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Abstract

We design an asymptotic-preserving scheme for the semiconductor Boltzmann equation which leads
to an energy-transport system for electron mass and internal energy as mean free path goes to zero. As
opposed to the classical drift-diffusion limit where the stiff collisions are all in one scale, new difficulties
arise in the two-scale stiff collision terms because the simple BGK penalization [15] fails to drive the
solution to the correct limit. We propose to set up a spatially dependent threshold on the penalization of
the stiffer collision operator such that the evolution of the solution resembles a Hilbert expansion at the
continuous level. Formal asymptotic analysis and numerical results confirm the efficiency and accuracy
of our scheme.

Keywords: semiconductor Boltzmann equation, energy-transport system, asymptotic-preserving scheme,
fast spectral method.

1 Introduction

The semiconductor Boltzmann equation describes the transport of charge carriers in semiconductor devices.
By incorporating the quantum mechanical effects semiclassically, it provides accurate description of the
physics at the kinetic level [32, 8, 27]. A non-dimensional form of this equation usually contains small
parameters such as the mean free path or time, which pose tremendous computational challenge since one
has to numerically resolve the small scales. To save the computational cost, in the past decades various
macroscopic models were derived from the Boltzmann equation based on different dominating effects. One
of the widely-used model is the drift-diffusion equation (a mass continuity equation for electrons or holes)
[34, 17]. Ideally, if the parameters in the kinetic equation are uniformly small in the entire domain of interest,
then it suffices to solve the macroscopic models [29, 9, 35]. In practical applications, however, the validity
of these models may break down in part of the domain and one has to resort to kinetic equations [5, 6]. To
handle such multiscale phenomena, a typical approach is to use domain decomposition [4, 30], but the task
of setting up a good interface condition coupling the two models at different scales can be highly non-trivial.
An alternative approach seeks a unified scheme for the kinetic equation such that when the parameter goes to
zero it automatically becomes a macroscopic solver. This design concept leads to the asymptotic-preserving
(AP) scheme [22], first proposed by S. Jin for transport equations in diffusive regimes [21].

In the semiconductor framework, the first AP scheme was introduced in [23] for the Boltzmann equation
with an anisotropic collision term. The scheme was further improved in [11]. Recently a high-order scheme
was constructed in [13], which relaxed the strict parabolic stability condition to a hyperbolic one. All
these works deal with a single, linear collision operator with smoothed kernel which uniquely defines an
equilibrium state. As a result, the corresponding macroscopic equation is in the form of a drift-diffusion
equation. Although this equation gives satisfactory simulation results for semiconductor devices on the
micrometer scale, it is not able to capture the hot-electron effects in submicron devices [28]. Some works in
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the high field scaling considered this effect, but it only makes sense for the situation where the field effect is
strong enough to balance the collision [25, 7].

In this work, we consider a more realistic semiconductor Boltzmann equation [1, 10]. By assuming the
elastic collision as dominant, and electron-electron correlation as sub-dominant effects, one can pass on the
asymptotic limit to obtain an energy-transport (ET) model, which is a system of conservation laws for
electron mass and internal energy with fluxes defined through a constitutive relation [26]. To design an AP
scheme for such kinetic equation, we face two-fold challenge: 1. the convection terms are stiff; 2. two stiff
collision terms live on different scales. The convection terms can be treated by an even-odd decomposition
as in [24, 23]. For the collision terms, due to their complicated forms, we choose to penalize them with a
suitable BGK operator [15]. However, unlike the usual collision operator with smoothed kernel, the leading
elastic operator has non-unique null space. Only when the electron-electron operator at next level takes
into effect, the solution can be eventually driven to a fixed equilibrium — a Fermi-Dirac distribution. A
closer examination of the asymptotic behavior of the numerical solution reveals that the penalization should
be performed wisely, otherwise it won’t capture the correct limit. To this end, we propose a thresholded
penalization scheme. Simply speaking, when a certain threshold is satisfied, we turn off the leading order
mechanism and move to the next order, which in some sense resembles the Hilbert expansion at the continuous
level. We will show that this new scheme, under certain assumptions, satisfies the following four properties
required in a standard AP scheme: let α denote the small parameter; ∆t, ∆x, and ∆k be the time step and
mesh size in spatial and wave vector (momentum) domain, then

1. for fixed α, it is consistent to the kinetic equation when ∆t,∆x,∆k → 0;

2. for fixed ∆t,∆x,∆k, it becomes a discretization to the limiting ET system when α→ 0;

3. it is uniformly stable for a wide range of α, from α = O(1) to α� 1;

4. implicit terms can be implemented explicitly (free of Newton-type solvers).

The rest of the paper is organized as follows. In the next section we give a brief review of the semiconductor
Boltzmann equation and the derivation of its ET limit in diffusive regimes. Section 3 is devoted to a detailed
description of our AP schemes. We first consider the spatially homogeneous case with an emphasis on the
two-scale collision terms, and then include the spatial dependence to treat the full problem. In either case,
the asymptotic property of the numerical solution is carefully analyzed. In Section 4 we present several
numerical examples to illustrate the efficiency, accuracy, and AP properties of the schemes. Finally, the
paper is concluded in Section 5.

2 The semiconductor Boltzmann equation and its energy-transport
limit

The Boltzmann transport equation that describes the evolution of electrons in the conduction band of a
semiconductor reads [32, 8, 27]

∂tf +
1

~
∇kε(k) · ∇xf +

q

~
∇xV (x, t) · ∇kf = Q(f), x ∈ Ω ⊂ Rd, k ∈ B ⊂ Rd, d = 2, 3, (2.1)

where f(x, k, t) is the electron distribution function of position x, wave vector k, and time t. ~ is the reduced
Planck constant, and q is the positive elementary charge. The first Brillouin zone B is the primitive cell
in the reciprocal lattice of the crystal. For simplicity, we will restrict to the parabolic band approximation,
where B can be extended to the whole space B = Rd, and the energy-band diagram ε(k) is given by

ε(k) =
~2

2m∗
|k|2,

with m∗ being the effective mass of electrons.

In principle, the electrostatic potential V (x, t) is produced self-consistently by the electron density with a
fixed ion background of doping profile h(x) through the Poisson equation:

ε0∇x(εr(x)∇xV (x, t)) = q(ρ(x, t)− h(x)), (2.2)
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where

ρ(x, t) :=

∫
Rd
f(x, k, t)

g

(2π)d
dk

is the electron density (the spin degeneracy g = 2s + 1, with s = 1/2 being the spin of electrons). ε0 and
εr(x) are the vacuum and the relative material permittivities. The doping profile h(x) takes into account
the impurities due to acceptor and donor ions in the semiconductor device.

The collision operator Q models three different effects:

Q = Qimp +Qph +Qee,

where Qimp and Qph account for the interactions between electrons and the lattice defects caused by ionized
impurities and crystal vibrations (also called phonons); Qee describes the correlations between electrons
themselves. We will specify their forms later.

2.1 The nondimensionalized semiconductor Boltzmann equation

In this paper, we are interested in a high energy scale [2, 1] at which the relative energy gain or loss of
electron energy during a phonon collision is very small, then it is valid to consider an elastic approximation
of the electron-phonon interactions Qph. Combining elastic collisions (Qimp, which is elastic by nature, and
the elastic part of Qph) and performing careful nondimensionalization on (2.1), one arrives at the following
scaled semiconductor Boltzmann equation in diffusive regime [10]:

∂tf +
1

α
(∇kε · ∇xf +∇xV · ∇kf) =

1

α2
Qel(f) +

1

α
Qee(f) +Qinel

ph (f), (2.3)

where the parameter α can be interpreted as the scaled mean-free path for elastic collisions. The energy-band
diagram ε(k) is now simply

ε(k) =
1

2
|k|2. (2.4)

The elastic collision Qel and the electron-electron collision Qee are given by (the exact form of Qinel
ph will not

be needed in the following discussion and is thus omitted):

Qel(f)(k) =

∫
Rd

Φel(k, k
′)δ (ε′ − ε) (f ′ − f) dk′, (2.5)

Qee(f)(k) =

∫
R3d

Φee(k, k1, k
′, k′1)δ(ε′ + ε′1 − ε− ε1)δ(k′ + k′1 − k − k1)

×
[
f ′f ′1(1− ηf)(1− ηf1)− ff1(1− ηf ′)(1− ηf ′1)

]
dk1dk

′dk′1, (2.6)

where δ is the Dirac measure, ε′, ε1, f ′, f1, · · · are short notations for ε(k′), ε(k1), f(x, k′, t), f(x, k1, t),
· · · .The scattering matrices Φel(k, k

′) is symmetric in k and k′: Φel(k, k
′) = Φel(k

′, k); Φee(k, k1, k
′, k′1)

is pairwise symmetric in four variables: Φee(k, k1, k
′, k′1) = Φee(k1, k, k

′, k′1) = Φee(k′, k′1, k, k1). They are
determined by the underlying interaction laws. The Poisson equation (2.2) becomes

C0∇x(εr(x)∇xV (x, t)) = ρ(x, t)− h(x), (2.7)

where C0 is the square of the scaled Debye length, and

ρ(x, t) =

∫
Rd
f(x, k, t) dk.

2.2 The energy-transport limit

This subsection is devoted to a formal derivation of the asymptotic limit of (2.3) as α → 0. Our approach,
following that of [10], is a combination of the Hilbert expansion and the moment method which mainly rely
on the properties of the collision operators Qel and Qee. To this end, we list them at first. They will also be
useful in designing numerical schemes.
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Proposition 1. [1]

1. For any “regular” test function g(k),∫
Rd
Qel(f)g dk = −1

2

∫
R2d

Φel(k, k
′)δ (ε′ − ε) (f ′ − f) (g′ − g) dkdk′.

In particular, for any g(ε(k)), ∫
Rd
Qel(f)g(ε) dk = 0.

2. Qel(f) is a self-adjoint, non-positive operator on L2(Rd).

3. The null space of Qel(f) is given by

N (Qel) = {f(ε(k)), ∀f}.

4. The orthogonal complement of N (Qel) is

N (Qel)
⊥ = {g(k) |

∫
Sε

g(k) dNε(k) = 0, ∀ε ∈ R},

where the integral is defined through the “coarea formula” [14]: for any “regular” functions f and
ε(k) : Rd → R, it holds ∫

Rd
f(k) dk =

∫
R

(∫
Sε

f(k) dNε(k)

)
dε. (2.8)

Here Sε = {k ∈ Rd, ε(k) = ε} denotes the surface of constant energy ε, dNε(k) is the coarea measure,
and N(ε) :=

∫
Sε
dNε(k) is the energy density-of-states. Under the parabolic band approximation (2.4),

(2.8) is just a spherical transformation:∫
Rd
f(k) dk =

∫ ∞
0

(∫
Sd−1

f(|k|σ)|k|d−2 dσ

)
dε,

and N(ε) =
∫
Sd−1 |k|d−2 dσ = m(Sd−1)|k|d−2.

5. The range of Qel is R(Qel) = N (Qel)
⊥. The operator is invertible as an operator from N (Qel)

⊥ onto
R(Qel) = N (Qel)

⊥. Its inverse is denoted by Q−1
el .

6. For any ψ(ε(k)), we have Qel(fψ) = ψQel(f) and Q−1
el (fψ) = ψQ−1

el (f).

Proposition 2. [2]

1. For any “regular” test function g(k),∫
Rd
Qee(f)g dk = −1

4

∫
R4d

Φee(k, k1, k
′, k′1)δ(ε′ + ε′1 − ε− ε1)δ(k′ + k′1 − k − k1)

×
[
f ′f ′1(1− ηf)(1− ηf1)− ff1(1− ηf ′)(1− ηf ′1)

]
(g′ + g′1 − g − g1) dkdk1dk

′dk′1.

In particular, we have the conservation of mass and energy∫
Rd
Qee(f) dk =

∫
Rd
Qee(f)ε dk = 0.

2. H-theorem: let H(f) = ln(f/(1− ηf)), then
∫
Rd Qee(f)H(f) dk ≤ 0, and if f = f(ε(k)),∫

Rd
Qee(f)H(f) dk = 0⇐⇒ f = M(ε(k))⇐⇒ Qee(f) = 0,

where

M(ε(k)) =
1

η

1

z−1e
ε(k)
T + 1

(2.9)

is the Fermi-Dirac distribution function [33]. The variables z and T are the fugacity and temperature.
Alternatively, M can be defined in terms of the chemical potential µ = T ln z and T .

4



We also need the properties of the operator Qee, an energy space counterpart of Qee: for any F (ε(k)),

Qee(F )(ε) :=

∫
Sε

Qee(F )(k) dNε(k).

Proposition 3. [1]

1. Conservation of mass and energy∫
R

Qee(F ) dε =

∫
R

Qee(F )ε dε = 0.

2. H-theorem: let H(F ) = ln(F/(1− ηF )), then
∫
R
Qee(F )H(F ) dε ≤ 0, and∫

R

Qee(F )H(F ) dε = 0⇐⇒ F = M(ε)⇐⇒ Qee(F ) = 0.

Now that the mathematical preliminaries are set up, we are ready to derive the macroscopic limit. The
main result is summarized in the following theorem.

Theorem 4. [10] In equation (2.3), when α→ 0, the solution f formally tends to a Fermi-Dirac distribution
function (2.9), with the position and time dependent fugacity z(x, t) and temperature T (x, t) satisfying the
so-called Energy-Transport (ET) model:

∂t

(
ρ
ρE

)
+

(
∇x · jρ
∇x · jE

)
−
(

0
∇xV · jρ

)
=

(
0

W inel
ph

)
, (2.10)

where the density ρ and energy E are defined as

ρ(z, T ) =

∫
Rd
f dk =

∫
Rd
M dk, E(z, T ) =

1

ρ

∫
Rd
fε dk =

1

ρ

∫
Rd
Mεdk; (2.11)

the fluxes jρ and jE are given by(
jρ(z, T )
jE(z, T )

)
= −

(
D11 D12

D21 D22

)( ∇xz
z −

∇xV
T

∇xT
T 2

)
(2.12)

with the diffusion matrices

Dij =

∫
Rd
∇kε⊗Q−1

el (−∇kε)M(1− ηM)εi+j−2 dk; (2.13)

and the energy relaxation operator W inel
ph is

W inel
ph (z, T ) =

∫
Rd
Qinel

ph (M)ε dk. (2.14)

Proof. Inserting the Hilbert expansion f = f0 + αf1 + α2f2 + . . . into equation (2.3) and collecting equal
powers of α leads to

O(α−2) : Qel(f0) = 0, (2.15)

O(α−1) : Qel(f1) = ∇kε · ∇xf0 +∇xV · ∇kf0 −Qee(f0). (2.16)

From (2.15) and Proposition 1 (3), we know there exists some function F such that

f0(x, k, t) = F (x, ε(k), t).

Plugging f0 into (2.16):
Qel(f1) = ∇kε · (∇xF +∇xV ∂εF )−Qee(F ). (2.17)
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The solvability condition for f1 (Proposition 1 (4–5)) implies∫
Sε

∇kε · (∇xF +∇xV ∂εF ) dNε(k) =

∫
Sε

Qee(F ) dNε(k).

Clearly the left hand side of above equation is equal to zero (∇kε is odd in k), so∫
Sε

Qee(F ) dNε(k) = Qee(F ) = 0.

By Proposition 3 (2), we know that F is a Fermi-Dirac distribution M with position and time dependent
z(x, t) and T (x, t). Therefore, Qee(F ) itself is equal to zero by Proposition 2 (2), and (2.17) reduces to

Qel(f1) = ∇kε · (∇xM +∇xV ∂εM) .

Then using Proposition 1 (5–6), we have

f1 = −Q−1
el (−∇kε) · (∇xM +∇xV ∂εM) . (2.18)

Going back to the original equation (2.3), multiplying both sides by (1, ε(k))T and integrating w.r.t. k gives:∫
Rd

[
∂tf +

1

α
(∇kε · ∇xf +∇xV · ∇kf)

](
1
ε

)
dk =

∫
Rd

[
1

α2
Qel(f) +

1

α
Qee(f) +Qinel

ph (f)

](
1
ε

)
dk.

(2.19)

Terms involving Qel(f) and Qee(f) vanish due to Propositions 1 (1) and 2 (1). Since Qinel
ph conserves mass

[8], (2.19) simplifies to

∂t

(
ρ
ρE

)
+

∫
Rd

1

α
(∇kε · ∇xf +∇xV · ∇kf)

(
1
ε

)
dk =

(
0

W inel
ph (f)

)
, (2.20)

where W inel
ph (f) =

∫
Rd Q

inel
ph (f)ε dk.

From the previous discussion, we know f = f0 + αf1 + . . . with f0 being the Fermi-Dirac distribution
(2.9), and f1 given by (2.18). Plugging f into (2.20), to the leading order we have (O(α−1) term drops out
since f0 is an even function in k):

∂t

(
ρ
ρE

)
+

∫
Rd

(∇kε · ∇xf1 +∇xV · ∇kf1)

(
1
ε

)
dk =

(
0

W inel
ph (M)

)
. (2.21)

Utilizing the special form of M , one can rewrite f1 as

f1 = −Q−1
el (−∇kε) ·

(
∇xz
z
− ∇xV

T
+ ε
∇xT
T 2

)
M(1− ηM).

Then a simple manipulation of (2.21) yields the ET system (2.10).

The ET model (2.10) is widely used in practical and industrial applications (see [28] for a review and
references therein). It can also be derived from the Boltzmann equation through the so-called SHE (Spherical
Harmonics Expansion) model [16]. In either case, the rigorous theory behind the formal limit is still an open
question.

Remark 5. If the electron-electron interaction Qee is assumed as one of the dominant terms in (2.3), i.e., the
same order as elastic collision Qel (which could be the physically relevant situation for very dense electrons),
one can still derive the ET model (2.10) via a similar procedure [2], but the diffusion coefficients Dij are
different. A rigorous result is available in this case [3].
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Remark 6. If we consider even longer time scale such that the energy relaxation term W inel
ph equilibrates the

electron temperature T to lattice temperature TL, and further assume that M is the classical Maxwellian,
then (2.10) reduces to a single equation

∂tρ+∇x ·
[
−D11

(
∇xρ
ρ
− ∇xV

TL

)]
= 0.

This is the classical drift-diffusion model [36, 34].

Remark 7. Unlike the classical statistics, given macroscopic variables ρ and E (2.11), finding the corre-
sponding Fermi-Dirac distribution (2.9) is not a trivial issue. Under the parabolic approximation (2.4), ρ
and E are related to z and T via [18] 

ρ =
(2πT )

d
2

η
F d

2
(z),

E =
d

2
T
F d

2 +1(z)

F d
2
(z)

,
(2.22)

where Fν(z) is the Fermi-Dirac function of order ν

Fν(z) =
1

Γ(ν)

∫ ∞
0

xν−1

z−1ex + 1
dx, 0 < z <∞, (2.23)

and Γ(ν) is the Gamma function. For small z (0 < z < 1), the integrand in (2.23) can be expanded in powers
of z:

Fν(z) =

∞∑
n=1

(−1)n+1 z
n

nν
= z − z2

2ν
+
z3

3ν
− . . . .

Thus, when z � 1, Fν(z) behaves like z itself and one recovers the classical limit.

3 Asymptotic-preserving (AP) schemes for the semiconductor Boltz-
mann equation

Equation (2.3) contains three different scales. To overcome the stiffness induced by the O(α−2) and O(α−1)
terms, a fully implicit scheme would be desirable. However, neither the collision operators nor the convection
terms are easy to solve implicitly. Our goal is to design an appropriate numerical scheme that is uniformly
stable in both kinetic and diffusive regimes, i.e., works for all values of α ranging from α ∼ O(1) to α� 1,
while the implicit terms can be treated explicitly.

We will first consider a spatially homogeneous case with an emphasis on the collision operators, and then
include the spatial dependence to treat the convection terms. To facilitate the presentation, we always make
the following assumptions without further notice:

1. The inelastic collision operator Qinel
ph in (2.3) is assumed to be zero, since it is the weakest effect and

its appearance won’t bring extra difficulties to numerical schemes.

2. The scattering matrices Φel and Φee are rotationally invariant:

Φel(k, k
′) = Φel(|k|, |k′|), Φee(k, k1, k

′, k′1) = Φee(|k|, |k1|, |k′|, |k′1|).

Then it is not difficult to verify that (see Proposition 1 (4))

Qel(f)(k) = λel(ε)([f ](ε)− f(k)), (3.1)

where

λel(ε(k)) :=

∫
Rd

Φel(k, k
′)δ(ε′ − ε) dk′ = Φel(|k|, |k|)N(ε),
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and [f ](ε(k)) is the mean value of f over sphere Sε:

[f ](ε(k)) :=
1

N(ε)

∫
Sε

f(k) dNε(k).

In particular, for any odd function f(k),

Qel(f)(k) = −λel(ε)f(k), Q−1
el (f)(k) = − 1

λel(ε)
f(k).

This observation is crucial in designing our AP schemes.

3.1 The spatially homogeneous case

In the spatially homogeneous case, equation (2.3) reduces to

∂tf =
1

α2
Qel(f) +

1

α
Qee(f), (3.2)

where f only depends on k and t. An explicit discretization of (3.2), e.g., the forward Euler scheme, suffers
from severe stability constraints: ∆t has to be smaller than O(α2). Implicit schemes do not have such a
restriction, but require some sort of iteration solvers for Qel and Qee which can be quite complicated.

To tackle these two stiff terms, we adopt the penalization idea in [15], i.e., penalize both Qel and Qee by
their corresponding “BGK” operators:

∂tf =
Qel(f)− βel(Mel − f)

α2
+
βel(Mel − f)

α2
+
Qee(f)− βee(Mee − f)

α
+
βee(Mee − f)

α
. (3.3)

Using the properties of Qee and Qel from the last section, Mee can be naturally chosen as the Fermi-Dirac
distribution M (in the homogeneous case ρ and E are conserved, so M is an absolute Maxwellian and can
be obtained from the initial condition), whereas Mel can in principle be any function of ε such that it shares
the same density and energy as f (the choice of Mel is not essential as we shall see, and we will get back to
this when we consider the spatially inhomogeneous case). As the goal of penalization is to make the residue
Q•(f) − β•(M• − f) as small as possible so that it is non-stiff or less stiff, and Qel, Qee can be expressed
symbolically as

Qel(f)(k) = Q+
el(f)(ε)− λel(ε)f(k); Qee(f)(k) = Q+

ee(f)(k)−Q−ee(f)(k)f(k),

we choose
βel ≈ max

ε
λel(ε); βee ≈ max

k
Q−ee(f)(k). (3.4)

Other choices are also possible [15]. Generally speaking, we only need the coefficient to be a rough estimate
of the Frechet derivative of the collision operator around equilibrium.

Therefore, a first-order IMEX scheme for (3.3) is written as

fn+1 − fn

∆t
=
Qel(f

n)− βel(Mel − fn)

α2
+
βel(Mel − fn+1)

α2
+
Qee(fn)− βee(M − fn)

α
+
βee(M − fn+1)

α
.

(3.5)

3.1.1 Asymptotic properties of the numerical solution

To better understand the asymptotic behavior of the numerical solution, in this subsection we assume that
Qee(f) = M − f . Then scheme (3.5) becomes

fn+1 − fn

∆t
=
Qel(f

n)− βel(Mel − fn)

α2
+
βel(Mel − fn+1)

α2
+

(1− βee)(M − fn)

α
+
βee(M − fn+1)

α
.
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This is equivalent to

fn+1 =
1 + ∆t

α2 (βel − λel) + ∆t
α (βee − 1)

1 + ∆t
α2 βel + ∆t

α βee

fn +
∆t
α2

1 + ∆t
α2 βel + ∆t

α βee

Q+
el(f

n) +
∆t
α

1 + ∆t
α2 βel + ∆t

α βee

M

=
1 + ∆t

α2 (βel − λel) + ∆t
α (βee − 1)

1 + ∆t
α2 βel + ∆t

α βee

fn + some function of ε.

Iteratively, it yields

fn =

(
1 + ∆t

α2 (βel − λel) + ∆t
α (βee − 1)

1 + ∆t
α2 βel + ∆t

α βee

)n
f0 + some function of ε.

So when α is small, for arbitrary initial data f0 and any integer m, there exists some integer N , s.t.

fn ≤ O(αm) + some function of ε, for n > N, (3.6)

which means that fn can be arbitrarily close to the null space of Qel:

Qel(f
n) ≤ O(αm), for n > N. (3.7)

At this stage, if we examine the distance between f and M , we found that

fn+1 −M =
1 + ∆t

α2 βel + ∆t
α (βee − 1)

1 + ∆t
α2 βel + ∆t

α βee

(fn −M) +
∆t
α2

1 + ∆t
α2 βel + ∆t

α βee

Qel(f
n), (3.8)

so
|fn+1 −M | ≤ r|fn −M |+O(αm), for n > N,

where

r =

∣∣∣∣∣1 + ∆t
α2 βel + ∆t

α (βee − 1)

1 + ∆t
α2 βel + ∆t

α βee

∣∣∣∣∣ .
Then for proper βee, we have 0 < r < 1 and

|fn+n1 −M | ≤ rn1 |fn −M |+O(αm), for n > N. (3.9)

This implies that no matter what the initial condition is, f will eventually be driven to the desired Fermi-
Dirac distribution, but the convergence rate can be rather slow for small α. What even worse is, when
α→ 0, r → 1, we see from (3.8), (3.6) that f will stay around some function of ε, but nothing guarantees it
is M ! This violates the property 2 mentioned in the Introduction.

On the other hand, we know from (3.7) that Qel(f
n) can be arbitrarily small after some time. What if we

just set it equal to zero afterwards? Dropping this term as well as its penalization leads to

fn+1 − fn

∆t
=

(1− βee)(M − fn)

α
+
βee(M − fn+1)

α
,

which is

fn+1 −M =
1 + ∆t

α (βee − 1)

1 + ∆t
α βee

(fn −M). (3.10)

Hence as long as βee > 1/2, fn will converge to M regardless of the initial condition. Compared with (3.8),
this one has much faster convergence rate.
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3.1.2 The thresholded AP scheme

The above simple analysis illustrates that the penalization idea [15] should be applied wisely, especially when
there are stiff terms on different scales. Back to the original equation (3.2), we propose to solve it as follows.

At time step tn+1, check the norm of Qel(f
n) in k:

• if ‖Qel(f
n)‖ > δ, apply scheme (3.5);

• otherwise, apply (3.5) with Qel(f
n) = βel = 0.

As explained previously, the threshold can be chosen based on the property we expect in (3.7), say, δ = αm,
some m > 2. However, in practice, as any numerical solver of Qel has certain accuracy, we therefore set

δ = O(∆kl), (3.11)

where l denotes the order of accuracy of the numerical solver for Qel.

Remark 8. The choice of threshold (3.11) does not violate the consistency of our method, since when
∆k → 0, we have δ → 0, and we are back to the original scheme (3.5) whose consistency to (3.2) is not a
problem (i.e. the scheme satisfies the property 1 in the Introduction).

3.2 The spatially inhomogeneous case

We now include the spatial dependence to treat the full problem (2.3). To handle the newly added stiff
convection terms, we follow the idea of [23] to form it into a set of parity equations. Denote f+ = f(x, k, t),
f− = f(x,−k, t), then they solve

∂tf
+ +

1

α

(
∇kε · ∇xf+ +∇xV · ∇kf+

)
=

1

α2
Qel(f

+) +
1

α
Qee(f+),

∂tf
− − 1

α

(
∇kε · ∇xf− +∇xV · ∇kf−

)
=

1

α2
Qel(f

−) +
1

α
Qee(f−).

Now write

r(x, k, t) =
1

2
(f+ + f−), j(x, k, t) =

1

2α
(f+ − f−),

we have

∂tr +∇kε · ∇xj +∇xV · ∇kj =
Qel(r)

α2
+
Qee(f+) +Qee(f−)

2α
, (3.12)

∂tj +
1

α2
(∇kε · ∇xr +∇xV · ∇kr) = −λel

α2
j +
Qee(f+)−Qee(f−)

2α2
, (3.13)

where we used the fact that j is an odd function in k, thus Qel(j) = −λelj.

For (3.12–3.13), the same penalization as in the homogenous case suggests

∂tr +∇kε · ∇xj +∇xV · ∇kj =
Qel(r)− βel(Mel − r)

α2
+
βel(Mel − r)

α2

+
Qee(f+) +Qee(f−)− 2βee(M − r)

2α
+
βee(M − r)

α
,

∂tj +
1

α2
(∇kε · ∇xr +∇xV · ∇kr) = −λel

α2
j +
Qee(f+)−Qee(f−) + 2βeeαj

2α2
− βee

α
j.

Note here M = M(x, ε, t) is the local Fermi-Dirac distribution, and Mel = Mel(x, ε, t) is some function of ε
whose form will be specified later. The coefficients βel and βee are chosen the same as in (3.4), except that
βee can also be made space dependent.

The above equations can be formed into a diffusive relaxation system [24]:

∂tr +∇kε · ∇xj +∇xV · ∇kj = G1(r, j) +
βel(Mel − r)

α2
+
βee(M − r)

α
, (3.14)

∂tj + θ (∇kε · ∇xr +∇xV · ∇kr) = G2(r, j)− βee

α
j − 1

α2

[
λelj + (1− α2θ)(∇kε · ∇xr +∇xV · ∇kr)

]
,

(3.15)
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where

G1(r, j) =
Qel(r)− βel(Mel − r)

α2
+
Qee(f+) +Qee(f−)− 2βee(M − r)

2α
, (3.16)

G2(r, j) =
Qee(f+)−Qee(f−) + 2βeeαj

2α2
, (3.17)

and 0 ≤ θ(α) ≤ 1/α2 is a control parameter simply chosen as θ(α) = min
{

1, 1/α2
}

.

A first-order IMEX scheme for the system (3.14–3.15) thus reads

rn+1 − rn

∆t
+∇kε · ∇xjn +∇xV n · ∇kjn = G1(rn, jn) +

βel(M
n+1
el − rn+1)

α2
+
βee(Mn+1 − rn+1)

α
, (3.18)

jn+1 − jn

∆t
+ θ (∇kε · ∇xrn +∇xV n · ∇krn) = G2(rn, jn)− βee

α
jn+1

− 1

α2
[λelj

n+1 + (1− α2θ)(∇kε · ∇xrn+1 +∇xV n+1 · ∇krn+1)]. (3.19)

3.2.1 Asymptotic properties of the numerical solution

Leaving aside other issues such as the spatial discretization, let us for the moment again assume that
Qee(f) = M − f , then (3.18–3.19) simplify to

rn+1 − rn

∆t
+∇kε · ∇xjn +∇xV n · ∇kjn =

Qel(r
n)− βel(M

n
el − rn)

α2
+
βel(M

n+1
el − rn+1)

α2

+
(1− βee)(Mn − rn)

α
+
βee(Mn+1 − rn+1)

α
,

jn+1 − jn

∆t
+ θ (∇kε · ∇xrn +∇xV n · ∇krn) =

βee − 1

α
jn − βee

α
jn+1

− 1

α2
[λelj

n+1 + (1− α2θ)(∇kε · ∇xrn+1 +∇xV n+1 · ∇krn+1)].

The scheme for j is actually

jn+1 =
1 + ∆t

α (βee − 1)

1 + ∆t
α2 λel + ∆t

α βee

jn −
∆t
α2

1 + ∆t
α2 λel + ∆t

α βee

(∇kε · ∇xrn+1 +∇xV n+1 · ∇krn+1)

+
θ∆t

1 + ∆t
α2 λel + ∆t

α βee

[(
∇kε · ∇xrn+1 +∇xV n+1 · ∇krn+1

)
− (∇kε · ∇xrn +∇xV n · ∇krn)

]
.

When α� 1 (so θ = 1), suppose all functions are smooth, we have

jn+1 = − 1

λel
(∇kε · ∇xrn+1 +∇xV n+1 · ∇krn+1) +O(α).

The scheme for r results in

rn+1 =
1 + ∆t

α2 (βel − λel) + ∆t
α (βee − 1)

1 + ∆t
α2 βel + ∆t

α βee

rn − ∆t

1 + ∆t
α2 βel + ∆t

α βee

(∇kε · ∇xjn +∇xV n · ∇kjn)

+
∆t
α2

1 + ∆t
α2 βel + ∆t

α βee

Q+
el(r

n) +
∆t
α βee

1 + ∆t
α2 βel + ∆t

α βee

(Mn+1 −Mn)

+
∆t
α

1 + ∆t
α2 βel + ∆t

α βee

Mn +
∆t
α2 βel

1 + ∆t
α2 βel + ∆t

α βee

(Mn+1
el −Mn

el)

=
1 + ∆t

α2 (βel − λel) + ∆t
α (βee − 1)

1 + ∆t
α2 βel + ∆t

α βee

rn +O(α2) + some function of ε.
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Iteratively, this gives

rn =

(
1 + ∆t

α2 (βel − λel) + ∆t
α (βee − 1)

1 + ∆t
α2 βel + ∆t

α βee

)n
r0 +O(α2) + some function of ε.

Clearly the first term on the right hand side will be damped down as time goes by no matter what the initial
condition is. After several steps, we have

rn = O(α2) + some function of ε, for n > N,

which implies
Qel(r

n) = O(α2), for n > N.

At this stage, if we continue to penalize Qel(r
n), similarly as before,

rn+1 −Mn+1 =
1 + ∆t

α2 βel + ∆t
α (βee − 1)

1 + ∆t
α2 βel + ∆t

α βee

(rn −Mn) +
∆t
α2

1 + ∆t
α2 βel + ∆t

α βee

Qel(r
n)

− ∆t

1 + ∆t
α2 βel + ∆t

α βee

[
(∇kε · ∇xjn +∇xV n · ∇kjn) +

Mn+1 −Mn

∆t

]

−
∆t2

α2 βel

1 + ∆t
α2 βel + ∆t

α βee

(
Mn+1 −Mn

∆t
−
Mn+1

el −Mn
el

∆t

)
=

1 + ∆t
α2 βel + ∆t

α (βee − 1)

1 + ∆t
α2 βel + ∆t

α βee

(rn −Mn) +O(α2 + ∆t), for n > N. (3.20)

From (3.20) we see that r will converge to M with a dominant O(∆t) error. Therefore, a good choice of Mel

is
Mel = M,

which will not only simplify the scheme, but also improve the asymptotic error from O(∆t) to O(α2).

Moreover, like the spatially homogeneous case, we suffer from the same problem that the convergence rate
is too slow for small but finite α. To accelerate the convergence, we again choose some threshold δ as in
(3.11) such that once ‖Qel(r

n)‖(x) < δ (check it for every x), we set Qel(r
n) = 0 and turn off its penalization.

Then (3.20) becomes

rn+1 −Mn+1 =
1 + ∆t

α (βee − 1)

1 + ∆t
α βee

(rn −Mn)− ∆t

1 + ∆t
α βee

[
(∇kε · ∇xjn +∇xV n · ∇kjn) +

Mn+1 −Mn

∆t

]
=

1 + ∆t
α (βee − 1)

1 + ∆t
α βee

(rn −Mn) +O(α),

and we gain much faster convergence rate.

3.2.2 The thresholded semi-discrete AP scheme

Based on the discussion above, we integrate the thresholding idea into (3.18–3.19) to propose the following
semi-discrete AP scheme.

At time step tn+1, given fn = (f+)n, (f−)n, rn, jn, ρn, En, and V n:

• Step 1: Compute Mn+1 used in (3.18) and V n+1 in (3.19).

Although (3.18) appears implicit (recall Mel = M), Mn+1 can be computed explicitly similarly as in
[15]. Specifically, we multiply both sides of (3.18) by (1, ε(k))T and integrate w.r.t. k. Utilizing the
conservation properties of Qel, Qee, and the BGK operator, we get∫

Rd
rn+1

(
1
ε

)
dk =

∫
Rd
rn
(

1
ε

)
dk −∆t

∫
Rd

(∇kε · ∇xjn +∇xV n · ∇kjn)

(
1
ε

)
dk.
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Note that by definition ∫
Rd
r

(
1
ε

)
dk =

∫
Rd
f

(
1
ε

)
dk =

(
ρ
ρE

)
,

so the preceding scheme just gives an evolution of the macroscopic variables(
ρn+1

ρn+1En+1

)
=

(
ρn

ρnEn
)
−∆t

∫
Rd

(∇kε · ∇xjn +∇xV n · ∇kjn)

(
1
ε

)
dk.

Once ρn+1 and En+1 are computed, we can invert the system (2.22) to get zn+1 and Tn+1 (details
see [18]). Plugging them into (2.9) then defines Mn+1. Given ρn+1, V n+1 can be easily obtained by
solving the Poisson equation (2.7).

• Step 2: Compute rn+1.

At every spatial point x, check the norm of Qel(r
n) in k:

– if ‖Qel(r
n)‖(x) > δ, apply scheme (3.18);

– otherwise, apply (3.18) with Qel(r
n)(x) = βel = 0.

• Step 3: Employ scheme (3.19) to get jn+1.

• Step 4: Reconstruct fn+1 = (f+)n+1 = rn+1 + αjn+1 and (f−)n+1 = rn+1 − αjn+1.

3.2.3 Space discretization

We finally include the spatial discretization to the previous semi-discrete scheme to construct a fully-discrete
scheme. We will show that when α→ 0, it automatically becomes a discretization for the limiting ET model
(2.10), thus is Asymptotic Preserving (satisfies the property 2 in the Introduction).

For the sake of brevity, we will present the method in a splitting framework, namely, separating the explicit
and implicit parts in (3.18–3.19). This is equivalent to an unsplit version since our scheme is of an IMEX
type. We also assume a slab geometry: x ∈ Ω ⊂ R1. Extension to higher dimensions is straightforward.

Let rnl,m, jnl,m denote the numerical approximation of r(xl, km, t
n) and j(xl, km, t

n), where 0 < l ≤ Nx,

0 < m = (m1, ...,md) ≤ Nd
k , Nx and Nk are the number of points in x and k directions respectively. We

have at time step tn+1:

• Step 1: Solve the explicit part of (3.18–3.19) to get r∗l,m and j∗l,m. The thresholding idea is embedded
in this step when computing G1(rnl,m, j

n
l,m): if ‖Qel(r

n)‖ < δ at xl, set Qel(r
n)(xl) = 0. For convection

terms, we use the upwind scheme with a slope limiter [31] on the Riemann invariants.

• Step 2: Solve for the macroscopic quantities ρ∗l and E∗l and thus define M∗l,m and V ∗l,m.

ρ∗l =
∑
m

r∗l,m∆kd, E∗l =
1

2

∑
m

r∗l,m|km|2∆kd/ρ∗l .

Finding M∗l,m is then exactly the same as in the semi-discrete scheme. V ∗l,m is solved from a simple
finite-difference discretization of the Poisson equation.

• Step 3: Solve the implicit part of (3.18–3.19) to get rn+1
l,m and jn+1

l,m (if the threshold is satisfied in Step
1, set βel = 0 in r’s equation as well):

rn+1
l,m − r∗l,m

∆t
=
βel(M

n+1
l,m − rn+1

l,m )

α2
+
βee(Mn+1

l,m − rn+1
l,m )

α
, (3.21)

jn+1
l,m − j∗l,m

∆t
= − 1

α2

[
λelj

n+1
l,m + (1− α2θ)

(
km1

rn+1
l+1,m − r

n+1
l−1,m

2∆x
+ (∂xV )n+1

l

rn+1
l,m+1 − r

n+1
l,m−1

2∆k

)]

− βee

α
jn+1
l,m . (3.22)
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First, it is easy to see that macroscopic quantities ρ∗l and E∗l remain unchanged during this step (the
right hand side of (3.21) is conservative). Therefore, the previously obtained M∗l,m and V ∗l,m are in fact

Mn+1
l,m and V n+1

l,m . From (3.21) one can easily obtain rn+1
l,m , and then (3.22) directly gives rise to jn+1

l,m .

3.2.4 Asymptotic properties of the fully discrete scheme

As already shown in Section 3.2.1, sending α to zero in (3.18–3.19) for Qee = M − f leads to

rn+1 = Mn+1,

jn+1 = − 1

λel

(
∇kε · ∇xrn+1 +∇xV n+1 · ∇krn+1

)
,

which in 1-D fully discrete form read

rn+1
l,m = Mn+1

l,m ,

jn+1
l,m = − 1

λel

(
km1

rn+1
l+1,m − r

n+1
l−1,m

2∆x
+ (∂xV )n+1

l

rn+1
l,m+1 − r

n+1
l,m−1

2∆k

)
.

Plugging these relations into the discrete scheme of r resulted from the last subsection, we get (after multi-
plication by (1, ε(k))T and integration w.r.t. k):

1

∆t

(
ρn+1 − ρn

ρn+1En+1 − ρnEn
)
−
∫
Rd

1

λel(ε)

{
km1

2∆x

[
km1

Mn
l+2,m − 2Mn

l,m +Mn
l−2,m

2∆x

+(∂xV )nl+1

Mn
l+1,m+1 −Mn

l+1,m−1

2∆k
− (∂xV )nl−1

Mn
l−1,m+1 −Mn

l−1,m−1

2∆k

]
−|km1

|
2∆x

(
Mn
l+1,m − 2Mn

l,m +Mn
l−1,m

)
+

(∂xV )nl
2∆k

[
(∂xV )nl

Mn
l,m+2 − 2Mn

l,m +Mn
l,m−2

2∆k

+km1+1

Mn
l+1,m+1 −Mn

l−1,m+1

2∆x
− km1−1

Mn
l+1,m−1 −Mn

l−1,m−1

2∆x

]
−|(∂xV )nl |

2∆k

(
Mn
l,m+1 − 2Mn

l,m +Mn
l,m−1

)}( 1
ε

)
dk = 0, (3.23)

which is a kinetic scheme [12] for the ET model (2.10) (compare with (2.21) and (2.18)). Here for notation
simplicity, we only consider the upwind scheme, the slope limiter can be added in the same manner.

4 Numerical examples

In this section, we present several numerical examples using our AP schemes. In order to perform the tests,
we need accurate numerical solvers for the collision operators. Since the electron-electron interaction Qee

falls into a special case of the quantum Boltzmann operator, we adopt the fast spectral method developed in
[20]. For the elastic collision Qel, it is desirable to compute it in the same spectral framework but the direct
evaluation would be very expensive. Here we introduce a fast approach by exploring the low-rank structure
in the coefficient matrix. Details are gathered in the Appendix.

In the following, we always assume k ∈ [−Lk, Lk]2 in 2-D and x ∈ [0, Lx] in 1-D. Nk is the number of
points in each k direction and Nx is the number of spatial discretization.

4.1 The spatially homogeneous case

We first check the behavior of the solution in the spatially homogeneous case. Consider the non-equilibrium
initial data

f0(k1, k2) =
1

π

[
(k1 − 1)2 + (k2 − 0.5)2

]
e−[(k1−1)2+(k2−0.5)2].
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The parameters are chosen as α = 1e− 3 (diffusive regime), η = 10 (strong quantum effect; the equilibrium
is very different from the classical Maxwellian), Lk = 10.5, Nk = 64. Under this condition, a stable explicit
scheme would require ∆t = O(1e − 6), while our scheme gives fairly good results with much coarser time
step ∆t = 1. Figure 1 shows the AP error in L∞-norm

errorAPnL∞ = max
k1,k2

|fn −Mn| (4.1)

with time. Here we can see that during the initial period of time, this error decreases very slowly as explained
in (3.6): f is only driven to some function of ε, not M , because of the dominating mechanism Qel. Once
the threshold comes into play as shown in (3.10), f will start to converge to M at a reasonable speed, which
appears as a sharp transition in dashed curve in Figure 1. As a comparison, the solid curve is obtained by
the regular AP scheme without threshold, the error decreases very slowly as in (3.9). Figure 2 displays the
evolution of f at different times, where we clearly see that f first transits from non-radially symmetric to
radially symmetric and then moves toward the desired Fermi-Dirac distribution M .
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Figure 1: Plots of the asymptotic error (4.1) versus time. Here η = 10, ∆t = 1, Lk = 10.5, and Nk = 64.

4.2 The spatially inhomogeneous case

In the rest of simulation, we always take Lx = 1, Lk = 9.2, and assume periodic boundary condition in x and
zero boundary in k. The time step ∆t is chosen to only satisfy the parabolic CFL condition: ∆t = O(∆x2)
(independent of α).

4.2.1 AP property

Consider equation (2.3) with non-equilibrium initial data

f0(x, k1, k2) =
1

2π

(
e−80(x−Lx2 )2 + 1

)(
e−[(k1−1)2+k22] + e−[(k1+1)2+k22]

)
.

The electric field ∂xV is set to be one.

We check the asymptotic property by looking at the distance between r and M , i.e.,

errorAPnL1 =
∑

x,k1,k2

|rn −Mn|∆x∆k2, errorAPnL∞ = max
x,k1,k2

|rn −Mn|. (4.2)

The results are gathered in Figure 3, where we observe a similar trend as in the space homogeneous case
that r converges to M in two stages: first to a radially symmetric function (some function of ε) and then
the local Maxwellian M . This in some sense mimics the Hilbert expansion in the derivation of ET model in
Section 2.
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Figure 2: Evolution of f at times t = 0, 50, 175 and 500. Here η = 10, ∆t = 1, Lk = 10.5, and Nk = 64.
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Figure 3: Plots of the asymptotic error (4.2) versus time. Here Nx = 40, ∆t = 0.2∆x2. Left: η = 0.01
(classical regime), Nk = 32. Right: η = 3 (quantum regime), Nk = 64.

4.2.2 1-D n+–n–n+ ballistic silicon diode

We finally simulate a 1-D n+–n–n+ ballistic silicon diode, which is a simple model of the channel of a MOS
transistor. The initial data is taken to be

f0(x, k1, k2) =

(
1.1 +

tanh
(
40(x− 5Lx

8 )
)
− tanh

(
40(x− 3Lx

8 )
)

2

)
×
(
e−[(k1−1)2+k22] + e−[(k1+1)2+k22]

)
.

For Poisson equation (2.7), we choose h(x) = ρ0(x) =
∫
f0 dk, εr(x) ≡ 1, C0 = 1/1000, with boundary

condition V (0) = 0, V (Lx) = 1. The doping profile h(x) is shown in Figure 4.

We consider two regimes: one is the kinetic regime with α = 1, where we compare our solution with the
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one obtained by the explicit scheme (forward Euler); the other is the diffusive regime with α = 1e−3, where
our solution is compared with that of the ET system using the kinetic solver (3.23). Good agreements are
obtained in Figures 5, 6. Here the macroscopic quantities plotted are mass density ρ, internal energy E
defined in (2.11), electron temperature T and fugacity z obtained through (2.22), electric field E = −∂xV ,
and mean velocity u defined as u = jρ/ρ.
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0

0.2

0.4

0.6

0.8

1

x

h
(x

)

Figure 4: Doping profile h(x) for 1-D n+–n–n+ ballistic silicon diode.

5 Conclusion

We constructed an asymptotic preserving scheme for a multiscale semiconductor Boltzmann equation (cou-
pled with Poisson equation) that in the diffusive regime captures the energy-transport limit. Besides the stiff
convection terms, the two-scale collision operators pose new difficulties since the simple BGK penalization
is unable to capture the correct limit. The key ingredient in our scheme is to set a suitable threshold for the
leading elastic collision such that once this threshold is crossed, the less stiff collision begins to dominate.
In this way, the convergence of the numerical solution to the local equilibrium resembles the Hilbert expan-
sion at the continuous level. We analyzed this asymptotic behavior using a simplified BGK model. Several
numerical results confirmed the asymptotic-preserving property for any non-equilibrium initial data, as well
as the uniform stability of the scheme with respect to the mean free path, from kinetic regime to diffusive
regime. As a variant of the scheme in this paper, we are currently investigating another formulation using a
splitting approach. The results will be reported in a companion paper [19]. It is also interesting to include
the inelastic electron-phonon interaction into the equation and we leave it to the future work.

Acknowledgments

This project was initiated during the authors participation at the KI-Net Conference “Quantum Systems”
held by CSCAMM, University of Maryland, May 2013. Both authors acknowledge the generous support
from the institute. J.H. thanks Prof. Shi Jin for initially pointing out the ET model, and Prof. Irene Gamba
and Prof. Lexing Ying for helpful discussion and support. L.W. thanks Prof. Robert Krasny for fruitful
discussion on modeling of semiconductors.

17



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

ρ

 

 

AP

explicit

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

x

u

0 0.2 0.4 0.6 0.8 1
0.8

0.9

1

1.1

1.2

1.3

x

ε

0 0.2 0.4 0.6 0.8 1
0.8

0.9

1

1.1

1.2

1.3

x

T

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

x

z

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

x

E

Figure 5: Density ρ, velocity u, internal energy E , temperature T , fugacity z, and electric field E at time
t = 0.05. ‘—’ is the AP scheme, ‘4’ is the forward Euler scheme. Here α = 1, η = 1, Nx = 40, Nk = 64,
∆t = 0.2∆x2.

Appendix: Fast spectral methods for collision operators Qel and
Qee

In this appendix, we briefly outline the numerical methods for computing the collision operators Qel and
Qee. For numerical purpose, we assume the scattering matrices Φel(k, k

′) = Φee(k, k1, k
′, k′1) ≡ 1, and the

wave vector k ∈ R2.
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Figure 6: Density ρ, velocity u, internal energy E , temperature T , fugacity z, and electric field E at time
t = 0.05. ‘—’ is the AP scheme, ‘4’ is the kinetic scheme (for the ET system). Here α = 1e − 3, η = 1,
Nx = 40, Nk = 64, ∆t = 0.2∆x2.

Computation of Qee

Under the parabolic band assumption, (2.6) reads

Qee(f)(k) =

∫
R6

δ(k′ + k′1 − k − k1)δ

(
k′2

2
+
k′21
2
− k2

2
− k2

1

2

)
×
[
f ′f ′1(1− ηf)(1− ηf1)− ff1(1− ηf ′)(1− ηf ′1)

]
dk1dk

′dk′1.

By a change of variables, it is not difficult to rewrite the above integral in the center of mass reference
system:

Qee(f)(k) =
1

2

∫
R2

∫
S1

[
f ′f ′1(1− ηf)(1− ηf1)− ff1(1− ηf ′)(1− ηf ′1)

]
dσ dk1, (5.1)
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where 
k′ =

k + k1

2
+
|k − k1|

2
σ,

k′1 =
k + k1

2
− |k − k1|

2
σ.

This is just the usual form of the quantum Boltzmann collision operator for a Fermi gas (of 2-D Maxwellian
molecules). Our way of computing Qee follows the fast spectral method in [20]. The starting point is to
further transform (5.1) to a Carleman form

Qee(f)(k) =

∫
R2

∫
R2

δ(x · y)
[
f ′f ′1(1− ηf)(1− ηf1)− ff1(1− ηf ′)(1− ηf ′1)

]
dx dy, (5.2)

where k1 = k+x+y, k′ = k+x, and k′1 = k+y. If Supp(f(k)) ⊂ BS (a ball with radius S), we can truncate
(5.2) as

QRee(f)(k) =

∫
BR

∫
BR

δ(x · y)
[
f ′f ′1(1− ηf)(1− ηf1)− ff1(1− ηf ′)(1− ηf ′1)

]
dx dy

=

∫
BR

∫
BR

δ(x · y)
[
(f ′f ′1 − ff1)− η(f ′f ′1f1 + f ′f ′1f − f ′f1f − f1f

′
1f)
]
dx dy

with R = 2S. We next choose a computational domain DL = [−L,L]2 for k, and extend the function f(k)

periodically to the whole space R2. L is chosen such that L ≥ 3
√

2+1
2 S to avoid aliasing effect. We then

approximate f(k) by a truncated Fourier series

f(k) =

N/2−1∑
j=−N/2

f̂je
i πL j·k, (5.3)

where

f̂j =
1

(2L)2

∫
DL

f(k)e−i
π
L j·k dk.

Inserting the Fourier expansion of f into QRee(f), and performing a spectral-Galerkin projection, we can get

the governing equation for Q̂Ree(f)j . The computation is sped up by discovering a convolution structure and
a separated expansion of the coefficient matrix. The final cost is roughly O(MN3 logN), where N is the
number of points in each k direction, and M is the number of angular discretization. More details can be
found in [20].

Computation of Qel

Under the parabolic band assumption (2.4), (2.5) reads (see also (3.1))

Qel(f)(k) =

∫
R2

δ (ε′ − ε) (f ′ − f) dk′ =

∫
S1
f(|k|σ) dσ − 2πf(k). (5.4)

Compared to Qee, this one is much easier to compute. For instance, one can do a direct numerical quadrature
plus interpolation to approximate the integral over S1. To achieve better accuracy, we here present an
efficient way to compute Qel(f) based on the same spectral framework of Qee(f). Specifically, we still adopt
the Fourier expansion (5.3). Inserting it into (5.4), we get

Qel(f)(k) =

N/2−1∑
j=−N/2

B(k, j)f̂j − 2πf(k), (5.5)

where
B(k, j) = 2πJ0

(π
L
|k||j|

)
.
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Here L has to be L ≥
√

2+2
2 S to avoid aliasing. A direct computation of the above summation requires

obviously O(N4) flops, which can be quite costly. But note that the coefficient matrix B(k, j) only depends
on the magnitude of k and j, which means that its rank is roughly O(N). Therefore, we can find a low rank
decomposition of B(k, j) as (for 2-D problems this can be precomputed via a SVD)

B(k, j) =

O(N)∑
r=1

Ur(k)Vr(j).

Then computing the summation in (5.5) becomes

N/2−1∑
j=−N/2

B(k, j)f̂j =

N/2−1∑
j=−N/2

O(N)∑
r=1

Ur(k)Vr(j)f̂j =

O(N)∑
r=1

Ur(k)

 N/2−1∑
j=−N/2

Vr(j)f̂j

 .
The cost is reduced to O(N3).

To summarize, we have two fast spectral solvers for the collision operators Qel and Qee (the cost of Qee is
dominant due its intrinsic complexity). Both of them provide high-order accuracy and are thus suitable for
testing asymptotic properties of our schemes.
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