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Abstract. This paper deals with the derivation of macroscopic tissue mod-

els from the underlying description delivered by a class of equations modeling

binary mixtures of multi-cellular systems by methods of the kinetic theory for
active particles. Cellular interactions generate both modification of biological

functions and proliferative-destructive events. The analysis refers to a suitable

hyperbolic approximation to show how the macroscopic tissue behavior can
be described from the underlying cellular description. The approach is specif-

ically focused on the modeling of chemotaxis phenomena by the Keller–Segel

approximation.

1. Introduction. The derivation of biological tissue models at the macroscopic
scale has bee arguably introduced by the pioneering paper by Othmer, Dunbar and
Alt [46]. Subsequently, several papers have contributed to further development of
this research line which consists in deriving microscopic models for multi-cellular
systems derived by methods of the generalized kinetic theory. Among others [2, 7,
14, 15, 19, 22, 25, 30, 38, 39, 47], and several others as reported in the survey [4].

The derivation is based on suitable development of asymptotic methods, somehow
analogous to those of the classical kinetic theory, which amount to expanding the
distribution function in terms of a small dimensionless parameter related to the
intermolecular distances (the space-scale dimensionless parameter); this approach is
equivalent to the connections between the biological constants. The limit is singular
and the convergence properties can be proved under suitable technical assumptions.

This present paper develops a different approach based on the closure of moment
equations. This closure problem is well known in transport theory. Most authors
use ad hoc arguments or projection methods to close the moment system, see among
others [49, 51]. This approach was applied to Boltzmann equations by the theory
of Extended Thermodynamics, e.g. Muller and Ruggeri [44]. The physical entropy
is maximized under the constraint of fixed first m-moments. One assumes that the
(m+1)-moments of the minimizer approximates the (m+1)-st moments of the true
solution, that gives the desired closure. It appears that theories for a large number
of moments can approximate steep gradients and shocks [44]. The most important
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first-moment approximations to the Boltzmann equation are the Euler equations [6]
and the Navier-Stokes equations.

Further developments are due to Ringhofer et al. [51] for moment systems for the
semiconductor Boltzmann models by using orthogonal projections of expansions in
terms of Hermite polynomials. The closed system forms a Galerkin approximation
to the transport equation. A numerical method is developed and by appropriate
scaling of space and time, error estimates are proved. The expansion by Hermite
polynomials together with an orthogonal projection is equivalent to Levermore’s
procedure of moment closure [41] as well as to entropy maximization used in Ex-
tended Thermodynamics.

A method to close the moment equations, which is based on a minimization
principle by Hillen [28], is proposed in this paper for a binary mixture of cell popu-
lations to obtain a mixed hyperbolic–hyperbolic macroscopic model. Two different
approaches are presented based on the assumptions that populations are involved
in some (linear or nonlinear) hyperbolic processes.

The second approach consists in using the first one to derive diffusion processes
for both population, in particular the classical Keller–Segel [32, 33, 34, 35] model,
the parabolic–eliptic Keller–Segel model, the drift optimal Keller–Segel model [3],
and a chemotaxis model with saturated chemotaxis flux (see the survey [29] for
more general frameworks). More precisely, following [28] we present an L2–moment
closure procedure for mixture of two populations. Specifically, we focus on the
simplest nontrivial case, namely the second–moment closure for both population.

The contents of this paper is of interest in the modeling of biological tissues,
cancer angiogenesis phenomena [1, 23], pattern formation in populations of slime
molds, swarming, and chemotaxis in different contexts [16, 19, 21, 26, 36, 37, 42,
43, 50, 53]. The guiding principle consists in starting with microscopic models from
kinetic theory of active particles and then in deriving macroscopic hyperbolic models
by a minimization principles. Subsequently, different variants of the Keller–Segel
model are deduced by different scale regimes.

The underlying description at the cell scale is delivered by the so called kinetic
theory active particles, which applies to large systems of interacting entities, called
active particles, whose microscopic state is characterized not only by position and
velocity, but also by an additional microscopic state, called activity, which rep-
resents the biological functions expressed at a cellular level. Interactions not only
modify the microscopic state, but may also generate proliferative and/or destructive
phenomena. The theory and specific models are reported in the book [11], and in
various papers related to applications, among several ones [9, 10, 5, 12]. The dynam-
ics of the overall system is described by an evolution equation for the distribution
function over the microscopic state of the particles (cells, bacteria, morphogens,?.

This paper is organized as follows. Section 2 presents a description of the equa-
tions of the kinetic theory that describe multi-cellular systems and a derivation of
hyperbolic equations by using a closure moment in the case of absence of biolog-
ical interaction. Section 3 generalizes the description to active particles including
interactions modifying the biological functions expressed by cells and proliferative
or destructive events. Section 4 deals with the derivation of different variants of
the Keller–Segel model (classical Keller–Segel model, parabolic–elliptic model, the
drift optimal Keller–Segel model, and a chemotaxis model with saturated chemo-
taxis flux) thought different macroscopic scalings. Finally, Section 5 proposes some
research perspectives with special attention to growth and invasion phenomena.
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2. Linear transport models with stochastic velocity jump perturbation.
This section presents the derivation, by moment closure, of linear transport models
of multi-cellular systems of a binary mixture of cells whose state, called microscopic
state, is denoted by the variable {x , v , u}, where {x, v} are, respectively, position
and velocity of the cell, while u ∈ Du ⊆ R is the biological function expressed by
each population regarded as a module [24]. The collective description is encoded in
the statistical distribution functions fi = fi(t, x, v, u), for i = 1, 2, which is called
generalized distribution function. Weighted moments provide, under suitable
integrability properties, the calculation of macroscopic variables. More precisely,
let us consider the following class of equations:

(
∂t + v · ∇x

)
f1 = ν1 L1(f1),(

τ∂t + v · ∇x
)
f2 = ν2L2(f2),

(1)

where f = {f1, f2}, while the operator Li(fi) models the dynamics of biological
organisms by a velocity-jump process, and is defined as follows:

Li(f) =

∫
V

[
Ti(v

∗, v)f(t, x, v∗, u)− Ti(v, v∗)f(t, x, v, u)

]
dv∗ , (2)

for i = 1, 2, where Ti(v, v
∗) is the probability kernel for the new velocity v ∈ V

assuming that the previous velocity was v∗. The operators Ti may depend on f1

and f2; in fact, we will assume that T1 depends on the population f2.
The set of possible velocities is denoted by V , where V ⊂ R3, and it is assumed

that V is bounded and radial symmetric. In particular, we consider velocity jump
process with fixed speed s, but any direction, i.e. V = sSd−1. This corresponds
to the assumption that any individual of the population chooses any direction with
bounded velocity. Finally, ν1 and ν2 represent the interaction rates of the mechanical
interactions.

The dimensionless constant τ ∈ (0, 1) indicates that the spatial spread of the
first population f1 and the second f2 are on different time scales. The case of τ = 0
corresponds to a steady state assumption for the second distribution.

The derivation of macroscopic equations for linear transport models subject to
the aforesaid stochastic perturbation has been studied by Othmer and Hillen [30, 47]
for cells, where the microscopic state is simply defined by position and velocity. Here
the activity variable is introduced and is heterogeneously distributed, however the
model is such that interactions do not modify such distribution.

Bearing all above in mind, it can be shown how the moment closure method can
be used to derive macroscopic equations. By multiplying (1) with powers of v and
integrating them, an infinite sequence of equations for the v–moments of f1, f2 will
be obtained, where the (m + 1)-st moments appears in the equation for the m-st
moments. Therefore, an approximation of the the (m+ 1)-st moment is needed to
close the equation for the m-moment. Calculations can be done under the following
assumption concerning the turning operators Li for i = 1, 2.

Assumption H.1. The turning operators L1 and L2 are assumed to satisfy the
following equalities: ∫

V

Ti(v, v
?) dv? = 1, i = 1, 2, (3)

and ∫
V

vLi(g(v)) dv = −
∫
V

v g(v) dv, i = 1, 2. (4)
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Assumption H.2. The set Du ⊂ R of possible biological functions is bounded.

Remark 1. Assumption H.1 implies the following equality∫
V

Li(g(v)) dv = 0, i = 1, 2, (5)

which ensures conservation of the number of cells.

A general model for probability kernels with relaxation in time can be considered
as follows:

Ti(v, v
∗) =

1

|V |
i = 1, 2.

Therefore:

Li(g) =
1

|V |

∫
V

g(v) dv − g(v), i = 1, 2,

which satisfies Assumptions H.1. and H.2.
Let f = {f1, f2} be a solution to the model (1) and let us define the first two

moments:

n(t, x) =

∫
Du

∫
V

f1 dv du, n(t, x)U(t, x) =

∫
Du

∫
V

v f1 dv du, (6)

corresponding to the first equation and

S(t, x) =

∫
Du

∫
V

f2 dv du, S(t, x)US(t, x) =

∫
Du

∫
V

v f2 dv du, (7)

for the second one. To derive the equations for the moments in (6) we multiply the
first equation of (1) by 1 and v and integrate over V and Du to obtain the following
conservation laws:  ∂tn+ divx (nU) = 0,

∂t(nU) + Divx(P (f1)) = −ν1 nU,
(8)

where Divx stands for the divergence operator at each row, and P (f1) stands for
the pressure tensor:

P (f1) = (P )ij(f1) =

∫
Du

∫
V

vivjf1(t, x, v, u) dv du.

This system of two–moment equations (8) can be closed by looking for an appropri-
ate expression of P (f1). The approach consists in deriving a function a(t, x, v, u),
which minimizes the L2(V × Du) norm under the constraint that it has the same
first two moments, n and nU , as f1. Once this function a has been found, we
replace P (f1) by P (a).

Let us introduce Lagrangian multipliers β1 and ~β2 = (β1
2 , .....β

n
2 ), respectively

scalar and vector, and define the following operator:

H(a) =
1

2

∫
Du

∫
V

a2(t, x, v, u) dv du− β1

(∫
Du

∫
V

a(t, x, v, u) dv du− n(t, x)

)
− ~β2 ·

(∫
Du

∫
V

v a(t, x, v, u) dv du− n(t, x)U(t, x)

)
.
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The Euler–Lagrange equation (first variation) of H(a) reads a = β1 + ~β2 · v. We

use the constraints to determine β1 and ~β2. From (6) one gets easily

β1 =
n

|V ||Du|
· (9)

Noting that ∫
V

vivj dv =
sd+1|Sd−1|

d
=
|V |s2

d
δij , (10)

yields

n(t, x)U(t, x) =

∫
Du

∫
V

v a(t, x, v, u) dv du = ~β2|V ||Du|
s2

d
, (11)

which implies

~β2 =
d

|Du||V | s2
n(t, x)U(t, x),

and therefore

a(t, x, v, u) =
1

|Du| |V |

(
n(t, x) +

d

s2
n(t, x)U(t, x) · v

)
. (12)

Then, the derivation of the moment closure can be pursued by considering the
second moment of the minimizer a:

P (a) =

∫
Du

∫
V

v ⊗ v a(t, x, v, u) dv du =
s2

d
n(t, x)I.

Finally the two-moment equations (8) for the minimizer becomes
∂tn+ divx (nU) = 0,

∂t(nU) +
s2

d
∇xn = −ν1 nU.

(13)

In the same way, to close the first two moments of the second population, one
derives a function b(t, x, v, u), which minimizes the L2(V × Du) norm under the
constraint that b(t, x, v, u) has the same first two moments, S and S US , as f2. One
has analogously

b(t, x, v, u) =
1

|Du| |V |

(
S(t, x) +

d

s2
S(t, x)US(t, x) · v

)
, (14)

and finally obtains the following macroscopic model:

∂tn+ divx (nU) = 0,

∂t(nU) + s2

d ∇xn = −ν1nU,

τ∂tS + divx (S US) = 0,

τ∂t(S US) + s2

d ∇xS = −ν2S US .

(15)

Remark 2. The second variation of H is δ2H(a) = 1 > 0, then the extremum
a(t, x, v, u) is a minimum and the same holds true for b(t, x, v, u).
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The error which appears during this approximation can be controlled for long
times as in [28]. Moreover following [28] one proves that the L2(V × Du)-norm
satisfies an H-Theorem, i.e., it is an entropy for equation (1):

∂t

∫
V×Du

(f2
1 (t, x, v, u) + f2

2 (t, x, v, u))dvdu+ divx

∫
V×Du

v(f2
1 + f2

2 )dvdu ≤ 0.

Remark 3. The minimizer (a(t, x, v, u), b(t, x, v, u)) given by (12)-(14) is the first
nontrivial approximation to (f1(t, x, v, u), f2(t, x, v, u)) in the following sense: if
we only fix the first moments n and S for the two populations f1 and f2, then
minimizing the L2(V ×Du) norm will lead to

a(t, x, v, u) =
1

|V ||Du|
n(t, x), b(t, x, v, u) =

1

|V ||Du|
S(t, x).

Then a and b are respectively the projection of f1 and f2 onto the space of functions
constant in v, u, and the corresponding moment closure is simply ∂tn = ∂tS = 0.

3. Binary mixture with progression and proliferative and destructive in-
teractions. Let us consider, referring to [4], a binary mixture of cells where the
output of interactions includes progression of the activity variable and proliferative
or destructive events. Each population is regarded as a module [24], namely a func-
tional subsystem characterized by a different activity variable. More precisely, we
consider the following class of equations modeling the dynamics of f = {f1, f2}:

(
∂t + v · ∇x

)
f1 = ν1 L1(f1) + G1[f, f ] + I1[f, f ],(

τ∂t + v · ∇x
)
f2 = ν2L2(f2) + G2[f, f ] + I2[f, f ] ,

(16)

where the operator Li(fi) has been already described in Section 2. Moreover

• The operators Gi, describe the gain–loss balance of active particles (cells, chemoat-
tractant, molecules, etc.) in state u, in each population, due to conservative en-
counters, namely those which modify only the biological state:

Gi[f, f ](t, x, v, u) =

2∑
j=1

Gij [f, f ](t, x, v, u)

=

2∑
j=1

∫
Du×Λ

ηijwij(x, x
∗)Bij(u∗ → u|u∗, u∗)

× fi(t, x, v, u∗) fj(t, x
∗, v, u∗) dx∗ du∗du

∗

− fi(t, x, v, u)

∫
Λ

ηijwij(x, x
∗) fj(t, x

∗, v, u∗) dx∗du∗ , (17)

where Ω is the interaction domain and Λ = Du × Ω. The kernel Bij models the
transition probability density of an individual with state u∗ into the state u, after
interaction with some individual with state u∗, wij(x, x

∗) is a normalized (with
respect to space integration over Ω) weight function that accounts the distance and
distribution that weaken the intensity of the interaction.

• The terms ηij denote the biological interaction rates related to interactions that
modify the biological state of the interacting individuals for each population.
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• The operators Ii, which describe proliferative/destructive interactions, are defined
as follows:

Ii[f, f ](t, x, v, u) =

2∑
j=1

Iij [f, f ](t, x, v, u)

= fi(t, x, v, u)

2∑
j=1

∫
Λ

wij(x, x
∗) ηijpij(u, u

∗)

× fj(t, x, v, u
∗) dx∗ du∗ , (18)

where pij is the proliferative/destructive rate of particles into state u of subsystem
i, after inetraction with particles with state u∗ of subsystem j.

Different closures will be treated in the following subsections thus obtaining dif-
ferent macroscopic models.

3.1. Closure for nonlinear binary mixture. Let us now consider, referring to
Eq. (16), the equations for the first moments n, nU , S and SUS which, instead of
(8) and the corresponding for the second population, now becomes



∂tn+ divx (nU) = ψ(f, f) =

∫
Du

∫
V

I1[f, f ] dv du,

∂t(nU) + Divx (P (f1)) = φ(f, f) = −ν1nU +

∫
Du

∫
V

vI1[f, f ] dv du,

τ∂tS + divx (S US) = Γ(f, f) =

∫
Du

∫
V

I2[f, f ] dv du,

τ∂t(S US) + Divx (P (f2)) = δ(f, f) = −ν2SUS +

∫
Du

∫
V

vI2[f, f ]dvdu.

(19)

The minimization of the L2(V ×Du)–norm with the same constraints as in the
previous sections can be used to find an appropriate expression not only for the
pressure tensors P (fi), but also for ψ, φ, Γ, and δ. Let us write the result in the
following Lemma.

Lemma 3.1. Let f =
(
a
b

)
be given by (12)–(14), then the following equalities

ψ(f, f) = ψ̃(n, nU, S, SUS) = α11

(
H11(n, n) +

d

s2
H11(nU, nU)

)
+α12

(
H12(n, S) +

d

s2
H12(nU, SUS)

)
, (20)

φ(f, f) = φ̃(n, nU, S, SUS) = α11

(
H11(n, nU) +H11(nU, n)

)
+α12

(
H12(nU, S) +H12(n, SUS)

)
, (21)
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Γ(f, f) = Γ̃(n, nU, S, SUS) = α21

(
H21(S, n) +

d

s2
H21(SUS , nU)

)
+α22

(
H22(S, S) +

d

s2
H22(SUS , SUS)

)
, (22)

δ(f, f) = δ̃(n, S, nU, SUS) = α21

(
H21(S, nU) +H21(SUS , n)

)
α22

(
H22(S, SUS) +H22(SUS , S)

)
, (23)

hold true, where for any scalar or vector h, k, the operators Hij are given by

Hij(h, k) =
h(t, x)

|Du|2|V |
·
∫

Ω

wij(x, x
∗) k(t, x∗) dx∗, (24)

and the coefficients αij are simply defined as follows:

αij =

∫
Du×Du

pij(u, u
∗) du du∗. (25)

Proof. It is an straightforward computation by using (18) and (10). �

The application of Lemma 3.1, yields the following nonlinear coupled hyperbolic
model: 

∂tn+ divx (nU) = ψ̃(n, nU, S, SUS),

∂t(nU) +
s2

d
∇xn = −ν1nU + φ̃(n, nU, S, SUS),

τ∂tS + divx (S US) = Γ̃(n, nU, S, SUS),

τ∂t(S US) +
s2

d
∇xS = −ν2SUS + δ̃(n, nU, S, SUS),

(26)

where ψ̃(n, nU, S, SUS), φ̃(n, nU, S, SUS), Γ̃(n, nU, S, SUS), and δ̃(n, nU, S, SUS) are
given in (20), (21), (22), and (23).

3.2. The binary mixture chemosensitive movement. Chemotaxis bacteria
can significantly change their movement in response to external stimuli. Hence, we
modify the turning operator to derive a model for chemosensitive movement. More
precisely, it is assumed that turning operator depends on the velocity v, on the
concentration of the external signal S, and on its gradient ∇x S.

Let us consider the model defined by choosing T1 as follows:

T1[f2](v, v∗) =
1

|V |

(
1− d

s2
v · α (〈f2〉)

)
, (27)

where α is a vector function, and 〈·〉 stands for the (v, u)–mean of a function, i.e.,

〈g〉 =

∫
Du

∫
V

g(t, x, v, u) dv du, g ∈ L2(V ×Du).

It is easy to see that the kernel T1 satisfies (3) and the operator L1(f1), can be
computed as follows

L1[f2](f1) =

(
1

|V |

∫
V

f1(v) dv − f1

)
− d

s2

(
1

|V |

∫
V

vf1(v) dv − v f1

)
· α (〈f2〉) ,
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but now, assumption (4) becomes∫
V

vL1[f2](f1) dv = −
∫
V

vf1 dv +
d

s2

∫
V

v ⊗ vf1 dv · α(〈f2〉). (28)

In particular by integrating (28) over u, and using (10), one computes (28) for
the minimizer f =

(
a
b

)
given by (12)-(14), to get:∫
Du

∫
V

vL1[b](a) dv du = −nU + nα(S).

Therefore, for α(S) = α1(S)∇x S, one again derives the corresponding hyperbolic
system for chemosensitive, coupled with the concentration equation for S:

∂tn+ divx (nU) = ψ̃(n, nU, S, SUS),

∂t(nU) +
s2

d
∇xn = −ν1

(
nU − nα1(S)∇x S

)
+ φ̃(n, nU, S, SUS),

τ∂tS + divx (S US) = Γ̃(n, nU, S, SUS),

τ∂t(S US) +
s2

d
∇xS = −ν2SUS + δ̃(n, nU, S, SUS).

(29)

Remark 4. The first two equations of this model were already obtained in [3]
by asymptotic analysis. In absence of biological activity and interaction, Fil-
bert, Perthame [22] and Hillen [28] derived, respectively, the first two equations
for (n, nU) by asymptotic analysis and moment closure.

3.3. A chemotaxis model with density control. A chemotaxis model with
density control mechanism is introduced and investigated in [48]. The density con-
trol leads to the effect that at high population densities, the chemotaxis is turned
off and pure diffusion dominates. Solutions exist globally and no blow-up occurs.
The model in [48] can be constructed from a binary mixture model (16) via a cor-
responding hyperbolic approximation. We consider

T1[f2] =
1

|V |

(
1− d

s2
γ(〈f1〉)v · α (〈f2〉)

)
, (30)

where γ(n) is a density dependent sensitivity. It is assumed to have a zero at some
n∗ > 0 and γ(n) > 0 for n ∈ (0, n∗). A standard example for γ is γ(n) = 1 − n.
Therefore, the operator L1(f1), can be computed as follows:

L1[f2](f1) =
1

|V |

∫
V

f1(v) dv−f1(v)− d

s2

(
1

|V |

∫
V

vf1(v) dv − v f1

)
·γ(〈f1〉)α (〈f2〉) .

It is easy to check that L1[f2](f1) satisfies (3), instead of (4), and that one has
the following: ∫

Du

∫
V

vL1[b](a) dv du = −nU + nα(S)γ(n).

Therefore, for α(S) = α1(S)∇x S, the corresponding hyperbolic system for chemo-
sensitive movement with density control, coupled with the concentration equation
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for S is derived:

∂tn+ divx (nU) = ψ̃(n, nU, S, SUS),

∂t(nU) +
s2

d
∇xn = −ν1nU + ν1α1nγ(n)∇x S + φ̃(n, nU, S),

τ∂tS + divx (S US) = Γ̃(n, nUS, SUS),

τ∂t(S US) +
s2

d
∇xS = −ν2SUS + δ̃(n, nU, S, SUS).

(31)

4. On the derivation of Keller–Segel models. The time and space dynamics
of a cell population under chemoattractant action can be described by phenomeno-
logical PDE models at a macroscopic level, as a coupled system of equations for
the chemosensitive cell density n = n(t, x) and the chemoattractant concentration
S = S(t, x), for x ∈ Ω ⊂ Rd. The model by Patlak [49], and Keller-Segel model
[32, 34] is the most important approach, which stated by a parabolic or elliptic
equations coupled through a drift term. This model is successful to describe the
aggregation of the population at a single point (chemotactic collapse in the ter-
minology of [27]). Solutions show a blow up, however not fully realistic, that has
attracted applied mathematicians as documented in the survey [31]. The parabolic
Keller–Segel model (PKS) model is as follows: ∂tn = divx(Dn∇xn− nχ(S)∇xS) + f(n, S),

τ∂tS −DS∆S = g(n, S),
(32)

where DS > 0 and the positive definite tensor Dn model the diffusivity of the
chemoattractant and the cells, respectively, and χ(S) is the chemotactic sensitivity.
The functions f(n, S), and g(n, S) model the source terms.

The PKS model has been used in many applications to study aggregation or
pattern formation (see e.g. Murray [45]). However, the literature also reports
about various criticisms. For instance, the movement of the population is modeled
by diffusion. On the other hand, for bacteria, it is known that they move along
straight lines, suddenly stop to choose a new direction, and then continue moving
in the new direction. This appears to be a velocity jump process analogous to
that described earlier, rather than a Brownian motion. Moreover, the diffusion
terms in (32) allow a propagation of information with infinite speed and blow up
of solutions, which constitute an undesired property. In fact, specific studies look
for finite propagation speeds [13]. Finally, the relevant parameters like diffusion
constants Dn, DS and chemotactic sensitivity χ are not directly related to the
individual movement pattern of the species. They can be measured only indirectly
(see e.g. [52]).

Within this context, it is useful to study alternative models, like hyperbolic
equations and transport models. Moreover, the challenging problem consists in
deriving macroscopic models form the underlying description at the microscopic
scale. This challenging target was pursued in [3] by asymptotic methods, while this
research line continued in this section by the moment closure method presented
in the preceding sections. It will be shown, in the following subsections, how the
method leads to new models.
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4.1. Derivation of the classical Keller–Segel model. Let consider the macro-
scopic model (29) and consider some specific regimes to derive Keller–Segel type
models.

4.1.1. Full Keller–Segel regime. Consider the following regime of coefficients

ν1, ν2, and s→∞, s2

ν1d
→ Dn,

s2

ν2d
→ DS (33)

and divide the second equation of (29) by ν1, it yields

1

ν1
∂t(nU) +

s2

dν1
∇xn = −nU + α1n∇x S +

1

ν1
φ̃(n, nU, S, SUS).

Taking limits (33) yields

− nU + α1n∇x S = Dn∇xn. (34)

Therefore the first equation of (29) can be written as

∂tn = divx(Dn∇xn− nχ(S)∇xS) + f(n, S), (35)

with

χ(S) = α1(S), (36)

while by (20), one has

f(n, S) = α11H11(n, n) + α12H12(n, S). (37)

In the same way, dividing the fourth equation of (29) by ν2 and taking limits
yields

− S US = DS ∇xS. (38)

Therefore the third equation of (29) writes

τ∂tS = DS∆S + g(n, S), (39)

where

g(n, S) = α21H21(S, n) + α22H22(S, S). (40)

Then, system (35)–(39) is derived, which corresponds to the Keller–Segel model
(32)  ∂tn = divx(Dn∇xn− nχ(S)∇xS) + f(n, S),

τ∂tS −DS∆S = g(n, S),
(41)

where f and g, are given respectively by (37) and (40).

4.1.2. Keller–Segel without source term regime. If we consider the same regime that
in section 4.1.1 and neglect the proliferative/destructive biological interactions given
by (25), i.e.

ν1, ν2, and s→∞, s2

ν1d
→ Dn,

s2

ν2d
→ DS , αij → 0

then f(n, S) = g(n, S) = 0, while the following Keller–Segel model without source
term is obtained  ∂tn = divx(Dn∇xn− nχ(S)∇xS),

τ∂tS −DS∆S = 0.
(42)
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Remark 5. Some experimental setups for bacteria are designed for shallow gra-
dients (see e.g. Chen et al. [17]). Patlak [49] derived the classical PKS-model
for chemosensitive movement under the assumption, that on an average distance
traveled by particles between turns, the change in particle distribution: ∇xn is
small.

Remark 6. The prototype chemotaxis model (16) with (30) leads to the well-known
Keller–Segel model in two steps: First closure of the first three moment equations
to get the hyperbolic approximations (29), and then passing to the parabolic limit
for fast speeds and large turning rates.

As shown by Bellomo et al. [3], Patlak [49], and Hillen [28], one can directly
scale the transport model (16) to derive the parabolic limit (42).

4.1.3. Parabolic–elliptic Keller–Segel model. Now we consider a regime for which
the equation for the chemoatractant becomes elliptic. We set

ν1, ν2, and s→∞, s2

ν1d
→ Dn,

s2

ν2d
→ DS , τ → 0, (43)

where the parameter τ can be regarded as a relaxation time scale such that 1
τ is

the rate towards equilibrium.
The difference with section 4.1.1 is that we let τ → 0, and we get −DS∆S =

g(n, S), so that the following parabolic–elliptic Keller–Segel model is derived: ∂tn = divx(Dn∇xn− nχ(S)∇xS) + f(n, S),

−DS∆S = g(n, S).
(44)

Remark 7. This is the case where the chemical substance S relaxes so fast that
it reaches its equilibrium instantaneously, i.e. τ → 0 and (41) is reduced to a
parabolic–elliptic system, see [31]. It is also equivalent to say that this model has
been studied in a molecular diffusion case. It is much faster (s very large) than that
of cells (which are much larger objects), and the term ∂tS can be neglected.

4.1.4. Parabolic–elliptic Keller–Segel model without source term. We can finally
consider the previous regime but also neglecting the biological interactions given
by (25), i.e.

ν1, ν2, and s→∞, s2

ν1d
→ Dn,

s2

ν2d
→ DS , τ → 0, αij → 0. (45)

This case corresponds to assuming that biological interaction are small enough,
so that one has f(n, S) = g(n, S) = 0 and obtains the following parabolic-elliptic
Keller–Segel model without source term: ∂tn = divx(Dn∇xn− nχ(S)∇xS),

∆S = 0.
(46)

4.2. Optimal drift following the chemoattractant. It is not completely clear
how the term divx(χn∇xS) induces per se the optimal movement of the cells towards
the pathway determined by the chemoattractant. Then, this term could be modified
in a fashion that the flux density of particles is optimized along the trajectory
induced by the chemoattractant, namely by minimizing the functional∫

χndS =

∫
χn
√

1 + |∇xS|2 dx
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with respect to S, where dS is the measure of the curve defined by S. This approach
provides an alternative term in the corresponding Euler-Lagrange equation of type

divx

(
χn

∇xS√
1 + |∇xS|2

)
. (47)

Of course this term coincides with divx(χn∇xS) when ∇xS is very small. How-
ever, if ∇xS ∼ 0, comparing this scale with the remaining scales of the problem is
necessary.

This approach was successfully studied in [3] by using asymptotic limit of model
(16), the following model was obtained: ∂tn = divx

(
Dn∇xn− nχ(S)

∇xS√
1 + |∇xS|2

)
+ f(n, S),

τ∂tS −DS ∆S = g(n, S).
(48)

More generally, one can consider a regularization of the PKS model, which is
based on a fundamental biological property of the chemotactic flux function-its
boundedness (this feature is almost always lost in weakly nonlinear, small gradi-
ents expansions, underlying the derivation of most continuum models). To derive
the modified system we replace the linear chemotactic flux χn∇xS by a nonlinear
saturated one, χnQ(∇xS), which is proportional to the magnitude of the chemoat-
tractant gradient only when the latter is small and is bounded when the chemoat-
tractant gradient tends to infinity. The regularized model then reads:{

∂tn = ∇x(Dn∇xn− nχ(S)Q(∇xS)) + f(n, S),

τ∂tS −DS∆S = g(n, S),
(49)

where a smooth bounded chemotactic flux function Q(x) = (Q1(x), ....., Dd(x)), and
x = (x1, ....., xd)

T , satisfies the following properties:

Q(0) = 0, |Qi| ≤ Ci,
∂Qi
∂xi

> 0, i = 1, ....d, (50)

where Ci are constants.
The synthesized form of the saturated flux is a Pade approximate which connects

universal features present at both very small and very large gradients. There is a
certain arbitrariness in the choice of the chemotactic flux function Q. A typical
example of such function (see [18])

Q(∇xS) =


∇xS, if |∇xS| ≤ x?,(

|∇xS| − x?√
1 + |∇xS − x?|2

+ x?
)
∇xS
|∇xS|

, if |∇xS| > x?,
(51)

where x? is a switching parameter, which defines a small gradient values, for which
the system (49) reduces to the original PKS system (32) so that the effect of sat-
urated chemotactic flux function is felt at large gradient regimes only. Note that
when x? = 0, the flux (51) becomes a mean curvature type function:

Q(∇xS) =
∇xS√

1 + |∇xS|2

and the model (49)-(51) become (48).
In the following we will derive the hyperbolic corresponding to model (49)-(50),

and deduce the classical parabolic chemotaxis equations (49).
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4.2.1. Different regimes for the optimal drift. This subsection focuses on how the
classical chemotaxis equations (49), which describe the population-level response to
external chemical signals, can be obtained from the microscopic description deliv-
ered by model (16), as well as some more precise approaches to the several phenom-
ena described in the previous items. If we combine the relaxation kernels presented
in (27) with

α(〈f2〉) = α1(〈f2〉)Q(∇x〈f2〉), (52)

where Q satisfies (50).
The term (nα(S)) that appears in the macroscopic cases defined in (29) becomes:

nα(S) = nα1(S)Q(∇xS), and the corresponding hyperbolic model writes:

∂tn+ divx (nU) = ψ̃(n, nU, S, S US),

∂t(nU) +
s2

d
∇xn = −ν1nU + ν1α1 nQ(∇xS) + φ̃(n, nU, S, S US),

τ∂tS + div (S US) = Γ̃(n, nU, S, SUS),

τ∂t(S US) +
s2

d
∇xS = −ν2SUS + δ̃(n, nU, S, S US).

(53)

A Keller–Segel model (49) can be obtained from a binary mixture (16), by di-
viding the second equation of (53) by ν1:

1

ν1
∂t(nU) +

s2

dν1
∇xn = −nU + α1nQ(∇xS) +

1

ν1
φ̃(n, nU, S, SUS),

and by taking a limit (33), which yields

− nU + α1nQ(∇xS) = Dn∇xn, (54)

while the first equation of (53) gives

∂tn = ∇x(Dn∇xn− nχ(S)Q(∇xS)) + f(n, S),

with f(n, S) is given by (37). The same arguments can be applied to the second
population by taking a limit (33) to obtain finally (49), where g(n, S) is given by
(40).

As before, if we consider now the regime (43), one obtains in this case the fol-
lowing Parabolic-Elliptic Keller–Segel model:{

∂tn = divx(Dn∇xn− nχ(S)Q(∇xS)) + f(n, S),

−DS∆S = g(n, S).
(55)

Finally, regime (45) give rise to f(n, S) = g(n, S) = 0, and the following model
is obtained: {

∂tn = divx(Dn∇xn− nχ(S)Q(∇xS)),

∆S = 0.
(56)

5. Perspectives. A methodological approach to derive macroscopic models of bio-
logical tissues from the underlying description at the microscopic scale delivered by
the kinetic theory for active particle, was proposed in this paper. A binary mixture
was considered and the closure method gave a hyperbolic model.

The approach was mainly focused on the derivation of various types models for
chemosensitive movement, in particular the Keller–Segel models, which incorporates
flux limited terms. It can be specifically applied to model different types of biological
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phenomena, where pattern formation occurs, ranging from angiogenesis [23], to
different types of vascular morphogenesis [26, 54, 55].

These applications should take into account that biological systems evolve in
time. Accordingly, the structure and properties of macroscopic models of biological
tissues should take into account this evolution that may include Darwinian selection
[5, 8]. Possibly, the approach should link the dynamics at the cellular scale to that
of tissues toward the identification of the asymptotic regimes that determine the
properties of macroscopic models. This is a challenging, however difficult, perspec-
tive very important in cancer modeling [20]. The contents of this paper aims at
contributing to this specific issue based on a methodological approach that can be
hopefully extended to the derivation of macro-scale models concerning biological
phenomena different from those treated in this present paper.

Focusing on analytic problems the new class of flux limited models deserve further
analysis, to be viewed as research perspectives, on the qualitative properties of the
solutions to initial and initial-boundary value problems to propagation of chaos [40].
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[22] F. Filbet, P. Laurençot and B. Perthame, Derivation of hyperbolic models for chemosensitive
movement , J. Math. Biol., 50 (2005), 189–207.

[23] J. Folkman, Role of angiogenesis in tumor growth and methastasis, Seminar Oncology, 29

(2002), 15–18.
[24] H. L. Hartwell, J. J. Hopfield, S. Leibner and A. W. Murray, From molecular to modular cell

biology, Nature, 402 (1999), c47–c52.
[25] J. Haskovec and C. Schmeiser, Convergence of a stochastic particle approximation for measure

solutions of the 2D Keller-Segel system, Comm. Part. Diff. Eqs., 36 (2011), 940–960.
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