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Abstract. We consider the motion of interacting particles governed by a coupled system of ODEs
with random initial conditions. Direct computations for such systems are prohibitively expensive due
to a very large number of particles and randomness requiring many realizations in their locations
in the presence of strong interactions. While there are several approaches that address the above
difficulties, none addresses all three simultaneously. Our goal is to develop such a computational
approach in order to capture the experimentally observed emergence of correlations in the collective
state (patterns due to strong interactions). Our approach is based on the truncation of the BBGKY
hierarchy that allows one to go beyond the classical Mean Field limit and capture correlations
while drastically reducing the computational complexity. Our theoretical approach is illustrated
by numerical examples. The numerical simulations in these examples are highly non-trivial due to
the combination of non-locality and non-linearity in the PDE resulting from the truncation.

Key words. Mean Field, correlation, systems of a large number of particles.

1. Motivation and Settings. Systems of interacting particles described by a
coupled system of a large number of ODEs with random initial conditions appear in
many problems of physics, cosmology, chemistry, biology, social science and economics:

(1.1) Ẋi = F (Xi) +
α

N

N∑
j=1

K(Xj −Xi), i = 1, ..., N.

Here Xi(t) denotes the position of ith particle and Xi belongs to D, where D through-
out this paper can stand for Rd, a d-dimensional torus Πd, or a compact domain in Rd
in which case boundary conditions must be added. The scalar function K describes
the inter-particle interactions, and F (Xi) models an internal force for each particle,
such as self-propulsion.

System (1.1) is an Individual Based Model, i.e., it has an ODE for each particle
coupled with others. In various applications the role of an individual can be played
by atoms, social agents, bacteria in suspensions, animals in flocks, etc. The system
(1.1) has two key parameters: α, the strength of interactions, and N , the number
of particles. The parameter α is determined by both geometry such as interparticle
distance and the mass of a particle (note that a model particle is just a point) as
well as physics. In this paper we restrict ourselves to the case when the right hand
side of (1.1) is linear in α. The magnitude of α plays an important role in analysis
of the system (1.1): a small α corresponds to almost decoupled interactions; large α
corresponds to strong interactions which is our main focus; α ∼ 1 corresponds to the
classical Mean Field regime.
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Our work is motivated by experiments in bacterial suspensions [1, 2, 3, 4, 5, 6, 7].
These experiments [3, 4, 7] show the emergence of a coarse collective scale when the
concentration of bacteria exceeds a critical value. Roughly speaking, the collective
scale is the correlation length of the velocity field in a bacterial suspension. A striking
universality property has been observed experimentally and numerically in [3, 4, 8]
the collective scale does not change when swimming speed and concentration increase
(that is more energy is injected into the system).

The motion of bacteria can be modeled by a system of the form (1.1) where the
position and orientation of the ith bacteria are described by the vector Xi(t). In this
case the parameter α equals NV0 (`/R)2, where V0 is the swimming speed of a single
bacterium, R is the mean distance between two bacteria, and ` is the characteristic
size of a bacterium. The collective behavior observed in experiments [3, 4, 7] has also
been qualitatively reproduced by direct numerical simulations in [8], which validates
the model of the type (1.1). However, the computational cost of direct simulations of
the ODE system is prohibitively high for the following reasons:

(i) the number of bacteria N is very large (1010 per cm3);
(ii) to draw a reliable conclusion one needs to consider many realizations, which

mathematically translates into random initial data;
(iii) the main interest is in collective state corresponding to large α which leads

to small time steps.
The combination of the factors (i)-(iii) makes the computational cost too high even
for the most powerful particle methods such as Fast Multipole Method [9, 10, 11].

The goal of this paper is to propose a computational approach that allows one to
describe numerically the collective state of this system with properties (i)-(iii). More
specifically, the collective state is described by the correlation length and two-point
correlation function. The objective of our study is the efficient computation of these
two quantities.

The main idea is to replace the ODE system (1.1) by a PDE such that the
computational cost of its solution does not grow as N goes to infinity. This idea had
been used in the classical Mean Field approach which corresponds to α of the order
1 and is not valid for strong interactions, e.g., α ∼ Nγ for 0 < γ < 1.

This paper focuses on a PDE approach that extends beyond the Mean Field,
so that it can capture correlations in a computationally efficient way such that the
computational complexity increases only slowly with N . The main idea is to consider
the BBGKY hierarchy of PDEs which consists of N equations (therefore it is even
harder to solve than (1.1)) and obtain a closed system for 1-particle and 2-particle
distributions by a clever truncation of the hierarchy. Then the large parameter N is
present only in coefficients in a more innocuous way, and they can handled efficiently
with high order methods. This approach computes distribution functions and there-
fore it avoids computing individual realizations. Thus, it allows us to overcome the
computational difficulties (i) and (ii). The contribution to the computational com-
plexity from difficulty (iii) is still present but much less of a problem than (i) and
(ii), because α ∼ Nγ and γ < 1.

Note that a specific feature of our method is that it is efficient for random initial
conditions of system (1.1) in contrast to deterministic. Indeed, a seemingly simpler
case of deterministic initial data leads to a solution of the truncated BBGKY hierar-
chy with singular initial conditions (δ-functions), which is why the numerical cost of
solving such a deterministic problem is very high. In contrast, random initial data in
ODE (1.1) lead to smooth initial conditions in the truncated BBGKY hierarchy that
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is much easier to handle numerically.
The truncation presented in this paper can be applied for various ODE systems

of type (1.1), in dimension 1 or more. Note that different truncations of the Boltz-
mann hierarchy have been made before for some specific situations, which usually
rely on some perturbative arguments. For example, we refer to papers [12, 13, 14] de-
voted to Ostwald ripening where a truncation was motivated by expansions in (small)
concentration of particles.

The paper is organized as follows. We recall the Mean Field approach and discuss
its limitations in Section 2. The truncation of BBGKY hierarchy is described in
Section 3. Numerical simulations performed to check that the truncated PDE system
is reliable are decribed in Section 4.

2. Random initial conditions, correlations, the Mean Field approach.
For physical reason, the initial conditions for the system (1.1) are typically random as
explained below. In the classical Mean Field theory, this leads to a drastic reduction
in the computational complexity: it is possible to approximate the original solution
by the solution of a PDE which does not depend on N . We describe here the two
classical approaches to derive the Mean Field limit, a first one based on the so-called
empirical measure and a statistical approach which is better suited for our purpose.

The Mean Field limit is valid as long as the correlations between particles are
vanishing. This phenomenon is known as propagation of chaos. However, our work
is motivated by experimental studies of the collective state, whose key feature is the
rise of correlations corresponding to the emergence of a collective scale. In this case,
as we will explain below, the Mean Field approach fails.

Our approach in this paper is mostly formal. Nevertheless, we point out that
the Mean Field theory described below can be made rigorous if some smoothness is
assumed on K. More precisely,

(2.1) ∇K ∈ L∞(D), K(x)→ 0 as |x| → ∞.

On the other hand, we believe that the numerical implementation of this approach
will work well even for singular kernels (see remark 2.1).

2.1. Preliminaries. How to choose initial conditions: Randomness and marginals.
By assumption (2.1) and the standard Cauchy-Lipschitz theory, there exists a unique
solution to (1.1) once each initial position Xi(0) is chosen. However for most practical
purposes, determining those initial positions can be a very delicate problem as the full
information is not accessible from an experimental point of view. For N ∼ 1010, it
is indeed completely unrealistic to measure the position of each particle with enough
precision.

Instead, what is accessible is some statistical information about the positions of
the particles. Hence one usually assumes that the initial position of each particle is
randomly distributed. That means that the information on the initial distribution
of the particles is now encoded in the N -particle distribution function at time 0,
fN (t = 0, x1, ..., xN ). Given a subdomain Q ⊂ DN , the probability of finding the
initial positions (X0

1 , ..., X
0
N ) ∈ Q is given by∫
Q
fN (t = 0, x1, ..., xN ) dx1...dxN .

System (1.1) is deterministic but if the initial conditions are random then the random-
ness will be propagated defining the N -particle distribution for t > 0. Technically,
fN (t, .) is the push forward of fN (t = 0, .) by the flow generated by (1.1).
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From fN one may define the k-th marginal

fk(t, x1, ..., xk) =
∫
DN−k

fN (t, x1, ..., xk, xk+1, ..., xN ) dxk+1...dxN .

Some of marginals have a natural physical interpretation. For instance, f1 is the 1-
particle distribution function and for O ⊂ D the average number of particles in the
subset O is ∫

O
f1(t, x) dx.

It is still not experimentally possible to measure fN but it is possible to measure
some marginals, especially f1 and the 2-particle distribution function f2.

In the simplest case, one assumes that the particles are initially independently
and identically distributed, that is

(2.2) fN (t = 0, x1, ..., xN ) = ΠN
i=1f

0(xi).

This independence is strongly connected to the usual Mean Field limit approach as
explained in subsection 2.2 (see (2.13)).

Definition of correlations. Our main goal is to understand how correlations develop
in system (1.1). Those are connected to the second marginal f2.

We define correlation of particles’ positions by

(2.3) c =
E[X1 ·X2]− (E[X])2

E[X2]− (E[X])2 =

∫
x1 · x2f2(x1, x2)dx1dx2 −

(∫
xf1(x)dx

)2∫
x2f1(x)dx−

(∫
xf1(x)dx

)2 .

Observe that the correlation c can only vanish if

f2(x, y) = f1(x) f1(y),

that is if the particles positions are independent. Therefore, roughly speaking, the
correlations in the system are determined by how far f2(x, y) is from f1(x) f1(y).

2.2. The Mean Field approach.
Empirical measure. Assume that the Xi(t) are solutions to (1.1), and define the
empirical measure

(2.4) µN (t, x) =
1
N

N∑
i=1

δ(x−Xi(t)).

Note that if the particles are undistinguishable then there is just as much information
in the empirical measure as in the position vector (X1, ..., XN ). Otherwise, it only
tells that there is a particle at x, but it is not clear which one.

If K is continuous, then µN solves the Vlasov equation in the sense of distributions

(2.5) ∂tf(t, x) +∇x · (F (x)f(t, x)) + α∇x ·
(∫

K(y − x)f(t, y)dyf(t, x)
)

= 0.

Consider a sequence of initial positions XN = {Xi(0) : i = 1, ..., N} such that the
corresponding empirical measure µN (0) converges to some f0 ∈ Π(D) as N goes to
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infinity. Here Π(D) is the space of probability measures, positive measures µ on D
such that µ(D) = 1. Then it is natural to expect that µN will also converge to the
corresponding solution f to (2.5) with initial data f0. Assuming that f0 is smooth
then it is possible to compute numerically f and hence to get a good approximation
to µN . This is the classical Mean Field limit theory which can be made quantitative.

Those quantitative estimates require some weak distances on the space of mea-
sures. These are classically the so-called Monge-Kantorovich-Wasserstein (MKW)
distances. For our purpose it is enough to understand that they correspond to some
appropriate distance between probability measures. For the sake of completeness we
define these distances in Appendix A.

Now we give the main stability estimate behind the Mean Field limit. From [15],
[16], and [17], it is possible to prove that if f and g are two measure-valued solutions
to (2.5), then

(2.6) Wp(f(t, .), g(t, .)) ≤ et α ‖∇K‖L∞ Wp(f(0, .), g(0, .)),

where Wp(·, ·) is a p-Wasserstein or MKW distance between two measures. The
inequality (2.6) is a Gronwall-type inequality. Note also that the inequality (2.6)
applies for any initial conditions f(0, .) and g(0, .) which are not necessarily random.

The Mean Field limit. In our context, the initial conditions are random as it was
explained before. In particular, the empirical measure at time t = 0 is itself random.

If the initial law is chosen according to (2.2), then a large deviation for the law
of large numbers applies (EµN = f0) and ensures that, in fact, the initial measure
µN (t = 0) is very close to f0. More precisely, it is proved for example in Boissard
[18, Appendix A, Proposition 1.2], that if f0 is a nonnegative measure with compact
support of diameter R, then for some constant C and positive coefficients γ1 and γ2,
depending only on the dimension of D and R

(2.7) P
(
W1(µN (t = 0), f0) ≥ C R

Nγ1

)
≤ e−CN

γ2
.

This says that with a probability exponentially close to 1, µN (t = 0) and f0 are
polynomially close in N . Denote by f the solution to (2.5) with f0 as an initial data.
By combining the deterministic stability (2.6) with a law of large numbers in the form
of (2.7) we obtain that with probability larger than (1− e−CNγ2 )

(2.8) W1(µN (t, .), f(t, .)) ≤ C R

Nγ1
et α ‖∇K‖L∞ .

Why random initial conditions make computations much easier in the Mean Field
framework? Looking for a solution of the Vlasov equation (2.5) in the form of a sum
of N Dirac masses like µN is just as complex and computationally costly as solving
the original ODE system (1.1).

However looking for smooth solutions to the Vlasov equation is comparatively
much faster and obviously independent of N (provided the solution is independent
of N). Since the initial distribution f0 is usually assumed to be smooth, the corre-
sponding solution f is smooth as well and computing f numerically is thus far easier
than solving (1.1) while the cost is independent of N .

The key to the reduction in the computational complexity in this Mean Field
approach is that one does not solve the original ODE system (1.1) but instead one
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solves the Vlasov PDE for f . The previous inequality (2.8) implies that this f will
be a good approximation of the original µN up to a time t of order

(2.9)
logN

α ‖∇K‖L∞
.

Note that in certain circumstances, this time can be considerably extended to become
polynomial in N . This usually requires a stable equilibrium to equation (2.5), see [19]
for instance.

2.3. Propagation of chaos. It is possible to interpret the Mean Field limit
in terms of the propagation of chaos on the marginals. For this, we introduce the
hierarchy of equations on the marginals.

First, it is well-known that fN solves the Liouville equation:

∂tfN +
N∑
i=1

∂xi (F (xi)fN ) +
α

N

N∑
i=1

∂xi

 N∑
j=1

K(xj − xi)fN

 = 0.(2.10)

By integrating the equation for fN , one obtains an equation satisfied by each fk

∂tfk +
k∑
i=1

∂xi (F (xi)fk) +
α

N

k∑
i=1

k∑
j=1

∂xi (K(xj − xi) fk)

+
α(N − k)

N

k∑
i=1

∂xi

(∫
K(y − xi) fk+1(t, x1, . . . , xk, y) dy

)
= 0.(2.11)

For example, the PDE for f1 is

∂tf1(t, x1) + ∂x1 (F (x1)f1(t, x1)) +
αK(0)
N

∂x1f1(t, x1)

+α
N − 1
N

∂x1

{∫
K(y − x1)f2(t, x1, y)dy

}
= 0.(2.12)

By taking the formal limit N →∞ in the equation (2.12) and assuming the indepen-
dence condition f2(t, x1, x2) = f1(t, x1)f1(t, x2), we get equation (2.5).

This leads us to the crucial concept of propagation of chaos. Under some mild
conditions on the smoothness of K, for initial positions that are close to being inde-
pendent (that is (2.2) is assumed) as N →∞ we have

(2.13) fk(t, x1, ..., xk)→ Πk
i=1f(t, xi),

where f(t, x) solves the Mean Field equation (2.5).
Note that for a finite N , one cannot have equality in (2.13) and, in particular,

ΠN
i=1f(t, xi) cannot be a solution to (2.10). Hence, for a finite but large N and for

initial conditions of the form fN |t=0 = ΠN
i=1f0(xi), the particles’ positions are not

independent but their correlation is very small, at least on the time interval when the
Mean Field limit holds, i.e., up to a time of order (2.9).

Beyond Mean Field. The Mean Field limit predicts that correlations are vanishing.
In our context however this would imply that a correlation as defined in (2.3) is close
to 0 which is in contradiction with the experimentally observed phenomenon which
we wish to explain.
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Recall that system (1.1) is scaled with a factor of 1/N . In a given experimental
setting, there is no particular reason why α should be of order 1. Instead because of
the scaling, the coefficient α is typically polynomial in N . Hence the time T defined
by (2.9) is also very small. After this time during which the Mean Field theory
guarantees that correlations are small, those correlations may start developing and
creating the collective behavior.

In general the computation of those correlations would require one to solve the
full equation (2.10) on fN . Unfortunately, fN is a function of N + 1 variables and the
computational cost of the numerical solution of (2.10) is much too large.

We would like to compute directly some of the marginals fk, in particular f1 and
f2, since f2 essentially captures correlations. However, the equation (2.11) on fk is
never closed unless k = N as it involves fk+1. This is the problem we focus on in
this paper; we propose a solution consisting in truncating the hierarchy by choosing
an ansatz for f3 in terms of f1 and f2.
Remark 2.1 (On singular kernels) As mentioned before, the rigorous justification of
the classical Mean Field theory requires some smoothness on the interaction kernel,
K Lipschitz. Many physical kernels are more singular, in particular in the context we
are interested in, i.e., the context of bacteria interacting through a fluid.

It is widely conjectured that the Mean Field theory can be extended to more
singular kernels and some results are already available, see for example [20], [21], [22]
or [23] in the phase space framework.

In this work, we are not concerned with rigorous justification of our results under
proper assumptions on smoothness of K, however, just as in the Mean Field approach,
we believe that the numerical implementation of our approach will work well for a
wide class of kernels K (including singular ones).

3. Truncation of the hierarchy. In this section we first discuss the possibility
of a truncation ansatz f3 = F [f1, f2] such that the full BBGKY hierarchy becomes a
system of two PDEs for marginals f1 and f2 only. A truncation ansatz of the form
f3 = F [f1, f2] changes the equation for f2:

∂tf2 +
αK(0)
N

∂x1f2 +
αK(0)
N

∂x2f2

+
α

N
∂x1(K(x2 − x1)f2) +

α

N
∂x2(K(x1 − x2)f2)

+α
N − 2
N

∂x1

{∫
K(x3 − x1)F [f1, f2](t, x1, x2, x3)dx3

}
+α

N − 2
N

∂x2

{∫
K(x3 − x2)F [f1, f2](t, x1, x2, x3)dx3

}
= 0.(3.1)

For the sake of simplicity, in this section we consider the case with no self-interactions,
that is F (x) ≡ 0. We want the solution to satisfy the following properties:

1. f2(x1, x2) = f2(x2, x1) (particles are identical);
2.
∫
f2 ≡ const, f1, f2 ≥ 0 provided that initial conditions for f1 and f2 are

positive (mass preserving and positivity);
3. f1 =

∫
f2 (consistency);

4. If f2 = f1 ⊗ f1, then f3(x1, x2, x3) = F [f1, f1 ⊗ f1] = f1(x1)f1(x2)f1(x3).
By f2 = f1 ⊗ f1 we mean the equality f2(x, y) = f1(x)f1(y).

Property 4 guarantees that the truncation ansatz f3 = F [f1, f2] is compatible
with the Mean Field limit as N →∞. More precisely, letting N →∞ in the equation
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(3.1) for f2 with the ansatz, the equation

∂tf
∞
2 + ∂x1

{∫
K(x3 − x1)F [f∞1 , f∞2 ](t, x1, x2, x3)dx3

}
+∂x2

{∫
K(x3 − x2)F [f∞1 , f∞2 ](t, x1, x2, x3)dx3

}
= 0

reduces to the Vlasov equation for the Mean Field limit, because the propagation of
chaos holds: f∞2 (t, x1, x2) = f∞1 (t, x1)f∞1 (t, x2).

We reformulate these properties as requirements on the functional F and then
prove that such an ansatz does not exist. Next, we present a truncation which is not
based on a unique ansatz, yet the corresponding solution satisfies the four properties
above.

Consider a representation for f3:

(3.2) f3(x1, x2, x3) = F [f1, f2](x1, x2, x3),

where F is a function (in general a nonlinear operator) of f1 and f2. We reformulate
the key properties as requirements on f3 calculated by (3.2) for given f1 and f2.

First, the symmetry with respect to arguments x1 and x2 is equivalent to:

f2(x1, x2) = f2(x2, x1) for all x1, x2

⇒ f3(x1, x2, x3) = f3(x2, x1, x3) for all x1, x2, x3.(3.3)

Next, in order to preserve positivity of the distributions we need to impose

(3.4) for all x1, x2 : (f2(x1, x2) = 0⇒ f3(x1, x2, x3) = 0 for all x3)

and

(3.5) (f2(x1, x2) ≥ 0 for all x1, x2)⇒ (f3(x1, x2, x3) ≥ 0 for all x1, x2, x3).

The requirement (3.4) implies that there exists a function h(x1, x2, x3) such that
f3(x1, x2, x3) = h(x1, x2, x3)f2(x1, x2). Indeed, if f(x1, x2) 6= 0, then

h(x1, x2, x3) =
f3(x1, x2, x3)
f2(x1, x2)

for all x3.

If f2(x1, x2) = 0, then h can be defined arbitrarily. By the method of characteristics,
this property guarantees positivity of the solutions to the truncated system (3.1)
provided that the initial data is positive.

Finally, in order to have the consistency property f1(x) =
∫
f2(x, y)dy we impose

(3.6) f2(x1, x2) =
∫
f3(x1, x3, x2)dx3

The equality (3.6) is equivalent to the statement that if we integrate the equation for
k = 2 from the BBGKY hierarchy with respect to one of the spatial variables, say,
x2, we get the equation for k = 1.

Proposition 3.1. There is no such representation (3.2) that all requirements
(3.3),(3.4),(3.5) and (3.6) hold true.
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Fig. 3.1. Ω is shaded domain

Proof. The proof is by contradiction. The idea is to combine requirements (3.4)
and (3.5):

(3.7) f2(x1, x2) =
∫
h(x1, x3, x2)f2(x1, x3)dx3

and to find such f2 that the LHS of (3.7) is zero, but the RHS is not zero.
Assume that (3.3),(3.4),(3.5) and (3.6) hold true. Take

Ω =
{

(x1, x2) : |x1 −
1
2
|+ |x2 −

1
2
| < 1

2

}
\
{
|x1 −

1
2
| < 1

4
, |x2 −

1
2
| < 1

4

}
and f2(x1, x2) = 1

|Ω|χΩ(x1, x2) = 4χΩ(x1, x2). Here χΩ is a characteristic function
of domain Ω. Note f1(x) > 0 for all x ∈ (0, 1)\

{
1
4 ,

3
4

}
because of the equality

f1(x) =
∫
f2(x, y)dy which holds due to (3.6).

The property (3.4) implies the existence of such a function h(x1, x2, x3) that f3(x1, x2, x3) =
h(x1, x2, x3)f2(x1, x2). Thus, from (3.6) we obtain

(3.8) f2(x1, x2) =
∫
h(x1, x3, x2)f2(x1, x3)dx3.

Let (x1, x2) /∈ Ω, then (3.8) implies that

(3.9) 0 =
∫
h(x1, x3, x2)f2(x1, x3)dx3 = 4

∫
x3:(x1,x3)∈Ω

h(x1, x3, x2)dx3.

Thus

(3.10) h(x1, x3, x2) = 0, if (x1, x2) /∈ Ω and (x1, x3) ∈ Ω.

By using the symmetry of h with respect to first two arguments we get h(x1, x3, x2) =
h(x3, x1, x2) and

(3.11) h(x1, x3, x2) ≡ 0 if (x2, x3) /∈ Ω and (x1, x3) ∈ Ω.

Finally, calculate f1(1/8). On the one hand, f1(1/8) =
∫
f2(1/8, y)dy > 0. On the

other hand,

(3.12) f1(x2) = 4
∫ ∫

(x1,x3)∈O
h(x1, x3, x2)χΩ(x1, x3)dx3dx1.
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where O = {(x1, x3) : h(x1, x2, x3)χΩ(x1, x3) 6= 0}. The domain O depends on x2.
We claim that O is empty for x2 = 1/8. Indeed,

O = {h(x1, x3, 1/8) 6= 0 and χΩ(x1, x3) 6= 0} = [defenition of χΩ]
= {(x1, x3) ∈ Ω, h(x1, x3, 1/8) 6= 0} ⊂ [(3.10) and (3.11)]
⊂ {(x1, x3) ∈ Ω, (x1, 1/8) ∈ Ω, (x3, 1/8) ∈ Ω}
= {(x1, x3) ∈ Ω, x1 ∈ (3/8, 5/8), x3 ∈ (3/8, 5/8)} = ∅.

The integral in (3.12) is taken over empty set. Thus, f1(1/8) = 0 and we have
reached a contradiction.

Instead of using a unique representation ansatz for f3 we use two different, but
similar, representation ansatzes for f3, f3 = f

(I)
3 (x1, x2, x3) and f3 = f

(II)
3 (x1, x2, x3),

in two different places where f3 appears in the equation k = 2 such that the key
properties are preserved. Namely, the equation k = 2 is rewritten as follows

∂tf2 +
αK(0)
N

∂x1f2 +
αK(0)
N

∂x2f2

+
α

N
∂x1(K(x2 − x1)f2) +

α

N
∂x2(K(x1 − x2)f2)

+α
N − 2
N

∂x1

{∫
K(x3 − x1)f (I)

3 (t, x1, x2, x3)dx3

}
+α

N − 2
N

∂x2

{∫
K(x3 − x2)f (II)

3 (t, x1, x2, x3)dx3

}
= 0,(3.13)

where

(3.14) f
(I)
3 (t, x1, x2, x3) =

{
f2(t,x1,x2)f2(t,x1,x3)∫

f2(t,x1,y)dy
,
∫
f2(t, x1, y)dy > 0,

0,
∫
f2(t, x1, y)dy = 0,

and

(3.15) f
(II)
3 (t, x1, x2, x3) =

{
f2(t,x1,x2)f2(t,x3,x2)∫

f2(t,y,x2)dy
,
∫
f2(t, y, x2)dy > 0,

0,
∫
f2(t, y, x2)dy = 0.

The four key properties listed above are preserved after such truncation:
1. Symmetry of f2 with respect to x1 and x2 (provided that initially f2 is
symmetric) follows from symmetry of the equation with respect to x1 and x2.
2. Conservation of mass and positivity follow from the fact that equation
(3.13) can be rewritten as a standard conservation law (see (3.16) below).
3. By integrating (3.13) over, for example, x2, one obtains an equation for∫
f2(x1, x2)dx2 which coincides with the equation for f1. By assuming unique-

ness we get the consistency property: f1(x1) =
∫
f2(x1, x2)dx2.

4. If f2(x1, x2) = f1(x1)f1(x2), then f
(I)
3 = f

(II)
3 = f1(x1)f1(x2)f1(x3). Note

that in this case equation (3.13) is reduced to the Mean Field equation (2.5)
in the limit N →∞.

We conclude this section by giving a physical interpretation of the introduced
ansatz. To this end, we will rewrite (3.13) in a more convenient form.

The first integral term where the ansatz is applied,
∫
K(x3−x1)f (I)(t, x1, x2, x3)dx3,

can be rewritten as F (t, x1)f2(t, x1, x2), where

F (t, x) =
∫
K(y − x)f2(t, x, y)dy/

∫
f2(t, x, y)dy

10



(assume f2 > 0). Analogously, the second integral term is F (t, x2)f2(t, x1, x2). Then
equation (3.13) is rewritten in the form of a 2D conservation law:

∂tf2 + ∂x1

({
αK(0)
N

+
α

N
K(x2 − x1) + α

N − 2
N

F (t, x1)
}
f2

)
+∂x2

({
αK(0)
N

+
α

N
K(x1 − x2) + α

N − 2
N

F (t, x2)
}
f2

)
= 0.(3.16)

For two particles Xi and Xj such that Xi = x, the number (1/N)F (t, x) can be viewed
as the average (or expected) force applied to the particle Xi by the particle Xj at time
t. In this sense, equation (3.13) can still be viewed as a mean field approximation but
at a higher order.

4. Numerical example. The goal of this section is (i) to test the truncation
(3.13) on a simple 1D example and (ii) to describe the main difficulties which arise
in the numerical resolution of the PDE (3.13). Here we use numerical methods which
are explicit, allows for comparison with direct simulations, and are not necessarily
the most efficient. The development of more advanced numerical methods capturing,
e.g., 2D, non-smooth kernels or large times, are left for a subsequent work.

To test the truncation we compare probability distributions (marginals) f1 and
f2 obtained by numerical solution of the truncated system (3.13) with histograms of
particles satisfying the original ODE system (1.1). The histograms are built on many
realizations of initial particle positions.

Specific setting. Numerical simulations are performed for the one-dimensional prob-
lem, x ∈ R1, and periodic boundary conditions with period 1. The interaction kernel
K is periodic with period 1 and for |Xj − Xi| < 1/2 it is given by K(Xj − Xi) =
e−12(Xj−Xi)2 . Initially particles are independent:

(4.1) f2(0, x1, x2) = f1(0, x1)f1(0, x2), where f1(0, x1) = .4 sin 2πx1 + 1.

Number of particles is N = 100 per one periodic cell x ∈ [0, 1], α = 3.

Description of numerical methods. In order to solve the PDE (3.13) we face difficulties
that come from the fact that the equation is a non-local non-linear 2D conservation
law. For a detailed discussion of difficulties in numerical solution of non-linear con-
servation laws and the way to resolve them we refer to [24]. In this example we want
to simulate accurately terms of order 1/N , since they are the source of correlations.
In other words, if one erases these terms in (3.13), then the solution of equation
(3.13) with initial conditions (4.1) will be of the form f2(t, x1, x2) = f1(t, x1)f1(t, x2),
i.e., with no correlations. This motivates us to use a second order scheme and we
implemented a second order scheme with flux limiters for which we have converg-
ing numerical simulations with reasonable spatial and time steps. This method is
described below.

The PDE (3.13) can be rewritten as follows

∂tf2 + ∂x1(A1f2) + ∂x2(A2f2) = 0,

where for f2(x1, x2) > 0 functions A1 and A2 are given by

(4.2) Ak(t, x1, x2) =
α

N

∑
i=1,2

K(xi − xk) +
α(N − 2)

N

∫
K(y − xk)f2(t, xk, y)dy∫

f2(t, xk, y)dy
.

11



Denote by fmi,j the approximation for f2(t, x1, x2) with t = mdt, x1 = idx, x2 =
jdx, where dt and dx are time and spatial steps, respectively. For given m, i and j
introduce the following finite difference approximations for ∂k {Akf2}, k = 1, 2:

r11 :=
Ami,jf

m
i,j −Ami−1,jf

m
i−1,j

dx
, r12 :=

Ami+1,jf
m
i+1,j −Ami,jfmi,j

dx
,

r21 :=
Ami,jf

m
i,j −Ami,j−1f

m
i,j−1

dx
, r22 :=

Ami,j+1f
m
i,j+1 −Ami,jfmi,j

dx
.

Introduce also an auxiliary function (flux limiter) φ(r) = max [0, 0.5 min(r, 1.5)].
The following finite difference scheme is used in the numerical solution of PDE

(3.13):

(4.3) fm+1
i,j = fmi,j +

dt
dx

 ∑
k=1,2

{
rk1 + φ

(
rk1

rk2

)
(rk2 − rk1)

} .
In order to compute the two-particle distribution for t > 0 directly from the

system of ODEs (1.1) we consider R = 5·105 realizations of N = 100 particles initially
identically distributed with probability distribution function f(x) = 0.4 sin 2πx + 1.
Denote by X

(r)
i (t) the position of the ith particle, i = 1, .., N in the rth realization,

r = 1, .., R at time t. For each r = 1, .., R the positions
{
X

(r)
i (t)

}
i=1,..,N

, t > 0, are

found as the solution of the ODE system (1.1) by the explicit Euler method of the
first order with the time step ∆t = 0.01.

We compute the following histogram which approximates the probability of that
the first particle is in the interval ∆j = [jh, (j + 1)h) at time t:

(4.4) f̃1(t,∆j) =
1
Rh

#
{
X

(r)
1 (t) ∈ ∆j , r = 1, .., R

}
.

Here h = 0.05 is the size of a histogram bin.
Histogram f̃2 which approximates the two-particle distribution can be computed

as follows

(4.5) f̃2(t,∆i,∆j) =
1
Rh2

#
{(
X

(r)
1 (t), X(r)

2 (t)
)
∈ ∆i ×∆j , r = 1, .., R

}
.

Thus, in numerical simulations our intention is to compare f1 =
∫
f2dx and f2

calculated by (4.3) with histograms f̃1 and f̃2 calculated by (4.4) and (4.5).

Simulations were performed on a machine with 3.06 Ghz Intel core CPU 8 GB of
RAM. Numerical solution of (3.13) for t = 1 for dx = .0025 and dx/dt = 200 takes
approximately 32 hours. Numerical solution of (1.1) on R = 105 realization, t = 1
and time step ∆t = 1/50 takes approximately 83 hours. Besides the long time of
computations direct simulations face another difficulty which is the large amount of
data that creates technical difficulties in data movement, its analysis and visualization.

Results of numerical simulations. Plots in Fig. 4.1 show that marginal f1 is close
to histogram f̃1. In order to visualize comparisons between f2 and f̃2 we plot these
functions integrated over B = {(x1, x2) : 0 ≤ x1, x2 ≤ 1/2}:

Qmarg =
∫
B
f2dx1dx2, Qhist =

∫
B
f̃2dx1dx2 = h2

∑
i,j≤1/(2h)

f̃2(t,∆i,∆j).
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Plot 4.2 shows that quantities Qmarg defined by marginal f2 and Qhist defined by
histogram f̃2 seem to be in very good agreement.

Finally, we computed correlations using marginals f1 and f2. For the marginal
approach (i.e., solution of (3.13)) correlations are defined as follows

c(t) =
∫ ∫

|f2(t, x1, x2)− f1(t, x1)f1(t, x2)|dx1dx2.

In direct simulations (i.e., solution of ODE (1.1) for many random realizations of
initial conditions) correlations are defined in a similar way to the above formula with
histograms in place of distributions:

c̃(t) =
∫ ∫

|f̃2(t, x1, x2)− f̃1(t, x1)f̃1(t, x2)|dx1dx2

= h2
∑
i,j

|f̃2(t,∆i,∆j)− f̃1(t,∆i)f̃1(t,∆j)|.

As it is seen on Fig. 4.3, plots for correlations computed on marginals and in direct
simulations for R = 5×105 have similar qualitative behavior and order of magnitude.
The value of correlations is a small number and thus its computation requires high
accuracy to reduce the error to an order less than that of the correlations. In direct
simulations, this requires a large number of realizations which make the computations
unreasonably long, in contrast to the marginal approach where the computation of
correlations is much faster.

Note that correlations we observe are not large (in comparison with the maximal
possible value of correlations cmax = 2). In order to observe large correlations (e.g.,
∼ 0.1) we need to solve (3.13) for large times which is very costly. Moreover, it
is delicate to predict the time when correlations will reach some fixed, large value.
This question is left for subsequent works. Nevertheless, relatively small correlations
for times of order 1 may be enough for the solution of (3.13) or the original BBGKY
hierarchy to be essentially different from the one obtained by the Mean Field approach.

Convergence of numerical methods. Here we show that the numerical methods we
used in this section converge.

First, consider the calculations of marginals f1 and f2. Comparisons of numerical
simulations for various spatial and time steps for t = 1, t = 2 and t = 3 are presented
on Figures 4.4 and 4.5. Convergence of the numerical method in computing

∫
B f2dx

and correlations c(t) is observed on plots in Figure 4.6.
Next, look at the calculations for histograms f̃1 and f̃2. Plots on Figures 4.7

and 4.8 illustrate convergence of the method for histogram f̃1 at times t = 1, t = 2
and t = 3, and for histogram f̃2 summed over the set B. several time steps ∆t are
considered: ∆t = 0.02, ∆t = 0.01, ∆t = 0.001. The number of realizations, R = 105,
is chosen for the width of bin h = 0.02. It is seen on Figures 4.7 and 4.8 that such a
number of realizations R seems to be enough to have converging numerical solutions
for f̃1 and

∫
B f̃2. To compute correlations c̃(t) more realizations would be needed

and plots in Figure 4.9 show that to estimate c̃(t) we need more than R = 5 · 105

realizations with ∆t = 0.002.

Numerical simulations presented above show that PDE system (3.13) not only
preserves the qualitative properties of the probability distribution functions (like pos-
itivity, consistency, propagation of chaos, etc.), but also may serve for the study of
saturation of correlations in such many particle systems.
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Fig. 4.1. Left: Marginal f1 with dx = 0.0025 and dt = dx/200; Right: Histogram f̃1 for
h = 0.05 and dt = 0.001.

Fig. 4.2. Comparison between Qmarg and Qhist.

5. Conclusions. We developed a numerical approach which allows for study
correlations and checked it in a simple setting (toy model). We believe that this
approach can be successfully applied to problems in biology, physics and economics.
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Appendix A. Appendix: Wasserstein distances. Wasserstein distance or
Monge-Kantarovich-Wasserstein (MKW) quantifies the difference between two given
measures. Roughly speaking, a measure can be viewed as a pile of sand. The MKW
distance between two such piles is an optimal work of transfering one pile into another.

Given two measures µ1 and µ2 in M1(D), one may define the set of transference
plans between µ1 and µ2 as the set Π(µ1, µ2) of measures π ∈M1(D ×D) s.t.

µ1(x) =
∫
D

π(x, dy), µ2(y) =
∫
D

π(dx, y).

The p MKW distance Wp(µ1, µ2) between µ1 and µ2 is given by

Wp(µ1, µ2) = inf
π∈Π(µ1,µ2)

∫
D2
|x− y|p π(dx, dy).

If D is the torus, then |x− y| is replaced by the corresponding distance (in general in
a manifold, it would be the geodesic distance).

For measures with bounded moments, the MKW distances metrize the weak-*
topology. Moreover, on bounded domains the W1 distance is essentially equivalent to
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Fig. 4.9. Correlations computed on histograms

the negative Sobolev norm W−1,1.The p-MKW distances play an important role for
particle systems as the p-MKW distance between two empirical measures is typically
comparable with the p distance between the two vectors of positions, that is

Wp

(
1
N

∑
i

δxi ,
1
N

∑
i

δyi

)
∼ 1
N

∑
i

|xi − yi|p,

up to a permutation of indices on the yi.
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