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Abstract This short paper is an introduction of the memoir recently written by the
two authors (see [D.Bresch., P.–E. Jabin, arXiv:1507.04629, (2015)]) which con-
cerns the resolution of two longstanding problems: Global existence of weak solu-
tions for compressible Navier–Stokes equations with thermodynamically unstable
pressure and with anisotropic stress tensor. We focus here on a Stokes-like sys-
tem which can for instance model flows in a compressible tissue in biology or in
a compressible porous media in petroleum engineering. This allows to explain, on
a simpler but still relevant and important system, the tools recently introduced by
the authors and to discuss the important results that have been obtained on the com-
pressible Navier–Stokes equations. It is finally a real pleasure to dedicate this paper
to G. MÉTIVIER for his 65’s Birthday.

1 Introduction

We consider in this paper a model which has been developed for flows in a
compressible tissue in biology (see [3], [6]) or in compressible porous media in
petroleum engineering (see [10]). The most simple system involves a density ρ that
is transported,

∂tρ +div(ρu) = 0,

by a velocity field u described by a Stokes-like equation
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−µ∆u+αu+∇P(ρ) = S,

with µ,α > 0.
For simplicity we consider periodic boundary conditions, namely both equations

are posed for x ∈ Ω = Π d . This is also the reason for the damping term αu to
control u without imposing any additional condition on S. The corresponding PDE
is usually named Brinkman equation. It accounts for flow through medium where
the grains are porous themselves.

In this short paper, we explain how to consider non-monotone pressure laws P
for this system (complex pressure laws (attractive and repulsive)) to obtain the exis-
tence of global weak-solutions. Note that in particular biological systems frequently
exhibit preferred ranges of densities for instance attractive interactions for low den-
sities and repulsive at higher ones.

To get such global existence of weak solutions result, the two authors have re-
cently revisited (see [4]) the classical compactness theory on the density by obtain-
ing precise quantitative regularity estimates: This requires a more precise analysis
of the structure of the equations combined to a novel approach to the compactness
of the continuity equation (by introducing appropriate weights). We quote at the
end of the article some of the precise results obtained in [4] on the compressible
Navier-Stokes systems but we of course refer the reader to [4] for all the details and
possible extensions for instance including temperature conductivity dependency.

2 Equations and main result

As mentioned above, we work on the torus Π d . This is only for simplicity in order
to avoid discussing boundary conditions or the behavior at infinity.

2.1 Statements of the result

We present in this section our main existence result concerning System (1). As usual
for global existence of weak solutions to nonlinear PDEs, one has to prove stability
estimates for sequences of approximate solutions and construct such approximate
sequences. The main contribution in this paper and the major part of the proofs con-
cern the stability procedure and more precisely the compactness of the density. We
refer to [4] for details and the way to construct the approximate solutions sequence.
As per the introduction, we consider the following system{

∂tρ +div(ρu) = 0,
−µ∆u+αu+∇P(ρ) = S, (1)
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with µ,α > 0, a pressure law P which is continuous on [0,+∞), P locally Lipschitz
on (0,+∞) with P(0) = 0 such that there exists C > 0 with

C−1
ρ

γ −C ≤ P(ρ)≤Cρ
γ +C, (2)

and for all s≥ 0
|P′(s)| ≤ P̄sγ−1. (3)

One then has global existence

Theorem 1. Assume that S∈ L2(0,T ; H−1(Π d)) and the initial data ρ0 satisfies the
bound

ρ0 ≥ 0, 0 < M0 =
∫

Πd
ρ0 <+∞, E0 =

∫
Πd

ρ0e(ρ0)dx <+∞,

where e(ρ) =
∫ ρ

ρ? P(s)/s2ds with ρ? a constant reference density. Let the pressure
law P satisfies (25) and (26) with γ > 1. Then there exists a global weak solution
(ρ,u) of the compressible system (1) with

ρ ∈ L∞(0,T ;Lγ(Π d))∩L2γ((0,T )×Π
d), u ∈ L2(0,T ;H1(Π d)).

Remark 1. Let us note that we do not try to optimize the regularity of S which could
be far less smooth. The objective of this short note being to be an introduction to [4]
focusing on the new compactness criterion.

3 Sketch of the new compactness method

We present in the section the tool which has been used in [4] and which is the cor-
nerstone to prove compactness on the density. The interested reader is also referred
to [1], [2], [13] for more on the corresponding critical spaces. This tool is really ap-
propriate to cover more general equation of state or stress tensor form compared to
the more standard defect measure criterion used in [11], [8], [9], [12] for instance.

3.1 The compactness criterion

We start by a well known result providing compactness of a sequence

Proposition 1. Let ρk be a sequence uniformly bounded in some Lp((0,T )×Π d)
with 1 ≤ p < ∞. Assume that Kh is a sequence of smooth, positive, bounded func-
tions s.t.
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i. ∀η > 0, sup
h

∫
|x|≥η

Kh(x)dx < ∞, suppKh ∈ B(0,R), (4)

ii. ‖Kh‖L1(Πd) −→+∞. (5)

Assume that ∂tρk ∈ Lq(0,T,W−1,q(Π d)) (with q > 1) for any smooth compact set
Ω , uniformly in k and

limsup
k

sup
t∈[0,T ]

[ 1
‖Kh‖L1

∫
Π2d

Kh(x− y) |ρk(t,x)−ρk(t,y)|p dxdy
]
−→ 0, as h→ 0,

(6)
then ρk is compact in Lp

loc((0,T )×Π d). Conversely if ρk is compact in Lp
loc((0,T )×

Π d) then the above quantity converges to 0 with h.

For reader’s convenience, we just quickly recall why (6) implies the compactness in
space (by simply forgetting the time dependency). Denote ¯Kh the normalized kernel

¯Kh =
Kh

‖Kh‖L1
.

Write

‖ρk− ¯Kh ?x ρk‖p
Lp ≤

1
‖Kh‖p

L1

∫
Πd

(∫
Πd

Kh(x− y)|ρk(t,x)−ρk(t,y)|dx
)p

dy(7)

≤ 1
‖Kh‖L1

∫
Π2d

Kh(x− y)|ρk(t,x)−ρk(t,y)|pdxdy,

which converges to zero uniformly in k as the limsup is 0 for the sup in time. On the
other-hand for a fixed h, K h ?x uk is compact in k so for example for any z > 0

‖ρk−ρk(.+ z)‖Lp ≤ 2‖ρk− ¯Kh ?x ρk‖Lp +‖ ¯Kh ?x ρk− ¯Kh ?x ρk(.+ z)‖Lp (8)
≤ 2‖ρk− ¯Kh ?x ρk‖Lp + |z|‖ρk‖Lp ‖ ¯Kh‖W 1,∞ . (9)

This shows by optimizing in h that

sup
k
‖ρk−ρk(.+ z)‖Lp −→ 0, as |z| → 0.

proving the compactness in space by the Rellich criterion. Concerning the compact-
ness in time, one just has to use the uniform bound on ∂tρk.

The Kh0 functions. Define Kh a sequence of non negative functions,

Kh(x) =
1

(h+ |x|)a , for |x| ≤ 1/2,

with some a > d and Kh non negative, independent of h for |x| ≥ 2/3, with support
in B(0,3/4) and periodized such as to belong in C∞(Π d \B(0,3/4)).

For convenience, let us denote
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Kh(x) =
Kh(x)
‖Kh‖L1

.

For 0 < h0 < 1, the important quantity to be used in Proposition 1 will be

Kh0(x) =
∫ 1

h0

Kh(x)
dh
h

where
Kh(x) =

1
(h+ |x|)a , for |x| ≤ 1/2.

Remark the important property: ‖Kh0‖L1 ∼ | logh0|.

4 Proof of Theorem 1

As usually the proof of global weak solutions of PDEs is divided in three steps:

• A priori energy estimates and control of unknowns,
• Stability of weak sequences: Compactness,
• Construction of approximate solutions.

4.1 Energy estimates and control of unknowns.

Energy estimate. Le us multiply the Stokes equation by u and integrate by parts, we
get

µ

∫
Πd
|∇uk|2 +α

∫
Πd
|uk|2 +

∫
Πd

∇P(ρk) ·u =
∫

Πd
Sk ·uk.

Now we write the equation satisfied by ρke(ρk) where e(ρk) =
∫

ρk
ρref

P(s)/s2ds, with
ρref a constant reference density, we get

∂t(ρe(ρ))+div(ρe(ρ)u)+P(ρ)divu = 0.

Integrating in space and adding to th first equation we get

d
dt

∫
Πd

ρke(ρk)+µ

∫
Πd
|∇uk|2 =

∫
Πd

Sk ·uk.

One only needs Sk ∈ L2([0, T ], H−1(Π d)) uniformly and using the behavior of P,
then we get the uniform bound

ρ
γ

k ∈ L∞(0,T ;L1(Π d)), uk ∈ L2(0,T ;H1(Π d)).
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Extra integrability on ρk. When now considering the compressible system (1), the
divergence divuk is given

divuk =
1
µ

P(ρk)+
1
µ

∆
−1divRk

with Rk = Sk−αuk. Therefore, since ρk ∈ L∞(0,T ;Lγ(Π d)), if we multiply by ρθ
k ,

we get

I =
∫ T

0

∫
Πd

P(ρk)ρ
θ
k = µ

∫ T

0

∫
Πd

divukρ
θ
k −

∫ T

0

∫
Πd

∆
−1divRk ρ

θ
k

which is easily bounded as follows

I ≤
[
µ‖divuk‖L2((0,T )×Πd)+‖∆

−1divRk‖L2((0,T )×Πd)

]
‖ρθ

k ‖L2((0,T )×Πd)

Thus using the behavior of P and information on uk and Rk, we get for large density∫ T

0

∫
Πd

(ργ+θ )≤C+ ε

∫ T

0

∫
Πd

(ρ2θ ).

Thus we get a control on ρ
γ+θ

k if θ ≤ γ . Therefore, we get ρk ∈ Lp((0,T )×Π d)
with p > 2 is γ > 1.

Remark 2. Note that for the barotropic compressible Navier-Stokes equations, we
get

1
2

d
dt

∫
Πd

ρ|uk|2 +
d
dt

∫
Πd

ρke(ρk)+µ

∫
Πd
|∇uk|2 = 0.

and ∫ T

0

∫
Πd

ρ
γ+θ

k <+∞

for θ ≤ 2γ/d − 1 where d is the space dimension. The constraint on γ in [4] is
different because of more restrictive integrability information (due to the presence
of the total time derivative).

4.2 Stability of weak sequences: Compactness

We will prove the following result which is the main part of the proof

Proposition 2. Assume (ρk,uk) satisfy system (1) in a weak sense with a pressure
law satisfying (2)–(3) and with the following weak regularity

sup
k
‖ργ

k ‖L∞
t L1

x
< ∞, sup

k
‖ρk‖Lp

t,x
< ∞ with p≤ 2γ,

and
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sup
k
‖uk‖L2

t H1
x
< ∞.

If the source term Sk is compact in L2([0, T ], H−1(Π d)) and the initial density
sequence (ρk)0 is assumed to be compact and hence satisfies

limsup
k

[
1

‖Kh‖L1

∫
Π2d

Kh(x− y)|(ρx
k )0− (ρy

k )0|
]
= ε(h)→ 0 as h→ 0,

then ρk is locally compact.

Remark 3. Here and in the following, we use the convenient notation ρx
k = ρk(t,x),

ρ
y
k = ρk(t,y) and (ρx

k )0 = ρk(t = 0,x), (ρy
k )0 = ρk(t = 0,y).

Proof. Of course, we know that due to the weak regularity of divuk, we cannot
expect to simply propagate the regularity assumed on the density. The idea is to
accept to loose some of it by introducing appropriate weights. More precisely, we
consider weights wk such that wk|t=0 = 1 and thus in particular, since ρ0

k is compact

limsup
k

[
1

| logh0|

∫
Π2d

Kh0(x− y)|(ρx
k )0− (ρy

k )0|
]
((wx

k)0 +(wy
k)0)→ 0 as h→ 0.

Remark that
1

| logh0|

∫ 1

h0

ε(h)
h

dh→ 0 when h0→ 0.

Let us now choose weights satisfying PDEs which are dual to the continuity equa-
tion {

∂twx
k +ux

k ·∇xwx
k +λDx

kwx
k = 0,

wx
k|t=0 = (wx

k)0 = 1, (10)

and {
∂tw

y
k +uy

k ·∇ywy
k +λDx

ywy
k = 0,

wy
k|t=0 = (wy

k)0 = 1,
(11)

with λ a constant parameter to be chosen later on and appropriate positive damping
terms Dx

k and Dy
k. We first study the propagation of the quantity

Rh0(t) =
∫

Π2d
Kh0(x− y) |ρx

k −ρ
y
k |(w

x +wy)dxdy =
1

‖Kh‖L1

∫ 1

h0

R(t)
dh
h

where
R(t) =

∫
Π2d

Kh(x− y) |ρx
k −ρ

y
k |(w

x +wy)dxdy.

We show that it is possible to choose Dx
k, Dy

k and λ such that

limsup
k

[
1

| logh0|

∫
Π2d

Kh0(x− y)|ρx
k −ρ

y
k |
]
(wx

k +wy
k)→ 0 as h0→ 0

as initially. Then, we will need properties on wx
k and wy

k to conclude that we also
have
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limsup
k

[
1

| logh0|

∫
Π2d

Kh0(x− y)|ρx
k −ρ

y
k |
]
→ 0 as h0→ 0

which is the criterion giving compactness. Thus the proof is divided in two parts.

I) First step: Propagation of a weighted regularity. Using the transport equation, we
obtain that

∂t |ρx
k −ρ

y
k |+divx (ux

k |ρx
k −ρ

y
k |)+divy (u

y
k |ρ

x
k −ρ

y
k |)

≤ 1
2 (divxux

k +divyuy
k) |ρ

x
k −ρ

y
k |−

1
2 (divxux

k−divyuy
k)(ρk(x)+ρk(y))sk, (12)

where sk = sign(ρk(x)−ρk(y)). Remark that these calculations can be justified for
a fixed k through the DiPerna-Lions theory on renormalized solutions because the
densities and the gradient of the velocity are in L2 in space and time. From this
equation on |ρx

k −ρ
y
k |, we deduce by symmetry that

d
dt

R(t) =
∫

Π2d
∇Kh(x− y)(ux

k−uy
k) |ρ

x
k −ρ

y
k |(w

x + wy)) (13)

−
∫

Π2d
Kh(x− y)(divux

k−divuy
k)(ρ

x
k +ρ

y
k )sk wx

+2
∫

Π2d
Kh(x− y) |ρx

k −ρ
y
k |
(

∂twx
k +ux

k ·∇xwx +
1
2

divxux
k wx

k

)
= A1 +A2 +A3.

First term. The first term will lead to non symmetric contributions. By definition of
Kh, we have

|z||∇Kh(z)| ≤CKh(z).

We hence write

A1 =
∫

Π2d
∇Kh(x− y) · (ux

k−uy
k) |ρ

y
k −ρ

y
k |(w

x
k +wy

k) (14)

≤C
∫

Π2d
Kh(x− y)(D|x−y|u

x
k +D|x−y|u

y
k) |ρ

x
k −ρ

y
k |w

x
k,

where we have used here

|u(x)−u(y)| ≤C |x− y|(D|x−y|u
x
k +D|x−y|u

y
k),

for an operator D|x−y|; this inequality is fully described in Lemma 1 in the appendix.
The key problem is the Dhuy

kwx
k term which one will have to control by the term

M|∇ux
k|wx

k in the penalization. This is where integration over h and the use of trans-
lation properties of operator will be used. For that we will add and subtract an ap-
propriate quantity to obtain a symmetric expression.

Denoting z = x− y, we have∫ 1

h0

A1

‖Kh‖1
L

dh
h
≤C

∫ 1

h0

∫ t

0

∫
Π2d

Kh(z)‖D|z|uk(·)−D|z|uk(·+ z)‖L2
dh
h

(15)
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+C
∫ t

0

∫
Π2d

Kh0(x− y)D|x−y|uk(x) |ρx
k −ρ

y
k |w

x
k.

Using Lemma 2 which bounds D|x−y|ux
k by the Maximal operator M |∇uk|(x), we

deduce that∫ 1

h0

A1

‖Kh‖1
L

dh
h
≤C

∫ 1

h0

∫ t

0

∫
Π2d

Kh(z)‖D|z|uk(·)−D|z|uk(·+ z)‖L2
dh
h

(16)

+C
∫ t

0

∫
Π2d

Kh0(x− y)M|∇ux
k| |ρx

k −ρ
y
k |w

x
k.

The second term will be absorbed using the weight definition. But the first quantity
has to be controlled using the property of the translation of operator Dh and for this
reason, this calculation is critical as it is the one which imposes the scales in Kh0 .

Second term. Use the relation between divux
k (respectively divuy

k) with ρx
k (respec-

tively ρ
y
k ), to obtain

A2 =−
∫

Π2d
Kh(x− y)(p(ρx

k )− p(ρy
k ))(ρ

x
k +ρ

y
k )sk wx +Qh(t)

where Qh(t) encodes the compactness in space of ∆−1divRk and therefore may be
forgotten for simplicity as

1
| logh0|

∫ t

0

∫
Π2d

Kh0(x− y)Qh(t)→ 0 as h0→ 0,

as Rk is compact in L2
t H−1

x and hence ∆−1divRk is compact in L2
t,x by the gain of

one derivative.
The bad term p(ρy

k )w
x
k cannot a priori be bounded directly with weights. Hence

we have to work a little on the expression A2.
First note that we have ρx

k +ρ
y
k ≥ |ρ

x
k −ρ

y
k |.

– Case 1: The case where p(ρx
k )− p(ρy

k ))(ρ
x
k −ρ

y
k )≥ 0. Then we have the right sign

for the contribution namely a negative sign.
– Case 2: The case p(ρx

k )− p(ρy
k ))(ρ

x
k −ρ

y
k )< 0 and ρ

y
k ≤ ρx

k/2 or ρ
y
k ≥ 2ρx

k .
Assume we are in the case ρ

y
k ≥ 2ρx

k , then

(p(ρx
k )− p(ρy

k ))(ρ
x
k +ρ

y
k )sk ≥−C (ρx

k )
γ |ρx

k −ρ
y
k |,

since p(ξ )≤ p(0)+Cξ γ−1ξ ≤Cξ γ . If we now look at the case p(ρx
k )≤ p(ρy

k ) and
ρ

y
k ≤ ρx

k/2, then we again bound

(p(ρx
k )− p(ρy

k ))(ρ
x
k +ρ

y
k )sk ≥−C (ρx

k )
γ |ρx

k −ρ
y
k |.

— Case 3: The case where p(ρx
k )− p(ρy

k ) and ρx
k − ρ

y
k have different signs but

ρx
k/2≤ ρ

y
k ≤ 2ρx

k . Then it is easy to get again
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(p(ρx
k )− p(ρy

k ))(ρ
x
k +ρ

y
k )sk ≥−C (1+(ρx

k )
γ) |ρx

k −ρ
y
k |.

Therefore we get the following interesting bound:

A2 ≤C
∫

Kh(x− y)(1+(ρx
k )

γ)) |ρx
k −ρ

y
k |w

x
k.

Third term. Using the equations satisfied by wx
k and wy

k, we have

A3 =
∫

Π2d
Kh(x− y) |ρx

k −ρ
y
k |
(

∂twx
k +ux

k ·∇xwx +
1
2

divxux
k wx

k

)
(17)

≤
∫

Π2d
Kh(x− y) |ρx

k −ρ
y
k |
(
−λDx

k +
1
2

divxux
k

)
wx

k.

Conclusion of the first step. Collecting the three steps, we get

Rh0(t)−Rh0(0) ≤C
∫ 1

h0

∫ t

0

∫
Π2d

Kh(z)‖D|z|uk(·)−D|z|uk(·+ z)‖L2
dh
h

(18)

+C
∫ t

0

∫
Π2d

Kh0(x− y)M|∇ux
k| |ρx

k −ρ
y
k |w

x
k

+C
∫ t

0

∫
Π2d

Kh0(x− y)(1+(ρx
k )

γ))|ρx
k −ρ

y
k |w

x
k

+
∫ t

0

∫
Π2d

Kh0(x− y) |ρx
k −ρ

y
k |
(
−λDx

k +
1
2

divxux
k

)
wx

k.

Therefore we choose

Dx
k = M|∇ux

k|+ |divxux
k|+(ρx

k )
γ ,

with a similar formula for Dy
k. Then for λ large enough, we get

Rh0(t)−Rh0(0) ≤C
∫ 1

h0

∫ t

0

∫
Π2d

Kh(z)‖D|z|uk(·)−D|z|uk(·+ z)‖L2
dh
h

(19)

+C
∫ t

0
Rh0(τ)dτ.

We now use translation property implied by the square functions given in Appendix,
and more precisely using Lemma 3, we may write

Rh0(t)−Rh0(0) ≤C | logh0|1/2
∫ t

0
‖u(τ, .)‖H1

x
dτ +C

∫ t

0
Rh0(τ)dτ. (20)

Therefore using that uk is uniformly bounded in L2(0,T ;H1(Π d)) and using the
assumption on Rh0(0), then by Gronwall Lemma, we get that
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limsup
k

sup
t∈[0, T ]

Rh0

| logh0|
−→ 0, as h0→ 0,

which is the desired propagation property.

II) Second step. We now have to control the weights so as to remove them. Namely
we want to prove that

limsup
k

[
1

| logh0|

∫
Π2d

Kh0(x− y) |ρx
k −ρ

y
k |dxdy]→ 0 as h0→ 0

and not only

limsup
k

[
1

| logh0|

∫
Π2d

Kh0(x− y) |ρx
k −ρ

y
k |(w

x
k +wy

k)dxdy]→ 0 as h0→ 0.

Remark that from its equation, the weight also satisfies

∂t | logwk|+uk ·∇| logwk|= λDk,

with
Dk = M|∇uk|+ |divuk|+(ρk)

γ .

Thus multiplying by ρk and using the mass or continuity equation, we get

d
dt

∫
Πd

ρ| logwk|= λ

∫
Πd

ρDk.

Note that uk ∈ L2(0,T ;H1(Π d)) and ρk ∈ L2γ with γ > 1, thus the right-hand side
is uniformly bounded.

Denoting ω = {x : wk ≤ η}, note that∫
Π2d

Kh0(x− y) |ρx
k −ρ

y
k |dxdy =

∫ 1

h0

∫
Π2d

Kh(x− y)|ρx
k −ρ

y
k |

dh
h

=
∫ 1

h0

∫
x∈ωc

η or y∈ωc
η

Kh(x− y)|ρx
k −ρ

y
k |

dh
h

+
∫ 1

h0

∫
x∈ωη and y∈ωη

Kh(x− y)|ρx
k −ρ

y
k |

dh
h

= B1 +B2.

It suffices to observe that
B1 ≤

1
η

Rh0

while by the property of the weights wk

B2 ≤ 2
∫ 1

h0

∫
Π2d

Kh(x− y)ρk 1wk≤η

dh
h
≤C
| logh0|
| logη |

∫
Πd

ρk | logwk|dx≤C
| logh0|
| logη |

.
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Combining the estimates, one obtains

∫
Π2d

Kh0(x− y) |ρx
k −ρ

y
k |dxdy≤C

(∫ 1
h0

ε(h) dh
h + | logh0|1/2

η
+
‖Kh0‖L1

| logη |

)
and therefore

1
‖Kh0‖L1

∫
Π2d

Kh0(x− y) |ρx
k −ρ

y
k |dxdy

≤C


1

| logh0|

∫ 1

h0

ε(h)
dh
h

+ | logh0|−1/2

η
+

1
| logη |

 .

Denoting ε(h0) =
∫ 1

h0
ε(h)/hdh and optimizing η , we get

1
‖Kh0‖L1

∫
Π2d

Kh0(x− y) |ρx
k −ρ

y
k |dxdy≤ C

| log
(
| logh0|−1/2 + ε(h0))

)
|1/2

and therefore the result holds.

Remark. The choice of appropriate weights is important in the proof. It really de-
pends on the system under consideration. In [4], we can find various choices depend-
ing on pressure laws or anisotropy in the viscous tensor. These weights penalize in
some sense bad trajectories.

4.3 Construction of approximate solutions.

Our starting point for global existence is the following regularized system{
∂tρk +div(ρkuk) = αk∆ρk,
−µ∆uk− (λ +µ)∇divuk +∇Pε(ρk)+αk∇ρk ·∇uk = S, (21)

with the fixed source term S and the fixed initial data

ρk|t=0 = ρ
0. (22)

The pressure Pε is define as follows:

Pε(ρ) = p(ρ) if ρ ≤ c0,ε , Pε(ρ) = p(C0,ε)+C(ρ− c0,ε)
β if ρ ≥ c0,ε ,

with large enough β . As usual the equation of continuity is regularized by means
of an artificial viscosity term and the momentum balance is replaced by a Faedo-
Galerkin approximation to eventually reduce the problem on Xn, a finite-dimensional
vector space of functions.
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This approximate system can then be solved by a standard procedure: The veloc-
ity uk of the approximate momentum equation is looked as a fixed point of a suit-
able integral operator. Then given uk, the approximate continuity equation is solved
directly by means of the standard theory of linear parabolic equations. This method-
ology concerning the compressible Navier–Stokes equations is well explained and
described in the reference books [9], [12]. We omit the rest of this classical (but
tedious) procedure and we assume that we have well posed and smooth solutions to
(21)–(22).

We now use the classical energy and extra bounds estimates detailed in the pre-
vious section. Note that they remain the same in spite of the added viscosity in the
continuity equation. This is the reason in particular for the added term αk∇ρk ·∇uk
in the momentum equation to keep the same energy balance. Let us summarize the
a priori estimates that are obtained

sup
k,ε

sup
t

∫
Πd

ρ
γ

k dx < ∞, sup
k,ε

∫ T

0

∫
Πd
|∇uk|2 dxdt < ∞,

and

sup
k,ε

∫ T

0

∫
Πd

ρ
p
k (t,x)dxdt < ∞

for all p ≤ 2γ . From those bounds it is straightforward to deduce that ρk uk belong
to Lq

t,x for some q > 1, uniformly in k and ε . Therefore using the continuity equation
bounds on ∂tρk. We have now to show the compactness of ρk in L1 and we can use
the procedure mentioned in [7] letting αk goes to zero. Then extracting converging
subsequences, we can pass to the limit in every term (by classical approach) and
obtain the existence of weak solutions to{

∂tρ +div(ρu) = 0,
−µ∆u+αu+∇Pε(ρ) = S. (23)

It remains then to pass to the limit with respect to ε . This is done using the stability
procedure developed in the previous subsection concerning compactness for general
pressure laws.

5 The compressible Navier-Stokes equations

We state in this section the main existence results that have been obtained in [4].
There exist several differences and complications compared to the global existence
result we proved in this short paper due in particular to the presence of the total time
derivative. This leads to more restrictions on the coefficient γ in the pressure law. It
could be interesting to try to extend our results with better gamma exponent using
the renormalization procedure in [8] or with anisotropy in the stress tensor.
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I) The isotropic compressible Navier–Stokes equations with general pressure
laws. Let us consider the isotropic compressible Navier–Stokes equations{

∂tρ +div(ρu) = 0,
∂t(ρu)+div(ρu⊗u)−µ∆u− (λ +µ)∇divu+∇P(ρ) = ρ f , (24)

with 2 µ/d+λ , a pressure law P which is continuous on [0,+∞), P locally Lipschitz
on (0,+∞) with P(0) = 0 such that there exists C > 0 with

C−1
ρ

γ −C ≤ P(ρ)≤Cρ
γ +C (25)

and for all s≥ 0
|P′(s)| ≤ P̄sγ̃−1. (26)

One then has global existence

Theorem 2. Assume that the initial data u0 and ρ0 satisfies the bound

E0 =
∫

Πd

(
ρ

0 |u0|2

2
+ρ0e(ρ0)

)
dx <+∞.

Let the pressure law P satisfies (25) and (26) with

γ >
(
max(2, γ̃)+1

) d
d +2

. (27)

Then there exists a global weak solution of the compressible Navier–Stokes system
(24). Moreover the solution satisfies the explicit regularity estimate∫

Π2d
1ρk(x)≥η 1ρk(y)≥η Kh(x− y)χ(δρk)≤

C‖Kh‖L1

η1/2 | logh|θ/2 ,

for some θ > 0.

II) A non-isotropic compressible Navier–Stokes equations. We consider an ex-
ample of non-isotropic compressible Navier–Stokes equations{

∂tρ +div(ρu) = 0,
∂t(ρu)+div(ρu⊗u)−div(A(t)∇u)− (µ +λ )∇divu+∇P(ρ) = 0, (28)

with A(t) a given smooth and symmetric matrix, satisfying

A(t) = µ Id +δA(t), µ > 0,
2
d

µ +λ −‖δA(t)‖L∞ > 0. (29)

We again take P continuous on [0,+∞) with P(0) = 0 but require it to be monotone
after a certain point
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C−1
ρ

γ−1−C ≤ P′(ρ)≤C ρ
γ−1 +C. (30)

with γ > d/2. The second main result that we obtain is

Theorem 3. Assume that the initial data u0 and ρ0 satisfies the bound

E0 =
∫

Πd

(
ρ

0 |u0|2

2
+ρ0e(ρ0)

)
dx <+∞.

Let the pressure P satisfies (30) with

γ >
d
2

[(
1+

1
d

)
+

√
1+

1
d2

]
.

There exists a universal constant C? such that if

‖δA‖∞ ≤C? (2µ +λ ),

then there exists a global weak solution of the compressible Navier–Stokes equation
replacing the isotropic energy inequality by the following anisotropic energy

E(ρ,u)(τ)+
∫

τ

0

∫
Ω

(∇xuT A(t)∇u+(µ +λ ) |divu|2)≤ E0.

6 Appendix

In this appendix, let us give different results which are used in the paper. The in-
terested reader is referred to [4] for details and proofs. These concern Maximal
functions, Square functions and translation of operators. First we remind the well
known inequality

|Φ(x)−Φ(y)| ≤C |x− y|(M|∇Φ |(x)+M|∇Φ |(y)), (31)

where M is the localized maximal operator

M f (x) = sup
r≤1

1
|B(0,r)|

∫
B(0,r)

f (x+ z)dz. (32)

Let us mention several mathematical properties that may be proved, see [4]. First
one has

Lemma 1. There exists C > 0 s.t. for any u ∈W 1,1(Π d), one has

|u(x)−u(y)| ≤C |x− y|(D|x−y|u(x)+D|x−y|u(y)),

where we denote
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Dhu(x) =
1
h

∫
|z|≤h

|∇u(x+ z)|
|z|d−1 dz.

Note that this result implies the estimate (31) as

Lemma 2. There exists C > 0, for any u ∈W 1,p(Π d) with p≥ 1

Dh u(x)≤C M|∇u|(x).

The key improvement in using Dh is that small translations of the operator Dh
are actually easy to control

Lemma 3. Let u ∈ H1(Π d) then have the following estimates∫ 1

h0

∫
Πd

Kh(z)‖D|z| u(.)−D|z| u(.+ z)‖L2 dz
dh
h
≤C | logh0|1/2 ‖u‖H1 . (33)

This lemma is critical and explain why we propagate a quantity integrated with
respect to h with a weight dh/h namely with the Kernel Kh0 . The full proof is
rather classical and can be found in [4].
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2. J. BOURGAIN, H. BRÉZIS, P. MIRONESCU. Another look at Sobolev spaces. Menaldi, José
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6(1) (2004), 1–15.

14. P. PLOTNIKOV, I. SOKOLOWSKI. Compressible Navier-Stokes equations, Theory and Shape
Optimization. Series: Monografie Matematyczne. Birkhäuser Basel (2012).
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