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Abstract. In these proceedings we are interested in quantitative estimates for advective
equations with an anelastic constraint in presence of vacuum. More precisely, we derive a
quantitative stability estimate and obtain the existence of renormalized solutions. Our main
objective is to show the flexibility of the method introduced recently by the authors for the
compressible Navier-Stokes’ system. This method seems to be well adapted in general to
provide regularity estimates on the density of compressible transport equations with possible
vacuum state and low regularity of the transport velocity field; the advective equation with
degenerate anelastic constraint considered here is another good example of that. As a final
application we obtain the existence of global renormalized solution to the so-called lake
equation with possibly vanishing topography.
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1. Introduction

New mathematical tools allowing to encode quantitative regularity estimates for the con-
tinuity equation written in Eulerian form have been recently developed by the authors [see
[11] and [12]] to answer two longstanding problems: Global existence of weak solutions for
compressible Navier–Stokes with thermodynamically unstable pressure or with anisotropic
viscous stress tensor. These articles provide a new point of view regarding the weak stability
procedure (and more precisely on the space compactness for the density) in compressible fluid
mechanics compared to what was developed mainly by P.–L. Lions and E. Feireisl et al.: See
for example [20], [21], [28].

In the present work, we want to show the flexibility of the method introduced in [11, 12] by
focusing on quantitative stability estimates for advective equations with a vector field satisfy-
ing a degenerate anelastic constraint (linked to a non-negative scalar function). The method
itself introduces weights which solve a dual equation and allow to propagate appropriately
weighted norms on the initial solution. In a second time, a control on where those weights
may vanish allow to deduce global and precise quantitative regularity estimates. For a more
general introduction to the method, we refer interested readers to [10].

The theory of existence and uniqueness for advection equations with rough force fields is
now quite extensive, and we refer among others to the seminal articles [18], [1], and to [16, 2]
for a general introduction to the topic. But quantitative regularity estimates were first derived
on the Lagrangian formulation by G. Crippa and C. De Lellis in [15]. The main idea is to
identity the ”good” trajectories where the flow has some regularity and then proving that
those good trajectories have a large probability, which strongly inspired the Eulerian approach
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that we present here. This type of Lagrangian estimate is also used for example in [5], [6],
[23] and [13]. Note that quantitative regularity estimates for nonlinear continuity equations
at the Eulerian level have also been introduced in [3], [4] using a nonlocal characterization of
compactness in the spirit of [7]. PDE’s with anelastic constraints are found in many different
settings and we briefly refer for instance to [24], [29], [19], [35], [30], [22] in meteorology, to [8],
[25], and to [27] for lakes and [33], to [26] for the dynamics of congestion or floating structures,
to [17] for astrophysics and to [14] for asymptotic regime of strong electric fields to understand
the importance to study PDEs with anelastic constraints especially the advective equation. As
an application, we derive a new existence result for the so-called lake equation with possibly
vanishing bathymetry which could vanish. The fact that we can obtain renormalized solutions
in the vorticity formulation is in particular a significant improvement compared to previous
results such as in [25].

Let us now present more specifically the problem that we consider: Let Ω be a bounded
smooth domain in Rd with d = 1, 2 or 3. We study the following advective equation

(1) a (∂tφ+ u · ∇φ) = 0 in (0, T )× Ω

with a velocity field u such that

(2) div(au) = 0 in (0, T )× Ω, a u · n|(0,T )×∂Ω = 0.

where a is a given non-negative scalar function which depends only on the space variable and
is continuous on Ω. The initial condition is given by

(3) aφ|t=0 = m0 in Ω.

To avoid assuming any regularity on a, we still need to impose additional conditions on a:
There exists a measurable non-negative function α(x), r > 1 and q > p∗ (with as usual
1/p∗ + 1/p = 1) s.t.

(4) α(x) ≤ a(x), A(α, a) =

∫
Ω

(
|∇α1/p∗(x)|q + a(x) (| logα(x)|+ |∇ logα(x)|r)

)
dx <∞.

Of course if a ∈ W 1,p with p > 1 and a | log a| ∈ L1 then we could just choose α = ak with
k ≥ 1. But (4) is far more general as in particular it does not require any regularity on a
away from its vanishing set.

An example. To illustrate the condition (4), assume that there exists a Lipschitz domain
O ⊂ Ω s.t. a = 0 on Oc and on O for some exponents k, l > 0

C−1 min((d(x, ∂O))k, 1) ≤ a(x) ≤ C min((d(x, ∂O))l, 1).

Then by taking α = min((d(x, ∂O))θ, 1) with θ > p∗, we immediately satisfy (4).

Let us now consider a velocity field u such that (with a slight abuse of notation as ‖u‖a is
not a norm)

(5) ‖u‖a := ‖u‖L∞t Lpa +

∫ T

0

∫
Ω
a(x) |∇u(t, x)| log

(
e+ |∇(u(t, x))|

)
dx dt <∞,
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with p > 1 fixed and where the Lebesgue space LqtL
p
a and more generally the Sobolev space

LqtW
1,p
a are defined by the norms

‖f‖LqtLpa :=

∥∥∥∥∥
(∫

Ω
|f |p a(x) dx

)1/p
∥∥∥∥∥
Lq([0, T ])

<∞,

‖f‖
LqtW

1,p
a

:=

∥∥∥∥∥
(∫

Ω
(|f |p + |∇f |p) a(x) dx

)1/p
∥∥∥∥∥
Lq([0, T ])

<∞.

Because we do not have direct bounds on div u or even on ∇u as a may vanish, the standard
theory of renormalized solutions cannot be applied to provide regularity (compactness of
the solutions) or uniqueness. Concerning the boundary conditions on the velocity field, the
anelastic constraint (2) and the integrability assumption on the velocity field allow to consider
velocity fields satisfying the boundary condition in (2) in a weak sense, see for instance [25].

We propose here to extend the method introduced in [10] to this degenerate PDE system
(1)–(3) through an appropriate three level weights control. This helps to encode quantitative
stability estimates when approaching the degenerate constraint by a non-degenerate one: a
standard procedure when you want to approximate a degenerate PDE. The conclusion will
be existence of renormalized solution to the advective equations with degenerate anelastic
constraint, as per

Theorem 1. We have stability and existence of renormalized solutions:

1. (Stability) For any C1 sequences aε, αε, uε and a sequence of Lipschitz open domains Ωε

with

• aε is bounded from below, infΩε aε > 0, and we have the divergence condition

(6) div (aε uε) = 0,

• aε, αε, uε satisfy (2) and (4)-(5) uniformly in ε: supεA(αε, aε) + supε ‖uε‖aε <∞,
• Ωε converges to Ω for the Hausdorff distance on sets and ‖aε − a‖L1(Ωε∩Ω) → 0 as
ε→ 0,

and for any sequence of initial data φ0
ε uniformly bounded in L∞(Rd) and compact in L1(Rd),

consider the unique Lipschitz solution φε to

(7) aε (∂tφε + uε · ∇φε) = 0, in Ωε,

with boundary condition

(8) aε uε · n = 0, on ∂Ωε.

Then φε is compact in L∞t L
2
aε and converges to a renormalized solution to (1) with (2).

2. (Existence) Let φ0 be in L∞(Ω) and (a, α, u) satisfy (2) and the bounds (4) and (5). Then
there exists a renormalized solution φ of (1) with initial data (3).

We present a possible strategy at the end of the article to use our techniques to prove that
any weak solution is a renormalized solution and thus provide uniqueness of the solution; the
full argument would however go beyond the limited scope of these proceedings.

The main ingredient to prove Theorem 1, is to obtain uniform regularity estimates on
ε. This is done in two steps: First introducing appropriate weights in section 2 and then
propagating regularity in the next section. We can then construct a sequence of solutions φε

for the approximate coefficients aε and obtain the renormalized solution as the strong limit.
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We conclude the manuscript by showing the existence of global renormalized equations for
the lake equations and presenting also a formal derivation of the model from compressible
equation from Fluid Mechanics. Since our method is based on a doubling of variable argument,
we make abundant use of notations like ux = u(t, x) to keep track of the physical variable
(comparing ux and uy for x 6= y) whereas the value of the time variable is usually obvious.

2. Three-level weights procedure and properties

The estimates in this part hold for general coefficients with appropriate renormalized so-
lutions but will later be used with the approximate coefficients aε, αε and the velocity uε.

As in [10], we introduce auxiliary equations that will help to identify the appropriate
trajectories where the flow has some regularity. In this paper, we do it in three steps to
control trajectories : where α is very small, where |u| is large and where oscillations in the
velocity field occur. More precisely, we define wa solution to

(9) ∂twa + u · ∇wa = −γ |u · ∇α|
α

wa, wa|t=0 = (α(x))γ .

The weight wa controls which trajectories can get close to points where α (and hence a) are
very small. Next we introduce wu solution to

(10) ∂twu + u · ∇wu = −wu |u(t, x)|
1 +

∫ t
0 |∇u(s, x)| ds

1 +
∫ t

0 |u(s, x)| ds
, wu|t=0 = 1,

which controls trajectories going near points where |u| is large. Finally we define our main
weight, controlling oscillations in the velocity field

(11) ∂tw + u · ∇w = −D w, w|t=0 = 1,

with

D = λ
[M |∇(αu)|

α
+ (M |∇α|(x))θ |ux|θ + |αx|−θ∗

]
for some constants λ, θ and θ∗ (chosen later on) respectively such that λ > 0, 1/θ∗ = 1− 1/θ
with p > θ > 1.

Observe that for general a, α and u only satisfying (4)-(5), we are at this point incapable
of ensuring that there exist renormalized solutions to Eqs (9), (10), (11); in fact this would
only follow from a first application of our method.

However assuming that such solutions exist, we can easily investigate their properties,
summarized in the following

Lemma 2. Assume that (4) holds and that u satisfies (2) and (5). Then

• Consider wa a renormalized solution to (9). One has that

0 ≤ wa(t, x) ≤ (α(x))γ ≤ (a(x))γ ,∫
Ω
a(x)wu(t, x) | logwa(t, x)| dx

≤ C γ
(

(1 + ‖u‖L1
tL

p
a
) ‖∇ logα‖Lra(Ω) + ‖a logα‖L1(Ω)

)
.

(12)

• Consider wu a renormalized solution to (10). One has that

(13) 0 ≤ wu(t, x) ≤ 1

1 +
∫ t

0 |u(s, x)| ds
,

∫
Ω
a(x) | logwu(t, x)| dx ≤ CT ‖u‖a.



ANELASTIC DIVERGENCE CONSTRAINT 5

• Finally consider w a renormalized solution to (11). One has that

0 ≤ w(t, x) ≤ 1,∫
Ω
a(x)wa(t, x) | logw(t, x)| dx ≤ C T + C ‖u‖θLpa ‖∇α

1/p∗‖θLq

+ C

∫ T

0

∫
Ω
a |∇u| log(e+ |∇u|) dx dt.

(14)

Lemma 2 in particular shows that wu > 0 a-almost everywhere, that wa > 0 awu-almost
everywhere and finally that w > 0 awa-almost everywhere; and by the previous points, wa > 0
and w > 0 a-almost everywhere as well.

Proof. 1) Estimates on wu.

1-1) Pointwise control. Since w = 1 identically at t = 0 and D ≥ 0, one trivially has that
0 ≤ w ≤ 1. The other estimates are less straightforward and we start by proving them on
wu. Define

ϕ(t, x) = − log(1 +

∫ t

0
|u(s, x)| ds),

and notice that

∂tϕ+ u · ∇ϕ = − |u(t, x)|
1 +

∫ t
0 |u(s, x)| ds

−
u(t, x) ·

∫ t
0 ∇xu(s, x) · u(s,x)

|u(s,x)| ds

1 +
∫ t

0 |u(s, x)| ds
,

while ϕ(t = 0, x) = 0. Therefore by (10), one has that

∂t logwu + u · ∇x logwu ≤ ∂tϕ+ u · ∇ϕ.
By the maximum principle since logwu = ϕ at t = 0, we have that logwu ≤ ϕ and by taking
the exponential

wu ≤ eϕ =
1

1 +
∫ t

0 |u(s, x)| ds
.

1-2) A log-control on wu. Using again the equation (10), and since div(a u) = 0, we have that

d

dt

∫
Ω
a(x) | logwu(t, x)| dx =

∫
Ω
a(x) |u(t, x)|

1 +
∫ t

0 |∇u(s, x)| ds
1 +

∫ t
0 |u(s, x)| ds

dx.

Therefore by the definition of ϕ∫
Ω
a(x) | logwu(t0, x)| dx = −

∫ t0

0

∫
Ω
∂tϕ(t, x)

(
a+

∫ t

0
a(x) |∇u(s, x)| ds

)
dx dt.

Integrating by part in time∫
Ω
a(x) | logwu(t0, x)| dx =−

∫ t

0

∫
Ω
a ∂tϕ(t, x) +

∫ t0

0

∫
Ω
ϕ(t, x) a(x) |∇u(t, x)| dx dt

−
∫

Ω
a(x)ϕ(t0, x)

∫ t0

0
|∇u(s, x)| ds dx.

Remark that the first term reads

0 ≤ −
∫ t

0

∫
Ω
a ∂tϕ(t, x) ≤ ‖u‖L1

tL
1
a
.
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Note that the second term in the right-hand side is negative. For the last term, we use the
well-known convex inequality, x y ≤ x log(e+ x) + ey for x, y ≥ 0 to bound

−
∫

Ω
a(x)ϕ(t0, x)

∫ t0

0
|∇u(s, x)| ds dx

≤
∫ t0

0

∫
Ω
a(x)

(
|∇u(s, x)| log(e+ |∇u(s, x)|) + e|ϕ(t0,x)|

)
ds dx

≤
∫ t0

0

∫
Ω
a(x)

(
|∇u(s, x)| log(e+ |∇u(s, x)|) + 1 +

∫ t0

0
|u(r, x)| dr

)
ds dx,

again by the definition of ϕ. Hence∫
Ω
a(x) | logwu(t0, x)| dx

≤ CT
(
‖u‖L1

tL
1
a

+

∫ t0

0

∫
Ω
a(x) |∇u(s, x)| log(e+ |∇u(s, x)|) dx ds

)
.

2) Estimates on wa.

2.1) Pointwise control on wa. We now turn to the estimate on wa. First note that

∂tα+ u · ∇α = u · ∇α ≥ −|u · ∇α|
α

α,

and therefore, just as for wu, by the maximum principle logwa ≤ γ logα which leads to

wa(t, x) ≤ (α(x))γ

and the other inequality as α ≤ a.

1-2) A log-control on wa. We also follow the same strategy to bound | logwa| and obtain in
a straightforward manner, using Eq. (10) on wu, that∫

Ω
a(x)wu(t0, x) | logwa(t0, x)| dx ≤γ

∫ t0

0

∫
Ω
a(x)wu |u| |∇ logα| dx dt

+

∫
Ω
a | logwa(t = 0, x)| dx.

From the initial data on wa, wa(t = 0, x) = (α(x))γ , we have that∫
Ω
a | logwa(t = 0, x)| dx ≤ γ

∫
Ω
a | logα| dx.

Furthermore since a and α do. not dependent on time, we also have that∫ t0

0

∫
Ω
a(x)wu |u| |∇ logα| dx dt ≤

∫
Ω
a(x) |∇ logα|

∫ t0

0

|u(t, x)| dt
1 +

∫ t
0 |u(s, x)| ds

dx

=

∫
Ω
a(x) |∇ logα|

∫ t0

0
∂t log

(
1 +

∫ t

0
|u(s, x)| ds

)
dt dx

=

∫
Ω
a(x) |∇ logα| log

(
1 +

∫ t0

0
|u(s, x)| ds

)
dx
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By bounding the log polynomially and a Hölder estimate, we deduce that∫
Ω
a(x)wu(t0, x) | logwa(t0, x)| dx dt ≤ γ ‖ logα‖L1

a
+ Cµ γ ‖u‖L1

tL
p
a
‖∇ logα‖

L1+µ
a

,

for any µ > 0. Choosing µ s.t. 1 + µ ≤ r one has

(15)

∫
Ω
a(x)wu(t0, x) | logwa(t0, x)| dx dt ≤ γ ‖ logα‖L1

a
+ γ ‖u‖L1

tL
p
a
‖∇ logα‖Lra .

2) Estimates on w. The point wise estimate on w is straightforward due to the damping
term and the initial data. We now turn to the last estimate on logw. Following similar
calculations with Eqs. (11) and (9), we have that

d

dt

∫
Ω
a(x)wa(t, x) | logw(t, x)| dx ≤

∫
Ω
a(x)wa(t, x)D(t, x) dx.

Since wa(t, x) ≤ (α(x))γ , if γ ≥ θ∗, one has from the definition of D in (11) that

d

dt

∫
Ω
a(x)wa(t, x) | logw(t, x)| dx ≤

∫
Ω
a(x)

(
M |∇(αu)|+ (M |∇α|)θ|u|θ(α)γ + 1

)
dx.

We may simply bound∫
Ω
a(x) (M |∇α|)θ |u|θ(α)γ dx ≤ C ‖∇α‖θLq‖u‖θLpa ,

with q > θ and recalling the maximal function is bounded on Lq as q > 1. For the other
term, by the standard properties of the maximal function, one has that∫ T

0

∫
Ω
a(x)M |∇(αu)|(t, x) dx dt ≤ C

∫ T

0

∫
Ω
M |∇(αu)|(t, x) dx dt

≤ C
∫ T

0
‖|∇(αu)(t, .)| ‖H1 dt,

where H1 is the classical Hardy space. Since |∇(αu)| is always positive and Ω is bounded,
this Hardy norm reduces to a L logL estimate

‖ |∇(αu)| ‖H1 ∼ C
(∫

Ω
|∇(αu)| log(e+ |∇(αu)|) dx

)
.

This is of course slightly non-optimal as we are losing possible cancellations in ∇(αu), but
necessary here if we want to keep positive weights. Of course since ∇(αu) = u∇α + α∇u,
we have for example by the properties of the log and Hölder estimates that∫

Ω
|∇(αu)| log(e+ |∇(αu)|)) dx ≤C

∫
Ω
α |∇u| log(e+ |∇u|) dx

+ C ‖u‖θLpα ‖∇α
1/p∗‖θLq ,

where one needs q > p∗. Therefore since α ≤ a, we finally find that∫
Ω
a(x)wa(t, x) | logw(t, x)| dx ≤ C T + C ‖u‖θLpa ‖∇α

1/p∗‖θLq

+ C

∫ T

0

∫
Ω
a |∇u| log(e+ |∇u|) dx dt.

(16)

�
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3. Compactness and quantitative regularity estimates

We consider here any renormalized solution to our main equation (1) and prove that it
satisfies some quantified uniform regularity. As in the previous section those estimates will
be applied for our approximate coefficients aε, αε as at this time we have not yet obtained
renormalized solution in the general case.

3.1. Regularity conditioned by the weights. The first step is to propagate an adhoc
semi-norms constructed with the weights, namely

Proposition 3. Assume that φ is a renormalized solution to the transport equation in ad-
vective form (1) with constraints (2). Let us define a corresponds to a on Ω and 0 on Rd\Ω.
Assume as well that we have renormalized solutions wa to (9), wu to (10) and w to (11) with
λ large enough. One has that for any h and for q > p∗∫

R2d

ax ay
|φ(t, x)− φ(t, y)|

(h+ |x− y|)d
wa(t, x)wu(t, x)w(t, x)wa(t, x)wu(t, y) w(t, y) dx dy

≤
∫
R2 d

ax ay
|φ0(x)− φ0(y)|
(h+ |x− y|)d

dx dy

+ C | log h|1/2 ‖φ‖L∞ (‖u‖a + ‖u‖θa) (1 + ‖∇α1/p∗‖Lq)θ.

Proof. We skip the bar on a to simplify calculations. Since φ is a renormalized solution, one
has the non-linear identity

axay
[
∂t|φx− φy|+ ux · ∇x|φx− φy|+ uy · ∇y|φx− φy|

]
= 0.

Hence

∂t(a
xay|φx − φy|wxwxa wxu wy wya wyu) + axayux · ∇x(|φx − φy|wxwxa wxu wy wya wyu)

+ axayuy · ∇y(|φx − φy|wxwxa wxu wy wya wyu)

≤ −axay (Dx +Dy) |φx− φy|wxwxa wxu wy wya wyu.

Multiplying by (h+ |x− y|)d and integrating by parts yields

d

dt

∫
R2d

axay
|φx − φy|

(h+ |x− y|)d
wxwxa w

x
u w

y wya w
y
u dx dy

≤ d
∫
R2 d

axay
|φx − φy|

(h+ |x− y|)d+1
wxwxa w

x
u w

y wya w
y
u (u(t, x)− u(t, y)) · x− y

|x− y|
dx dy

−
∫

Ω2 d

axay
|φx − φy|

(h+ |x− y|)d
wxwxa w

x
u w

y wya w
y
u (Dx +Dy) dx dy.

As usual the main issue is the commutator estimate. As ∇u is only controlled when integrated
against a, this is a more delicate issue. Indeed in principle ux − uy involves the values of ∇u
between x and y whereas we only have the values of a at x and y. It is the reason why we need
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to introduce α, which has some regularity, and proceed with the following decomposition∣∣∣∣(u(t, x)− u(t, y)) · x− y
|x− y|

∣∣∣∣ ≤ 1

αx αy
αx αy |u(t, x)− u(t, y)|

≤ (αx)−1 (αy)−1 |αx ux − αy uy| α
x + αy

2

+ (αx)−1 (αy)−1 |αx − αy| α
x |ux|+ αy |uy|

2
.

By symmetry in x and y this leads to

d

dt

∫
R2 d

axay
|φx − φy|

(h+ |x− y|)d
wxwxa w

x
u w

y wya w
y
u dx dy

≤ d
∫
R2 d

axay
|φx − φy|

(h+ |x− y|)d+1
wxwxa w

x
u w

y wya w
y
u |αx ux − αy uy|

αx + αy

αx αy
dx dy

+ d

∫
R2 d

axay
|φx − φy|

(h+ |x− y|)d+1
wxwxa w

x
u w

y wya w
y
u |αx − αy|

αx |ux|+ αy |uy|
αx αy

dx dy

−
∫

Ω2 d

axay
|φx − φy|

(h+ |x− y|)d
wxwxa w

x
u w

y wxa w
y
u (Dx +Dy) dx dy.

(17)

We now appeal to the technical lemmas that have already been used in [10] to control the
difference ux − uy.

Lemma 4. There exists C > 0 s.t. for any f ∈W 1,1(Rd), one has

|f(x)− f(y)| ≤ C |x− y| (D|x−y|f(x) +D|x−y|f(y)),

where we denote

Dhf(x) =
1

h

∫
|z|≤h

|∇f(x+ z)|
|z|d−1

dz.

A full proof of such well known result can for instance be found in [13] in a more general
setting namely f ∈ BV . Through a simple dyadic decomposition, one may also immediately
deduce that

(18) Dh f(x) ≤ CM |∇f |(x),

where M denotes the usual maximal operator, and thus recovering the classical bound

(19) |f(x)− f(y)| ≤ C |x− y| (M |∇f |(x) +M |∇f |(y)).

Applying Lemma 4 to Eq. (17), we find, by symmetry in x and y that

d

dt

∫
R2 d

axay
|φx − φy|

(h+ |x− y|)d
wxwxa w

x
u w

y wya w
y
u dx dy

≤ C
∫
R2 d

axay
|φx − φy|

(h+ |x− y|)d
wxwxa w

x
u w

y wya w
y
u (D|x−y|(αu)(x) +D|x−y|(αu)(y))

dx dy

αx

+ C

∫
R2 d

axay
|φx − φy|

(h+ |x− y|)d
wxwxa w

x
u w

y wya w
y
u (D|x−y|α(x) +D|x−y|α(y))

|ux|
αy

dx dy

−
∫

Ω2 d

axay
|φx − φy|

(h+ |x− y|)d
wxwxa w

x
u w

y wya w
y
u (Dx +Dy) dx dy.
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We recall the definition of the penalization Dx

Dx = λ

(
M |∇(αu)|(x)

αx
+ (M |∇α|(x))θ |ux|θ + |αx|−θ∗

)
with λ > 0 chosen large enough. Since v w ≤ vθ + wθ

∗
, one has that

D|x−y|α(x)
|ux|
αy
≤ (M |∇α|(x))θ |ux|θ + |αy|−θ∗ .

By the bound (18) with some symmetry in x and y, and using λ large enough, we therefore
obtain that

d

dt

∫
R2d

axay
|φx − φy|

(h+ |x− y|)d
wxwxa w

x
u w

y wya w
y
u dx dy

≤ C
∫
R2 d

axay
|φx − φy|

(h+ |x− y|)d
wxwxa w

x
u w

y wya w
y
u (D|x−y|(αu)(y)−D|x−y|(αu)(x))

dx dy

αx

+ C

∫
R2 d

axay
|φx − φy|

(h+ |x− y|)d
wxwxa w

x
u w

y wya w
y
u (D|x−y|α(y)−D|x−y|α(x))

|ux|
αy

dx dy.

(20)

Recalling now Lemma 2, we have that wxa ≤ αx. Therefore,∫
R2d

axay
|φx − φy|

(h+ |x− y|)d
wxwxa w

x
u w

y wya w
y
u (D|x−y|(αu)(y)−D|x−y|(αu)(x))

dx dy

αx

≤ C‖φ‖L∞
∫
R2 d

|D|x−y|(αu)(y)−D|x−y|(αu)(x)|
(h+ |x− y|)d

dx dy

≤ C‖φ‖L∞
∫
Sd−1

∫
Rd

∫ R

0
|Dρ(αu)(x+ ρw)−Dρ(αu)(x)| dρ

h+ ρ
dρ dx dw,

by a direct change of variables to polar coordinates in y − x and where R is the diameter of
Ω. This leads to a square function type of estimates as by Cauchy-Schwartz∫

R2d

axay
|φx − φy|

(h+ |x− y|)d
wxwxa w

x
u w

y wya w
y
u (D|x−y|(αu)(y)−D|x−y|(αu)(x))

dx dy

(αx)θ

≤ C ‖φ‖L∞
∫
Sd−1

| log h|1/2
∫
Rd

(∫ R

0
|Dρ(αu)(x+ ρw)−Dρ(αu)(x)|2 dρ

h+ ρ

)1/2

dx dw.

We now recall the classical estimate (see for example the remark on page 159 in [34])

Lemma 5. For any 1 < p <∞, any family Lρ of kernels satisfying for some s > 0

(21)

∫
Lρ = 0, sup

ρ
(‖Lρ‖L1 + ρs ‖Lρ‖W s,1) ≤ CL, sup

ρ
ρ−s

∫
|z|s |Lρ(z)| dz ≤ CL.

Then there exists C > 0 depending only on CL above s.t. for any f in the Hardy space H1(Ω)

(22)

∫
Rd

(∫ 1

0
|Lρ ? f(x)|2 dρ

h+ ρ

)1/2

dx ≤ C ‖f‖H1 ,

whereas if f ∈ Lp with 1 < p <∞

(23)

∫
Rd

(∫ 1

0
|Lρ ? f(x)|2 dρ

h+ ρ

)p/2
dx ≤ Cp ‖f‖pLp .
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Observe that obviously

Dρf = L̄ρ ? |∇f |, L̄ρ(x) =
1

ρ |x|d−1
I|x|≤ρ = ρ−d L̄(x/ρ) with L̄(x) =

1

|x|d−1
I|x|≤1.

Hence defining Lρ(x) = L̄ρ(x)− L̄ρ(x+ρw), we can easily check that Lρ satisfies the assump-
tions of Lemma 5. This proves that∫

R2d

axay
|φx − φy|

(h+ |x− y|)d+1
wxwxa w

y wya (D|x−y|(αu)(y)−D|x−y|(αu)(x))
dx dy

αx

≤ C ‖φ‖L∞ | log h|1/2 ‖ |∇(αu)| ‖H1(Ω).

We now follow the exact same steps as for the bound at the end of the proof of Lemma 2.
Note that here it would be easier to use the cancellations in ∇(αu) by being more precise in
Lemma 4 and using an exact representation instead of a bound. For simplicity though, here
we have kept the more direct version of Lemma 4. Hence we have that∫

Ω
|∇(αu)| log(e+ |∇(αu)|) dx ≤C

∫
Ω
a |∇u| log(e+ |∇u|) dx

+ C ‖u‖θLpa ‖∇α
1/p∗‖θLq ,

where again one needs q > p∗. This lets us conclude that∫ T

0

∫
R2d

axay
|φx − φy|

(h+ |x− y|)d
wxwxa w

y wya (D|x−y|(αu)(y)−D|x−y|(αu)(x))
dx dy dt

αx

≤ CT ‖φ‖L∞ | log h|1/2 [‖u‖a + ‖u‖θLpa‖∇α
1/p∗‖θLq ].

(24)

We apply the same strategy to the other term in the bound (20). We again start using that
wya ≤ αy to obtain that∫ T

0

∫
R2d

axay
|φx − φy|

(h+ |x− y|)d
wxwxa w

x
u w

y wya w
y
u (D|x−y|α(y)−D|x−y|α(x))

|ux| dx dy dt
αy

≤ ‖φ‖L∞
∫
R2d

|D|x−y|α(y)−D|x−y|α(x)|
(h+ |x− y|)d

∫ T

0
wxu a

x |ux| dt dx dy,

since α is independent of time. By Prop. 2, wu ≤ 1/(1 +
∫ t

0 |u(s, x)| ds and hence∫ T

0
wu(t, x) |u(t, x)| dt ≤

∫ T

0

|u(t, x)|
1 +

∫ t
0 |u(s, x)| ds

dt =

∫ T

0
∂t log

(
1 +

∫ t

0
|u(s, x)| ds

)
dt

= log

(
1 +

∫ T

0
|u(s, x)| ds

)
.

Choose now any µ > 0 and bound

log

(
1 +

∫ T

0
|u(s, x)| ds

)
≤ Cµ

(
1 +

∫ T

0
|u(s, x)| ds

)µ/(1+µ)

,



12 D. BRESCH AND P.–E. JABIN

so that by Hölder since 1− 1/(1 + µ) = µ/(1 + µ)∫ T

0

∫
R2d

axay
|φx − φy|

(h+ |x− y|)d
wxwxa w

x
u w

y wya w
y
u (D|x−y|α(y)−D|x−y|α(x))

|ux| dx dy dt
αy

≤ Cµ ‖φ‖L∞ ‖u‖L1
tL

1
a
| log h|µ/(1+µ)

(∫
R2d

|D|x−y|α(y)−D|x−y|α(x)|1+µ

(h+ |x− y|)d
dx dy

)1/(1+µ)

.

We can now apply Lemma 5 for f ∈ Lp, and find similarly that∫
R2d

|D|x−y|α(y)−D|x−y|α(x)|1+µ

(h+ |x− y|)d
dx dy ≤ Cµ | log h|(1−µ)/2 ‖∇α‖1+µ

L1+µ .

This leads to

∫ T

0

∫
R2d

axay
|φx − φy|

(h+ |x− y|)d+1
wxwxa w

x
u w

y wya w
y
u (D|x−y|α(y)−D|x−y|α(x))

|ux| dx dy dt
αy

≤ Cµ ‖φ‖L∞ ‖u‖L1
tL

1
a
| log h|1/2 ‖∇α‖L1+µ .

(25)

Choosing µ small with 1 + µ ≤ q and combining (25) with (24) in (20), we finally conclude
that

d

dt

∫
R2d

axay
|φx − φy|

(h+ |x− y|)d
wxwxa w

x
u w

y wya w
y
u dx dy

≤ C | log h|1/2 ‖φ‖L∞ (‖u‖a + ‖u‖θa) (1 + ‖∇α1/p∗‖Lq)θ,
thus proving the proposition. �

3.2. Our explicit regularity estimate. By using a straightforward interpolation argument
thanks to the previous controls obtained on the different weights wu, wa, w, we can now state
our main result

Theorem 6. Assume that (a, α) satisfy (4) and that (2) and (5) hold for u. Assume as well
that we have renormalized solutions wa to (9), wu to (10) and w to (11). Consider now any
renormalized solution to (1) and denote

‖φ0‖h =
1

| log h|

∫
Ω2 d

axay
|φ0(x)− φ0(y)|
(h+ |x− y|)d

dx dy.

Then

‖φ‖h =
1

| log h|

∫
Ω2d

axay
|φx − φy|

(h+ |x− y|)d
dx dy ≤ C

| log(‖φ0‖h + | log h|−1/2)|1/2
,

for some constant C > 0 depending only on the bounds on ‖α|L∞(Ω), ‖u‖a and ‖φ‖L∞((0,T )×Ω).

Proof. The proof relies on a appropriate decomposition of the domain playing with sets con-
structed using intersection of the set {x, y | wu(t, x) > η, wu(t, y) > η} or its complementary
set with the set {x, y | wa(t, x) > η′, wa(t, y) > η′} and its complementary set and with the
set {x, y | w(t, x) > η′′, w(t, y) > η′′} and its complementary. More precisely, we write

‖φ‖h =

∫
Ω2d

|φx − φy|
(h+ |x− y|)d

ax ay dx dy =
4∑
i=1

∫
Ii

|φx − φy|
(h+ |x− y|)d

ax ay dx dy =
4∑
i=1

Jj
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with

I1 = {x, y | wu(t, x) < η or wu(t, y) < η},
I2 = {x, y | wu(t, x) > η and wu(t, y) > η} ∩ {x, y | wa(t, x) < η′ or wa(t, y) < η′}

and denoting

I = {x, y | wu(t, x) > η and wu(t, y) > η} ∩ {x, y | wa(t, x) > η′ and wa(t, y) > η′},

with

I3 = I ∩ {x, y | w(t, x) < η′′ or w(t, y) < η′′},
and

I4 = I ∩ {x, y | w(t, x) > η′′ and w(t, y) > η′′}.
Note that it is straightforward that

0 ≤ J4 ≤
1

η2η′2η′′2

∫
Ω2d

ax ay
|φx − φy|

(h+ |x− y|)d
wxaw

y
aw

x
uw

y
uw

xwydx dy.

Remark now that by symmetry, J1 is bounded by

0 ≤ J1 ≤ | log h|
∫
x, wu(t,x)≤η

ax(Kh ? a|φ(t, x)|+Kh ? |aφ|) dx,

where Kh(x) = (h+ |x|)−d/| log h| so ‖Kh‖L1 = 1. By Hölder estimate∫
x, wu(t,x)≤η

ax(Kk ? a|φ(t, x)|+Kh ? |aφ|) dx

≤ C‖φ‖L∞
∫
x, wu(t,x)≤η

a dx.

Now it suffices to note that∫
x, wu(t,x)≤η

a dx ≤ 1

| log η|

∫
x, wu(t,x)≤η

| logwu(t, x)| a(t, x) dx ≤ C

| log η|
‖u‖a

to get an appropriate control. Similarly we get using properties of wu and wa

J2 ≤
C| log h|
η| log η′|

‖φ‖L∞
∫

Ω
axwxu| logwxa |

We end the proof with the same kind of estimate on J3 using properties of wa and w, namely

J3 ≤
C| log h|
η′| log η′′|

‖φ‖L∞
∫

Ω
axwxa | logwx|

Now using the bounds on awu| logwa| and awa| logw| and the uniform bounds on u and α,
and using Proposition 3 we get

sup
t∈[0,T ]

1

| log h|

∫
Ω2d

axay
|φx − φy|

(h+ |x− y|)d
dx dy

≤ C

η2η′2η′′2

[
‖φ0‖h + | log h|−1/2

]
+ C

[ 1

| log η|
+

1

η| log η′|
+

1

η′| log η′′|

]
.

Optimizing in η, η′, η′′ (by choosing η in function of η′ and η′ in function of η′′ and finally η′′

in function of α and | log h|−1/2) we get the conclusion.
�
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4. Stability and existence of renormalized solutions: Proof of Theorem 1.

4.1. Stability of renormalized solutions. Assume that we have been given sequences aε,
αε and uε on a set Ωε which satisfy the assumptions specified in Theorem 1.

Since all terms are smooth, Eq. (7) has a unique Lipschitz solution φε for any given initial
data φ0

ε ∈ L∞(Ωε). This solution is then obviously automatically renormalized. For the same
reason we also trivially have solutions wa to Eq. (9) with αε and uε and similarly for Eqs.
(10) and (11). Of course while our solutions are smooth for a fixed ε, the main point is to
derive and use uniform in ε bounds to obtain appropriate limits.

First define āε = aε on Ωε and extended by 0 on the whole of Rd. Proceed similarly to define
at the limit ā. Since aε is uniformly in L∞, we can replace the convergence ‖aε−a‖L1(Ωε∩Ω) →
0 and Ωε → Ω in Hausdorff distance by the simple

‖āε − ā‖L1(Rd) −→ 0.

From the uniform L∞t L
p
aε estimate for uε provided by (5) and supε ‖uε‖aε <∞, we can extract

a weak limit of ā
1/p
ε uε in the whole space Rd and from the strong convergence of āε, identify

the limit as ā u for some u ∈ L∞t L
p
a:

ā1/p
ε uε −→ ā1/p u in w − ∗ L∞t Lp(Rd), u ∈ L∞t Lpa,

while for simplicity we still denote the extracted subsequence with ε. Since supε ‖φ0
ε‖L∞(Rd) <

∞ then through renormalization supε ‖φε‖L∞(R+×Rd) <∞, we may also extract a converging
subsequence

φε −→ φ in w − ∗ L∞(R+ × Rd).
For any χ ∈ W 1,∞(R) with χ(0) = 0, χ(φε) still solves (7) by the chain rule for smooth
functions. Choosing any test function ψ ∈ C∞c (Rd), we deduce from (7) with the divergence
condition (6) and the boundary conditions (8) the weak formulation

d

dt

∫
Ωε

χ(φε) aε ψ(x) dx−
∫

Ωε

χ(φε) aε uε · ∇xψ dx = 0.

The previous definition of āε and φ̄ε actually implies that this weak formulation is equivalent
to the formulation in the whole space

(26)
d

dt

∫
Rd
χ(φε) āε ψ(x) dx−

∫
Rd
χ(φε) āε uε · ∇xψ dx = 0,

which is much simpler to use since the domain is now fixed. In that sense (26) implies the
boundary condition (8) on ∂Ωε if one imposes that āε = 0 out of Ωε. It is straightforward to
check that ā = 0 out of Ω at the limit. Thus to prove that φ is a renormalized solution to (1)
with (2) on the limiting set Ω, it is now enough to pass to the limit in (26).

Let us now first prove compactness in space on χ(φε) for any smooth function χ. This
is exactly where our approach proves its use: We have all required assumptions to apply
Theorem 6 and deduce from the compactness of φ0

ε and aε that

(27) lim sup
h→0

1

| log h|
sup
ε

sup
t

∫
R2d

āxε ā
y
ε

|φxε − φ
y
ε |

(|x− y|+ h)d
dxdy −→ 0.

Note now that

axεa
y
ε(φ

x
ε − φyε) = (axεφ

x
ε − ayεφyε)(ayε + axε )/2 + (ayε − axε )(ayεφ

y
ε + axεφ

x
ε )/2
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and that |(axεφxε − a
y
εφ

y
ε)| ≤ C(axε + ayε) then get

|axεφxε − ayεφyε |2 ≤ C(axεa
y
ε |φxε − φyε |+ |ayε − axε |).

and therefore using (27) and compactness on aε, by the Rellich criterion this implies lo-
cally in space compactness of aεφε. Using the same procedure, it is possible to prove space
compactness of aεχ(φε). We get compactness (in space and time) on aεχ(φε) using the renor-
malized equation which provides a control on ∂t(aεχ(φε)) allowing to use Aubin-Lions Lemma.
Thus, up to a subsequence, we deduce that aεχ(φε) converges almost everywhere and thus

a
1−1/p
ε χ(φε) converges almost everywhere using the compactness on aε. As φε is uniformly

bounded and therefore χ(φε) also, we get compactness of a
1−1/p
ε χ(φε). To conclude we just

have to write χ(φε)aεuε = a
1−1/p
ε χ(φε) a

1/p
ε uε and use the weak-star convergence of a

1/p
ε uε in

L∞t L
p
x and the strong convergence of a

1−1/p
ε χ(φε) in L1

tL
q
x where 1/q + 1/p = 1.

4.2. Existence of renormalized solutions. To obtain existence of renormalized solutions
through a stability argument, it only remains to be able construct a sequence of approxima-
tions on which we may apply the previous stability argument.

In our case, given a, α and u which satisfy (2), (4) and (5), the first question is whether
we can construct smooth aε, αε and uε which still satisfy the previous estimates uniformly in
ε and where aε is bounded from below on Ω.

First define Ω̃ε = {α > ε}. On Ω̃ε, one has that a ≥ α > ε; hence by (4), α belongs to a

Sobolev space on a neighborhood of Ω̃ε so that the boundary of Ω̃ε is Lipschitz.
Define ãε = a on Ω̃ε and a = ε on Ω \ Ω̃ε. Hence ãε may be discontinuous. Define similarly

α̃ε = α on Ω̃ε and ε outside. By the definition of Ω̃ε, α̃ε does not jump on ∂Ω̃ε.
Note that α̃ε satisfies (4) uniformly in ε, i.e. supεA(α̃ε, ãε) <∞; as for example

ãε |∇ log α̃ε|r = a |∇ logα|r IΩ̃ε .

Choose now a smooth and non-negative function χ s.t. χ(ξ/ε) is a good approximation of
the Heaviside function with in particular χ(ξ/ε) = 0 if ξ ≤ ε and χ(ξ/ε) = 1 if ξ ≥ 2 ε.

Define then uε,L = u
1+|u|/L χ(α/ε). And observe that

∇uε,L =
∇u

1 + |u|/L
χ(α/ε)− u

L (1 + |u|/L)2
⊗∇u · u

|u|
+

u

1 + |u|/L
⊗∇ logα

α

ε
χ′(α/ε)

=
∇u

1 + |u|/L
χ(α/ε) + Uε,L +Dε,L.

Since α
ε χ
′(α/ε) is bounded uniformly and ∇ logα ∈ Lra, one has that ‖Dε,L‖Lra ≤ C L for

some given constant C independent of ε and L. But note that ∇ logα is independent of ε
and L and hence equi-integrable in Lra while α

ε χ
′(α/ε) converges to 0 in L1 as ε→ 0. Hence

for a fixed L, Dε,L → 0 as ε→ 0 for L fixed.
Therefore we can connect L and ε and choose Lε s.t. ‖Dε,L‖Lra → 0 as ε→ 0. By the same

type of equi-integrability arguments, we can show that∫
Ω
a |Uε,Lε | log(1 + |Uε,Lε |) dx −→ 0, as ε→ 0.

As a consequence uε,Lε still satisfies supε ‖uε,Lε‖a < ∞. Hence since uε,Lε vanishes outside

of Ω̃ε, it satisfies supε ‖uε,Lε‖ãε <∞. We still need to correct the divergence and for this we
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solve the following elliptic equation

div(a∇Vε) = −aTr(Uε,Lε +Dε,Lε) in Ω̃ε, Vε = 0 on ∂Ω̃ε.

Since a is bounded from below in Ω̃ε and ∂Ωε is Lipschitz, this equation is well posed and we
can extend Vε to all Ω by taking Vε = 0 in Ω \ Ω̃ε. Furthermore by the previous bounds on

Dε,Lε and Lε,Lε , we have that Vε converges to 0 in W 1,q
ãε

for some q > 1. In dimension 2 for

instance, the energy inequality would directly give this in H1
ãε

.
We finally define ũε = uε,Lε + ∇Vε. From the construction, Eq. (6) holds for ãε and ũε.

The bounds in (4) and (5) are also satisfied uniformly in ε: supεA(α̃ε, ãε) + supε ‖ũε‖ãε <∞.
Finally ãε, α̃ε and ũε all converge strongly.

Of course those coefficients are not yet smooth but this last step is the easiest and we only
sketch it. By standard Sobolev approximation since ãε is now bounded from below, one may
find αε and ūε in C∞(Ω) but close to α̃ε and ũε in the corresponding Sobolev spaces so that
(4) and (5) still hold with weight ãε uniformly in ε.

One then approximates ãε by aε ∈ C∞(Ω), uniformly bounded and with aε ≥ ε. In addition
it is possible to choose ‖ãε − aε‖L1 small enough to obtain the uniform bounds (4) and (5):
supεA(αε, aε) + supε ‖uε‖aε <∞.

We finally correct uε = ūε +∇V̄ε as before to satisfy the divergence condition (6).

Once those approximated coefficients are constructed, we may directly apply our stability
estimates to obtain at the limit a renormalized solution φ.

4.3. Toward the uniqueness of weak solutions to (1). We conclude this section by
briefly sketching a possible strategy to obtain the uniqueness of Eq. (1) by proving, as in the
classical argument, that all weak solutions are also renormalized.

Since [18] this is usually performed by convolving Eq. (1) for any weak solution φ by
some smooth kernel ρε and showing that ρε(aφ) still solves (1) with a right-hand side that is
vanishing in L1. This commutator estimate would require here that

(28)

∫
Ω

(u(t, x)− u(t, y)) · ∇ρε(x− y) a(y)φ(t, y) dy −→ 0 in L1
tL

1
x as ε→ 0.

One can then typically conclude by using Sobolev bounds on a. But since there is no a(y)
factor in the above integral and we only control ∇u in L1

a, this cannot work here.
A second issue arises since (28) also usually requires a control on divu which is again

unavailable.
Instead we would propose the following approach:

• Through a stability argument, obtain the existence of renormalized solutions to (9)
and (10).
• Show that the commutator estimate (28) for φ = wawu holds by using in particular

that wa ≤ aγ . The exact calculations here should be reminiscent of what were in
essence other commutator estimates in the proof of Prop. 3.
• For any weak solution φ, use the previous point to prove that φwawu is also a solution

to (1) with the corresponding added right-hand side from (9) and (10).
• Prove a commutator estimate like (28) but where φ is replaced by φwawu.

There are obvious technical difficulties at each step and for this reason implementing such a
strategy is beyond the limited scope of these proceedings.



ANELASTIC DIVERGENCE CONSTRAINT 17

5. An anelastic compressible equation coming from fluid mechanics

Let us present in this subsection a PDEs system occurring in fluid mechanics where the
advective equation appears with a possible degenerate anelastic constraint. Then we will look
more carefully on the two-dimensional in space lake equations where an advective equation
with transport velocity satisfying the anelastic constraint appears.

i ) The anelastic constraint from compressible isentropic Euler equations. This anelastic
constraint appears when the Mach (or Froude) number tends to zero starting the compressible
isentropic Euler equations with some heterogeneity F (bathymetry, stratification for instance).
More precisely consider the following system

∂tρε + div(ρεuε) = 0

with

∂t(ρεuε) + div(ρεuε ⊗ uε) +
∇p(ρε)
ε2

=
ρε∇F
ε2

and the pressure law p(ρ) = cργ (with two constants c > 0 and γ > 1) and where F is given
and depends on the space variable (it represents heterogeneities in the environment). By
letting formally ε to zero we get the following limit anelastic system

a (∂tu+ u · ∇u) + a∇π = 0, div(au) = 0 where a =
(γ − 1

c γ

)1/(γ−1)
(F )1/(γ−1).

Therefore the anelastic constraint div(au) = 0 actually accounts for the heterogeneity.

ii) The lake equations. This application concerns the so-called lake equation (under the rigid
lid assumption) with possible vanishing topography. The PDEs is valid on a two-dimensional
bounded domain Ω (the surface of the lake). This system reads

a(∂tu+ u · ∇u+∇p) = 0 with div(au) = 0 in (0, T )× Ω

with respectively the boundary condition and the initial data

au · n|(0,T )×∂Ω = 0, au|t=0 = m0 in Ω

where a denotes the bathymetry and u = (u1, u2) is a two-dimensional vector field which
corresponds to the vertically averaging of the horizontal components of the velocity field
U = (U1, U2,W ) in a three dimensional basin. Note that such system has been studied by
[27] in the non-degenerate case and by [8], [25] and [31] in the degenerate case.

By reducing Ω to the support of a, we may assume that the bathymetry a is strictly
positive in the domain Ω and possibly vanish on the shore ∂Ω. Introducing the relative
vorticity ωR = curlu/a where curlu = ∂1u2 − ∂2u1, we check starting from the lake equation
and dividing by a inside the domain that

∂tωR + u · ∇ωR = 0 in (0, T )× Ω, ωR|t=0 = ωR0 =
curlu0

a
in Ω

with
div(au) = 0, curlu = aωR, au · n|(0,T )×∂Ω = 0.

Remark. The boundary condition on au may be considered in a weak form if the boundary
of the domain is not Lipschitz (Ω reduced by the support of a for example).

Definition. Let (u0, ω
0
R) be such that

div(au0) = 0 in Ω, au0 · n|∂Ω = 0



18 D. BRESCH AND P.–E. JABIN

and

ω0
R ∈ L∞(Ω), curlu0 = aω0

R.

A couple (v, ω) is a global renormalized solution of the vorticity formulation of the lake
equation with initial condition (v0, ω0) if

• ωR ∈ L∞((0, T )× Ω) and
√
au ∈ L∞(0, T ;L2(Ω))

• div(au) = 0 in (0, T )× Ω and a u · n|(0,T )×∂Ω = 0
• curlu = aωR in the distributional sense.
• For all χ ∈W 1,∞(R) with χ(0) = 0, choosing ψ ∈ C∞c (Ω), then

d

dt

∫
Ω
χ(ωR) aψ(x) dx−

∫
Ω
χ(ωR) au · ∇ψ dx = 0.

Using the stability process regarding the advective equation with anelastic constraint, we can
get the following result

Theorem 7. Let a be continuous on Ω and strictly positive in Ω. Assume that ∇
√
a ∈ L2+(Ω)

and that there exists η > 0 such that 1/aη ∈ L1(Ω). Then there exists a global renormalized
solution of the vorticity formulation of the lake Equation.

Constructing an approximate sequence of global renormalized solution in the sense of the
definition given above for (aε, αε) constructed in the paper and in the whole space R2 is an
standard procedure since the coefficients and the domain are regular and the approximate
bathymetry is far from vacuum, see for instance [27], [25], [8]. We get the following bounds
uniform with respect to the parameter ε

(29) uε ∈ L∞(0, T ;L2
a(R2)), ωεR ∈ L∞((0, T )× R2).

Remark now that

curl(aεuε) = uε · ∇⊥aε + aε curluε =
√
aεuε · ∇⊥

√
aε + a2

ε ω
ε
R

and

div(aεuε) = 0.

This is the system that we will use to get regularity on aε∇uε required in the hypothesis for the

stability. Using the uniform bounds on ωεR and
√
aεuε and the uniform bound∇

√
aε ∈ L2+(Ω),

we get that

aεuε ∈ L∞(0, T ;W 1,p(Ω)) for some p > 1

Thus writing

aε∇uε = ∇(aεuε)− uε · ∇aε
we get that, uniformly in ε,

(30) aε∇uε ∈ L∞(0, T ;Lp(Ω)) for some p > 1.

On the other hand,∫
Ω
aε |∇uε| | log aε| dx ≤

1

η

∫
Ω
aε|∇uε|(log(e+ aε|∇uε|)− log η) +

∫
Ω

1

aηε
.

for η > 0 chosen such that 1/aηε ∈ L1(Ω). By combining this with (30), we obtain a uniform
bound on ∫ T

0

∫
Ω
aε |∇uε| log(e+ |∇uε|) dx dt,
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leading to the uniform bound on uε for the quantity ‖u‖aε recalling that we already control uε
uniformly in L∞(0, T ;L2

a(Ω)). This allows then to use the stability procedure taking α = akε
for any k ≥ 1 to get the conclusion of the Theorem.

Remark. It is interesting to note that we get global renormalized solution instead of global
weak solution as in [25]. In our result we use compactness on the vorticity through quantitative
regularity estimate compared to compactness on the velocity field through the stream function
equation and Aubin-Lions Lemma as usually.

Remark. Let us observe that assuming a behaves dist(x, ∂Ω)k the first hypothesis in the
theorem asks for k > 1. The second hypothesis being satisfied. Of course we can generalize
for more general power k playing with parameters θ using for instance that

aθu ∈ L∞(0, T ;W 1,p(Ω))

and also
aθ∇u ∈ L∞(0, T ;Lp(Ω)) for some p > 1

if aθ+1/2 ∈ L2+(Ω) and ∇aθ−1/2 ∈ L2+(Ω).
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