracy of the second order split successive method (52)(50) and the nonsplit
version (53) (54).

The non-equilibrium initial data (55)(56) are applied. We compute the solutions with grid
points Nx = 16, 32, 64, 128 respectively. As mentioned before, Nv = 32. After time tmax = 0.0625
we check the following error,

e∆x(f) = max
t∈(0,tmax)

||f∆x(t) − f2∆x(t)||p
||f2∆x(0)||p

. (57)

This can be considered as an estimation of the relative error in lp norm, where f∆x are the numerical
solutions computed from a grid of size ∆x = 1

Nx
. The numerical scheme is said to be k-th order if

e∆x ≤ C∆xk, for ∆x small enough.
Figure 4 gives the convergence order in l1 norm for the split version (left) and nonsplit version

of successive penalty method, with different ε. This shows that the scheme is second order in space
(hence in time) uniformly in ε, as expected.

4.3 The Riemann problem

Now we simulate the Sod shock tube problem, where the initial condition is f I = M I with

{

(ρ, u1, T ) = (1, 0, 1), if 0 ≤ x < 0.5,

(ρ, u1, T ) = (1/8, 0, 1/4), if 0.5 ≤ x ≤ 1.
(58)

The Neumann boundary condition in the x-direction is applied.
We apply the two versions of the successive penalty method on this problem. We take Nx = 100

and Nv = 32, ∆t = ∆x
2vmax

≈ 6 × 10−4.
Case I: ε = 0.01.
We compare this under-resolved solution to a fully resolved solution by the explicit second order

Runger-Kutta scheme, where we take Nx = 1000 and ∆t =
∆x

2vmax
≈ 6 × 10−5. We compute the

macroscopic variables ρ, u1 and T .
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Figure 5: The comparison of density, velocity and temperature at t = 0.2 between the resolved
computation by the explicit second order Runger-Kutta scheme (solid line) and the under-resolved
solutions by the second order successive penalty scheme in the split version (dots) and the nonsplit
version (circles). Here ε = 0.01.
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Figure 6: The comparison of density, velocity and temperature at t = 0.2 between the solution of Euler
system (solid line) and the under-resolved solutions by the second order successive penalty scheme in
the split version (dots) and the nonsplit version (circles), with ε = 10−6.

For such a value of ε, the problem is not stiff and this test is performed to compare the accuracy
of our schemes with the classical (second order) RungeCKutta method. The results are compared
at tmax = 0.2 and shown in Figure 5. Therefore, in the kinetic regime our second order method gives
the same accuracy as a second order fully explicit scheme without any additional computational
effort

Case II: ε = 10−6.

Now the under-resolved solution is compared to the solution of the Euler system by a second
order kinetic scheme, with Nx = 1000 and ∆t = 6×10−5. The macroscopic variables ρ, u1 and T are
compared at tmax = 0.2 and shown in Figure 6. The macroscopic quantities are well approximated
although the mesh size and time steps are bigger than ε. The computational cost has been reduced
significantly.

4.4 A mixing regime problem

Finally we apply the second order successive penalty method (53)(50) and (52)(50) to the mixing
regime problem ([13]). In this case the Knudsen number ε increases smoothly from ε0 to O(1),
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then jumps back to ε0,

ε(x) =







ε0 +
1

2
(tanh(16 − 20x) + tanh(−4 + 20x)) , x ≤ 0.7

ε0, x > 0.7

with ε0 = 0.0005. The picture of ε is shown in Figure 7. This problem involves mixed kinetic and
fluid regimes.

To avoid the influence from the boundary, we take periodic boundary condition in x. The initial
data are given by (55)(56).

In this test we compare the macroscopic variables obtained by our second order successive
penalty schemes (both the split and nonsplit versions) to the explicit Runger-Kutta scheme. For

the explicit Runger-Kutta scheme, we take Nx = 1000, ∆t =
∆x

2vmax
≈ 6× 10−5. For our successive

penalty schemes, we take Nx = 100, ∆t = ∆x
2vmax

= 6 × 10−4. The results are compared up to
tmax = 0.75 in Figure 8. Our scheme can capture the macroscopic behavior efficiently, with much
larger mesh size and time steps.

5 Conclusions

In this paper we presented a successive penalty based asymptotic-preserving (AP) scheme for ki-
netic equations. This is an intermediate method between the Filbet-Jin method and the Dimarco-
Pareschi method. It combines the advantages of both methods, with the same amount of computa-
tional cost. We presented a split version (42) and a nonsplit one (44), as well as their second order
extensions (52), (53). The new methods are strongly AP, positivity preserving, and applicable to
very general collision operators, including the Boltzmann equation and the Landau equation.
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Appendix A The value of κ in (22)

In this appendix we show it is not a problem to have a term Mn+1, which is close to 0 near the
artificial boundary {|v| = vmax} ⊂ V , in the denominator in the definition of κ (22). For this
purpose, we only need to show the ratio of Mn

Mn+1 does not “blow up” near the artificial boundary.

We give an estimation of Mn

Mn+1 :

Mn

Mn+1
=

ρnTn+1

ρn+1Tn
exp

{

− (v − un)2

2Tn
+

(v − un+1)2

2Tn+1

}

=
ρnTn+1

ρn+1Tn
exp

{

− (v − un)2

2Tn
+

(v − un+1)2

2Tn

}

exp

{

− (v − un+1)2

2Tn
+

(v − un+1)2

2Tn+1

}

=
ρnTn+1

ρn+1Tn
exp

{

− (2v − un − un+1)(un+1 − un)

2Tn

}

exp

{

− (v − un+1)2(Tn+1 − Tn)

2TnTn+1

}

.

=
ρnTn+1

ρn+1Tn
exp

{

− (2v − un − un+1)∆tDu

2Tn

}

exp

{

− (v − un+1)2∆tDT

2TnTn+1

}

,

with

Du =
un+1 − un

∆t
, DT =

Tn+1 − Tn

∆t
.

Note that the CFL condition gives

∆t =
∆x

2vmax
,

therefore

Mn

Mn+1
=

ρnTn+1

ρn+1Tn
exp

{

− Du

2Tn

(2v − un − un+1)

2vmax
∆x

}

exp

{

− DT

2TnTn+1

(v − un+1)2

2v2
max

vmax∆x

}

.

Noting |2v−un−un+1|
2vmax

≤ 2 and (v−un+1)2

2v2
max

≤ 2, the largest value is given by

Mn

Mn+1
≤ ρnTn+1

ρn+1Tn
exp {C1∆x} exp {C2vmax∆x} ,

where

C1 =
|Du|
Tn

, C2 =
|DT |

TnTn+1
.

When ∆x is small, one has

Mn

Mn+1
=

ρnTn+1

ρn+1Tn
(1 + O(∆x)) .

In practice, we take vmax = 8 and ∆x = 1
100 , the value of Mn/Mn+1 is close to ρnT n+1

ρn+1T n in the
whole domain.

In Figure 9, we give the numerical values of β, κ and β(1+∆tκ) in the first step of computation,
with the initial data (55)(56). The value of κ is not very large, and β(1 + ∆tκ) is very close to β.
This gives an illustration of the typical values of these coefficients.

References

[1] O. B. A.A. Arsen’ev, On the connection between a solution of the Boltzmann equation and a
solution of the Fokker-Planck-Landau equation, Math. USSR Sbornik, 69 (1991), pp. 465–478.

22



0.2 0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

1

x

 

 
β

0.2 0.4 0.6 0.8
0

5

10

15

20

x

 

 

κ

0.2 0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x

 

 
β
β(1+∆tκ)

Figure 9: The values of β, κ and β(1 + ∆tκ) in the first step of computation, with the initial data
(55)(56).

[2] C. Bardos, F. Golse, and D. Levermore, Fluid dynamic limits of kinetic equations. i.
formal derivations, Journal of Statistical Physics, 63 (1991), pp. 323–344.

[3] S. Boscarino, Implicit-explicit Runge-Kutta schemes for hyperbolic systems in the diffusion
limit, AIP Conference Proceedings, 1389 (2011), pp. 1315–1318.

[4] F. Bouchut, F. Golse, and M. Pulvirenti, Kinetic Equations and Asymptotic Theory,
Gauthiers-Villars.

[5] C. Cercignani, The Boltzmann equation and its applications, Springer-Verlag, 1988.

[6] P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltzmann
collision operator in the Coulomb case, Mathematical Models and Methods in Applied Sciences
(M3AS), 2 (1992), pp. 167–182.

[7] L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become
grazing, Transport Theory and Statistical Physics, 21 (1992), pp. 259–276.

[8] G. Dimarco and L. Pareschi, Exponential runge–kutta methods for stiff kinetic equations,
SIAM Journal on Numerical Analysis, 49 (2011), pp. 2057–2077.

[9] F. Filbet, J. W. Hu, and S. Jin, A numerical scheme for the quantum Boltzmann equation
with stiff collision terms, to appear in ESAIM-Math. Model. Numer. Anal.

[10] F. Filbet, C. Mouhot, and L. Pareschi, Solving the boltzmann equation in n log2 n,
SIAM J. Sci. Comput., 28 (2006), pp. 1029–1053.

[11] F. Filbet and L. Pareschi, A numerical method for the accurate solution of the Fokker-
Planck-Landau equation in the nonhomogeneous case, Journal of Computational Physics, 179
(2002), pp. 1 – 26.

[12] F. Filbet and A. Rambaud, Analysis of an asymptotic preserving scheme for relaxation
systems, preprint.

[13] J. Filbet and S. Jin, A class of asymptotic–preserving schemes for kinetic equations and
related problems with stiff sources, J. Comp. Phys., 229 (2010), pp. 7625–7648.

[14] T. Goudon, On boltzmann equations and fokkerplanck asymptotics: Influence of grazing col-
lisions, Journal of Statistical Physics, 89 (1997), pp. 751–776.

[15] T. Goudon, S. Jin, J. Liu, and B. Yan, Asymptotic-preserving schemes for kinetic–fluid
modeling of disperse two-phase flows, preprint.

[16] J. Hu, S. Jin, and B. Yan, A numerical scheme for the quantum Fokker-Planck-Landau
equation efficient in the fluid regime, preprint.

[17] S. Jin, Efficient asymptotic–preserving (AP) schemes for some multiscale kinetic equations,
SIAM J. Sci. Comput., 21 (1999), pp. 441–454.

23



[18] , Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations:
a review., Lecture Notes for Summer School on ”Methods and Models of Kinetic Theory”
(M&MKT), Porto Ercole (Grosseto, Italy), June 2010. Rivista di Matematica della UniversitÃ
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