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Abstract

We improve recently introduced consensus-based optimization method, proposed

in [R. Pinnau, C. Totzeck, O. Tse and S. Martin, Math. Models Methods Appl. Sci.,

27(01):183–204, 2017], which is a gradient-free optimization method for general non-

convex functions. We first replace the isotropic geometric Brownian motion by the

component-wise one, thus removing the dimensionality dependence of the drift rate,

making the method more competitive for high dimensional optimization problems.

Secondly, we utilize the random mini-batch ideas to reduce the computational cost of

calculating the weighted average which the individual particles tend to relax toward.

For its mean-field limit–a nonlinear Fokker-Planck equation–we prove, in both time

continuous and semi-discrete settings, that the convergence of the method, which

is exponential in time, is guaranteed with parameter constraints independent of the

dimensionality. We also conduct numerical tests to high dimensional problems to

check the success rate of the method.

1 Introduction

Our main goal in this work is developing efficient gradient-free optimization methods

to the following classical unconstrained optimization problem

x∗ = argmin
x∈Rd

L(x) , (1.1)

in high dimesions, where the target function, not necessarily convex, is assumed to

be a continuous function defined on Rd achieving a unique global minimum. Target
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functions defined on subsets of Rd can be extended to the whole space recasting the

corresponding optimization problem in the form (1.1). Moreover, we can assume without

loss of generality that the target function is positive, i.e., L(x∗) > 0, by lifting L by a

suitable constant.

Important examples of target functions stem from machine learning and artificial

intelligence applications. Typical neural training networks lead to optimization for func-

tions of the following form

L(x) =
1

n

n∑
i=1

`(f(x, x̂i), ŷi) =:
1

n

n∑
i=1

`i(x), (1.2)

where x is the set of parameters defining the model, (x̂i, ŷi)
n
i=1 constitute the training

data set, the function f(x, x̂) defines the neural network that one wants to learn, and

the function `(f, y) is the loss function measuring the distance between the prediction

f(x, x̂i) and the observations ŷi.

For such optimization problems, gradient-based methods have been dominating.

Nevertheless, in general, most gradient-based methods have problems dealing with func-

tions that have large noise or non-differentiable functions. They are also not designed

to handle multi-modal problems or discrete and mixed discrete-continuous design vari-

ables. More specifically in machine learning problems, it has been proved that as the

deep neural network gets deeper, the gradient tends to explode or vanish [4, 19]. Besides,

it will be easily influenced by the geometry of the landscape [33].

On the other hand, there are also gradient-free methods such as Nelder-Mead (NM)

method [36], genetic algorithm (GA) [21], simulated annealing (SA) [30], particle swarm

optimization (PSO)[17, 29], etc.. The NM method is a direct search method based

on function comparison; GA is inspired by genetic evolution and are commonly used

to generate high-quality solutions to optimization; SA is a probabilistic technique for

approximating the global optimum, which is often used in discrete search space; PSO is

used to model the flocking behavior of birds, and also found to be a good optimization

method.

One of such gradient-free methods is the concensus-based optimization (CBO)

method, established in [37, 10, 40]. This is a method based on an interacting parti-

cle system, along the line of consensus based models [2, 5, 11, 12, 14, 18, 31, 35, 39].

This particle system consists of N -particles, labeled as Xj , j = 1, · · ·N , that tend to

relax toward their weighted average, and in the meantime also undergo fluctuation with

a multiplicative noise:

dXj = −λ(Xj − x̄∗)Hε(L(Xj)− L(x̄∗)) dt+ σ|Xj − x̄∗|dW j , (1.3)
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where x̄∗ is the weighted average of the positions of the particles according to

x̄∗ =
1∑N

j=1 e
−βL(Xj)

N∑
j=1

Xje−βL(Xj). (1.4)

The function Hε is a regularization of the Heaviside function introduced by the authors

with the objective that the particles will drift only if at their positions the cost value

is higher than the average of all particles. Later the authors in [10] considered this

model without the Heaviside cutoff for the convenience of analysis. The diffusion given

in (1.3) is associated with |Xj − x̄∗| and this yields convergence conditions and methods

depending on the dimension d, see [10, Theorem 4.1]. The motivation for this type of

diffusion is that one wants to explore the landscape of the cost function L(x) if one

is far from consensus, but when consensus forms one wants the noise to decrease, and

eventually to disappear, in order to stabilize the results towards the target x∗. This

decrease of the temperature is a common feature with simulated annealing [32, 22, 23].

Here, e−βL(x) is the Gibbs distribution corresponding to L(x). The motivation for

this choice comes from statistical mechanics: the cost function L(x) corresponds to a

potential in which particles move by steepest descent modulated by Brownian noise with

β being the inverse of the temperature leading to this invariant measure. In this way,

the smaller the value of the temperature is, the larger the weight of the normalized

Gibbs measure for the agents is on the minimum value of the cost function L(x). The

quantitative formulation of this intuition is given by the Laplace principle [3, 34, 16],

a classical asymptotic method for integrals, recalled here for reader’s sake: for any

probability measure ρ ∈ P(Rd) compactly supported with x∗ ∈ supp(ρ), then

lim
β→∞

(
− 1

β
log

(∫
Rd
e−βL(x)dρ(x)

))
= L(x∗) > 0. (1.5)

Therefore, if L attains its minimum at a single point x∗ ∈ supp(ρ), then the suitably

normalized measure e−βL(x)ρ assigns most of its mass to a small region around x∗ and

hence we expect it approximates a Dirac distribution δx̄∗ for large β � 1. Consequently,

the first moment of the normalized measure e−βL(x)ρ, and thus, the discrete counterpart

average x̄∗, should provide a good estimate of the point at which the global minimum

is attained, x∗ = argminL. Furthermore, the converge rate toward the global minimum

is exponential in time. However, to guarantee the convergence of this method, the drift

rate λ depends on the dimension parameter d, which makes the particles move away

from its global equilibrium more easily for high dimension problems in which d � 1,

such as those raising from machine or deep learning problems.

In this paper, we improve the above CBO algorithms in two ways. First, we re-

place the isotropic Brownian motion term σ|Xj − x̄∗|dW j , which is added equally in
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all dimensions, by its component-wise counterpart. For its mean-field limit equation,

in both time continuous and a time semi-discrete settings, we prove that this removes

the d-dependence constraint on λ. Secondly, we utilize the random mini-batch ideas,

an essential ingredient in stochastic gradient descent (SGD) method [38, 7, 8], and also

introduced recently in [27] for interacting particle systems, that reduces the computa-

tional cost in calculating x̄∗ from O(N) to O(1), or O(nN) to O(1) in the case of (1.2),

and thus it reduces the overall computation cost of CBO. The noise introduced by the

random selection of the mini-batches also adds extra stochasticity which makes the par-

ticles more likely to escape the local equilibrium thus enhances the success rate of the

algorithm toward the global minimum by one order of magnitude.

The paper is organized as follows. We present our algorithm and its continuous

model in Section 2. We prove in Section 3 that in the continuous and a semi-discrete

in time settings the mean-field limit of the algorithm will converge to the global min-

imum exponentially fast, with a constraint on λ that is independent of d. We give

several numerical experiments in Section 4 to verify the performance and efficiency of

the algorithm.

2 A new Consensus Based Optimization Method

Our first new observation over the CBO model (1.3) is that if one uses the component-

wise geometric Brownian motion, which we shall clarify soon, the dimension dependence

in the convergence estimates [10, Theorem 4.1] can be dramatically reduced. To illus-

trate these ideas, let us fix x̄∗ = a to be a constant vector and consider solely the effect

of the diffusion term. Let us consider a shifted second moment for (1.3) in the case of

H ≡ 1 to obtain

d

dt
E|X − a|2 = −2λE|X − a|2 + σ2

d∑
i=1

E|X − a|2 = (−2λ+ σ2d)E|X − a|2.

Clearly, if the particles are to form consensus, one needs 2λ > dσ2. Now consider the

SDE with component-wise geometric Brownian motion

dX = −λ(X − a) dt+ σ

d∑
k=1

(Xj − a)kdWk~ek, (2.1)

where (Xj−a)k means the kth component of Xj−a, {Wk}dk=1 are independent standard

Brownian motions, and ~ek is the unit vector along the kth dimension. For the interacting
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particle system (2.1), one easily finds that

d

dt
E|X − a|2 = −2λE|X − a|2 + σ2

d∑
i=1

E(X − a)2
i = (−2λ+ σ2)E|X − a|2.

We only need 2λ > σ2 for the particles to concentrate. The restriction between λ and

σ is dimension d insensitive for the particles to concentrate (or form a consensus as the

terminology in [37]).

Based on this observation, we now propose a modification to the CBO model in (1.3)

together with an efficient algorithm for its computation by the random batch approach

championed in [27]. We tweak the CBO method introduced in [37, 10] by considering the

following model with diffusion corresponding to a component-wise geometric Brownian

motion

dXj = −λ(Xj − x̄∗) dt+ σ

d∑
k=1

(Xj − x̄∗)kdWk~ek ,

x̄∗ =
1∑N

j=1 e
−βL(Xj)

N∑
j=1

Xje−βL(Xj).

(2.2)

Here x̄∗ is the same as (1.4).

Compared to (1.3), this new model has a simpler and cleaner form, where we omit

the Heaviside function as in [10] and use the component-wise geometric Brownian motion

to replace their noise. From the viewpoint of opinion models in social sciences, the

interacting particle system (2.2) may be thought as the society drifting according to

some common sense opinion or command stemming from the individual parties. Let

us remark that x̄∗ can be chosen to be updated only at some discrete time points in

practice without changing the spirit of the modeling.

As already commented, the usage of the diffusion according to component-wise

geometric Brownian motion is largely due to its scalability in high dimension space. In

fact, the assumptions and the results later in Theorem 3.1 for the particles to converge

to the global minimum are all independent of the dimensionality d of the particle X. The

model (1.3) on one hand requires σ2 to be small or large λ which reduces the exploration

ability at the initial stage. Moreover, it will also put more severe constraint on the

parameters, especially on the second moments of the initial condition of X0. Besides, the

use of the diffusivity in (2.2) allows the particles to explore each dimension with different

rate, and possibly easier to find the optimizer. To summarize, we expect the optimization

method (2.2) to be efficient for optimization problems where the dimensionality of the

parameter is very high, such as those in deep learning compare to (1.3).

The computational cost of a straightforward numerical scheme to approximate the

new continuous CBO method (2.2) is too high if we do (1.4) in every time step, especially
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for big data problems in the form of (1.2). Hence, our second novel approach is to apply

the random batch method [27] to the interacting particle system (2.2), which leads to

efficient random algorithms. See also [38, 7, 8] for the relevant mini-batch ideas used

for SGD. These random algorithms can also be viewed as new models, which seem to

be closer to opinion models in social sciences.

The random mini-batch strategy developed in [27] will be extended to two levels for

the typical cost functions arising in machine learning such as (1.2). First, we calculate

the empirical expectation L̂j = L̂(Xj) from a random subset of the training data set

instead of the accurate Lj as the objective value for the ensemble of particles Xj ; second,

we apply the mini-batch approach and update the reference x̄∗ by a random subset of the

particle ensemble instead of all particles. These two modifications allow us to do high

dimensional optimization more efficiently. The mini-batch is done without replacement,

that is, we do a random permutation and then select the mini-batch in order. Let us

finally remark that this random choice of subsets of interacting particles is very similar

to Monte Carlo approaches to compute large averages, and and it has been used to

produce efficient algorithms for mean-field (kinetic) swarming models in [1, 13].

We introduce below the random algorithm to solve in practice our new CBO model

(2.2) and (1.4).

Algorithm 2.1. Generate {Xj
0 ∈ Rd}Nj=1 according to the same distribution ρ0. Set the

remainder set R0 to be empty. For k = 0, 1, 2, · · · , do the following:

Step 1. Concatenate Rk and a random permutation Pk of the indices {1, 2, · · · , N} to

form a list Ik = [Rk,Pk]. Pick q = bN+|Rk|
M c sets of size M � N from the list Ik in

order to get batches Bk
1 , B

k
2 , · · · , Bk

q and set the remaining indices to be Rk+1. Here,

|Rk| means the number of elements in Rk.

Step 2. For each Bk
θ (θ = 1, · · · , q), do the following

1. Calculate the function values (or approximated values) of L at the location of the

particles in Bk
θ by Lj := L(Xj), ∀j ∈ Bk

θ . If L(x) is in the form (1.2) with

n � 1, one then applies the random mini-batch idea again: generate a random

index subset Akθ ⊂ {1, · · · , n} with |Akθ | = m, and approximate Lj for all j ∈ Bk
θ

by

L̂j := L̂kθ(X
j) =

1

m

∑
i∈Akθ

`i(X
j), ∀j ∈ Bk

θ ,

where L̂kθ(x) := 1
m

∑
i∈Akθ

`i(x) is an unbiased approximation to L(x) = 1
n

∑n
i=1 `i(x)

defined in (1.2).
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2. Update x̄∗k,θ according to the following weighted average,

x̄∗k,θ =
1∑

j∈Bkθ
µj

∑
j∈Bkθ

Xjµj , with µj = e−βL
j

or e−βL̂
j
. (2.3)

3. Update Xj for j ∈ Jk,θ as follows,

Xj ← Xj−λγk,θ(Xj−x̄∗k,θ)+σk,θ
√
γk,θ

d∑
i=1

~ei
(
Xj − x̄∗k,θ

)
i
zi, zi ∼ N (0, 1), (2.4)

and there are two options for Jk,θ:

partial updates: Jk,θ = Bk
θ ,

full updates: Jk,θ = {1, · · · , N}.

Step 3. Check the Stopping criterion:

1

d
‖∆x̄∗‖22 ≤ ε,

where ‖·‖2 is the Euclidean norm and ∆x∗ is the difference between two most recent

x̄∗k,θ. If this is not satisfied, repeat Steps 1-2.

Note again that
(
Xj − x̄∗k,θ

)
i

represents for the ith component of the vector in

(2.4). λ is the drift rate, γk,θ is the learning rate, σk,θ is the noise rate and zi is a

random variable following the standard normal distribution. Note that we add
√
γk,θ

on purpose to be consistent with the time-continuous model (2.2). These parameters

can be different from step to step in practice, as often used in machine learning and

optimization. In particular, decreasing σk,θ slowly corresponds to the famous simulated

annealing algorithm in optimization [32, 22, 23].

Remark 2.1. The estimated value L̂ of the objective function is especially efficient for

problems of the form (1.2). Usually, to train a good model, one requires a large number

of data, that is, n � 1. The computational cost would be high if one calculate L(x) at

each step for all particles. If we calculate L̂ based on a small subset of the data, the

computational cost will be largely saved. Besides, we will show later in the numerical ex-

periments that using L̂ can not only save computational cost, but also make the algorithm

converge to the optimizer faster, due to stochasticity introduced by randomly selecting

the mini-batches. This is an established concept for algorithms such as the SGD [7, 8].
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Remark 2.2. An alternative way to update x̄∗ is to let it equal to argmin L̂j, that is,

x̄∗k = argmin
Xj∈Bkθ

L̂(Xj). (2.5)

We will show that it numerically performs as good as the penalized average. We will

leave the theoretical proof of this case for future study.

Remark 2.3. For updating Xj:

• There are two ways to introduce extra noises into the algorithm. One way is to let

particles do geometric Brownian motion as in (2.4), another way is let particles

do a Brownian motion only when Xj stops moving forward. The reason why

the second method also works is because we already introduced noise by using the

estimated L̂j and (2.3) using the randomly generated sets Bk, so the noise term in

(2.4) is sometimes not necessary. We will show later in the numerical experiments

that if we do not have the last term in (2.4) and just add a Brownian motion when

Xj stops moving forward, the performance is still good.

• In some optimization problem, since the landscape of the objective function is too

complicated, it cannot converge to the global minimizer at stoppting time. There-

fore, when x̄∗ stops updating, we record L̂(x̄∗) at that step, and make all particles

do a Brownian motion and then repeat the algorithm. We terminate the procedure

if the recorded L̂(x̄∗) is not decreasing any more.

3 Analysis of the mean-field limit models

The analysis of the computational model in Section 2 is quite challenging: analyzing

the N -particle system, showing the existence of singular invariant measures quantifying

the convergence towards them would be a fantastic breakthrough. In this section, we

will consider the formal mean-field limit models (N → ∞) of the interacting particle

system (2.2), which makes the analysis possible even if working with high dimensional

PDEs, as already shown in [10]. We remark that the rigorous proof of the mean-field

limit is another open problem for these interacting particle systems due to the difficulty

of managing the multiplicative noise term in (2.2). Depending on how we treat the

time variable, one can write a time-continuous model and a semi-continuous mean-field

models, as discussed below.

3.1 Time continuous model

Formally, taking N →∞ in the model (2.2) with full batch (or alternatively, γ → 0

and N → ∞ in Algorithm 2.1 with full batch), the mean field limit of the model is
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formally given by the following stochastic differential equation for X = X(t):

dX = −λ(X − x̄∗)dt+ σ
d∑
i=1

~ei(X − x̄∗)idWi, (3.1)

where

x̄∗ =
E(Xe−βL(X))

E(e−βL(X))
. (3.2)

We refer to [12] and [6, 9, 20, 24, 25] for formal and rigorous discussions respectively

of the results about mean-field models. The law ρ(·, t) of the process X(t) in the high

dimensional space Rd solving the nonlinear stochastic differential equation (3.1)-(3.2)

follows the nonlinear Fokker-Planck equation

∂tρ = λ∇ · ((x− x̄∗)ρ) +
1

2
σ2

d∑
i=1

∂ii((x− x̄∗)2
i ρ),

where

x̄∗ =

∫
xe−βL(x)ρ(x, t) dx∫
e−βL(x)ρ(x, t) dx

.

We will prove that the stochastic process X(t) will approach some point x̃, which is an

approximation of argminL(x). Our proof needs the following assumptions:

Assumption 3.1. We assume that Lm := inf L > 0, without loss of generality, and

that the cost function L satisfies cL := max(‖maxi |∂iiL|‖∞, ‖r(∇2L)‖∞) <∞.

Here, ∇2L represents the Hessian of L, and r(∇2L) is the spectral radius while ∂iiL

is the diagonal element of ∇2L. Our assumption means that these two quantities should

be of the same order. One sufficient condition is that all second derivatives of L are

bounded. Let also define the following averaged quantities:

V (t) := E|X − EX|2 and ML(t) := Ee−βL(X).

Here, V is the variance of the process X, while ML(t) is the total weight in the opti-

mization. The following result gives the convergence of the continuous mean field model

(3.1), whose proof is deferred to Appendix A following the blueprint in [10].

Theorem 3.1. If β, λ, σ and the initial distribution are chosen such that

µ := 2λ− 1

2
σ2 − σ2 e

−βLm

ML(0)
> 0,

ν :=
2V (0)

µM2
L(0)

βe−2βLmcL(2λ+ σ2) ≤ 3

4
,

(3.3)
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then V (t) → 0 exponentially fast and there exists x̃ such that x̄∗(t) → x̃, EX → x̃

exponentially fast. Moreover, it holds that

L(x̃) ≤ − 1

β
logML(0)− 1

2β
log (1− ν) ,

and thus L(x̃) ≤ Lm +O(β−1), β →∞.

In the above result, using (3.3) one has by the Laplace principle (1.5) that

L(x̃) < − 1

β
logML(0) +

log 2

β
≤ Lm +O(β−1) +

log 2

β
.

Hence, how well L(x̃) approximates Lm depends on how well − 1
β logML(0) approximates

Lm. Besides the largeness of β, it also depends on the initial support of the law of X0. If

the probability that X0 is near the minimizer is small, the approximation quality is poor.

This means for the algorithm to work well, the particles should explore the surrounding

area well so that there is some probability that the neighborhood of the minimizer can

be visited.

The assumptions (3.3) basically require λ, β to be large or σ, V (0) to be small

enough. Notice that the set of the parameters is not empty as one can control the initial

variance V (0). The assumption is restrictive in the above theorem, however this has

to be understood as a proof of concept where other possible approaches may lead to

improvements. In the first equation of (3.3), ML(0) is also some quantity of the order

e−βLm , so it essentially means λ & σ2, which ensures that the variance of X decays to

zero. In fact, in the geometric Brownian motion, one needs 2λ > σ2 to guarantee the

variance of X to vanish as shown in section 2. Under such assumption, all particles will

converge with exponential rate to a point which is within O(1/β) of the global minimum.

Moreover, recall e−2βLm/M2
L(0) ≥ 1. Hence, in the original CBO interacting particle

system and their mean-field counterpart in [10], a large d dependence in µ is sensitive

for λ. This means that our model is more feasible and adapted for high dimensional

optimization problems.

3.2 The semi-discrete model

Let us consider the CBO method (2.2) where x̄∗ is updated at only a number of

discrete time points. Alternatively, in Algorithm 2.1, we let γ fixed, take N →∞ and use

the time continuous SDE to replace the discrete scheme at one iteration. Then, one has

the following semi-discrete model in the time-continuous setting, where a particle evolves

according to the component geometric Brownian motion on interval Im := [tm−1, tm),
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and the references x̄∗ is only updated on some discrete time points as

dX = −λ(X − x̄∗m) dt+ σ
d∑
i=1

(X − x̄∗m)idWi~ei , t ∈ Im , (3.4)

where tm := mγ and

x̄∗m =

∫
x exp(−βL(x)) dρ(x, tm−1)∫
exp(−βL(x)) dρ(x, tm−1)

.

Similarly, ρ(·, tm) means the law of X at time tm. We again consider the mean and

variance of the model m(t) := EX and V (t) := E|X − EX|2. For this semi-discrete

model, we have the following results, whose proof is given in Appendix B:

Proposition 3.1. If the average sequence {x̄∗n} is bounded and

2λ > σ2, (3.5)

then m(tn)→ m̄ and V (tn)→ 0 with exponential rates. Consequently, x̄∗n → m̄ and the

law of X converges weakly to δ(x− m̄) (i.e. in the dual of Cb(Rd), the space of bounded

continuous functions equipped with the supremum norm).

Remark 3.1. Compared with Theorem 3.1, the choice of the parameters is much less

restrictive. We only need (3.5) so that the variance can diminish to zero. However, we

have assumed {x̄∗m} to be bounded to have the desired result.

To remove the assumption that x̄∗n is bounded, one needs to estimate how |x̄∗n| relies

on the initial bounds of |x̄∗0| so that the estimate can close up. For this discrete case, we

have

d

dt
Ee−βL(X) = βλE(e−βL(X)∇L(X) · (X − x̄∗m))

+
1

2
σ2E

[
e−βL(X)

(
β2
∑
i

∂iL(X)2(X − x̄∗m)2
i − β

∑
i

(X − x̄∗m)2
i ∂iiL(X)

)]

The issue is that the first term is hard to control now. A possibility to overcome this

difficulty is to study the fully discretized scheme, with the noise terms discretized using

the Euler-Maruyama scheme. This will be explored elsewhere.

4 Numerical Performance

Let us first comment on some practical implementation aspects of the Algorithm 2.1.

The operator splitting to update all particles can be used in order to avoid overshooting.
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We implemented the algorithm as

ˆ
Xj
k = x̄∗k + (Xj

k − x̄
∗
k)e
−λγ ,

Xj
k+1 =

ˆ
Xj
k + σ

√
γ
∑
i

~ei

(
ˆ
Xj
k − x̄

∗
k

)
i
wi,

where the first equation is the exact solution of the SDE dXj = −λ(Xj − x∗)dt, from

t = kγ to t = k(γ + 1). By overshooting, we mean
ˆ
Xj
k oscillates around x̄∗k. This could

bring instability as in the case of forward Euler in solving some stiff problems.

An alternative way to implement this step is to freeze x̄∗k in a time-step interval,

then the geometric Brownian motion can be solved exactly by

Xj
k+1 = x∗k +

∑
j

~ei(X
j
k − x̄

∗
k)i exp

((
−λ− 1

2
σ2

)
γ + σ

√
γ ωi

)
(4.1)

In practical simulations, this is comparable with the above splitting approach in most

cases.

Concerning the parameters in our CBO model (2.2), one can observe that by in-

creasing β and decreasing σ as iterations accumulate, the accuracy and convergence

speed of the results will be improved. The cooling strategy can be chosen to be similar

to the annealing approach [32, 22, 23]. The intuition is that one decreases the tem-

perature so that the system will cool down to the global minimum. Another practical

strategy is to use larger σ at early stages of the simulations for better exploration of the

cost landscape, while use smaller σ at later stages. For example, a possible strategy is

to take

σn = σ0/ log(k + 1)

Decreasing σ corresponds to decreasing the noise level. As it has been seen in the semi-

discrete model (3.4), we need 2λ > σ2 for the particles to concentrate. Hence, this

strategy allows us to use large σ >
√

2λ in the early stage to explore the surrounding

area well.

We now show the performance of Algorithm 2.1 for our CBO model (2.2) in three

model cases: an optimization of a test function with large oscillations and wide local

minima in one dimension, a neural network for the MNIST data set and an optimization

of a test function with many local minima in high dimension.

4.1 Comparison with stochastic gradient descent (SGD) method

We first show an example where SGD can hardly find the global minimum, however,

our method can easily find it. It has already been observed and proved that the geometry

of the objective function will affect the performance of SGD method [15, 28, 26]. The
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expected exit time for SGD to escape from a local minimum is exponentially proportional

to the inverse of Hessian at the minimum, height of the basin and batch size. So we

construct the following optimization problem:

`(x, x̂i) = esin(2x2) +
1

10
(x− x̂i −

π

2
)2, x̂i ∼ N(0, 0.1)

L(x) =
1

n

∑
i

`(x, x̂i)
(4.2)

The objective function L(x) is plotted in Figure 1. It is easy to see that the global

minimum is x∗ = π/2.

Figure 1

SGD updates the parameter xk in the following way,

xk+1 = xk −
1

m

∑
i∈bk

∇x`(xk, x̂i),

where bk is an index set randomly drawn from {1, · · · , n}. We can see there are many

local minima with different shapes. Especially, the height of all the basins are large,

some of the local minimum is much flatter than the global minimum, in which case

SGD tends to be trapped in those local minima. However, the geometry of the objective

function has little influence on our method. We show the success rate of both methods in

Figure 2 with the same initialization and variables n,m, γ. We consider one simulation

is successful if, |x̄∗k − x∗| < 0.25 for our CBO or |xk − x∗| < 0.25 for SGD, which means

that our approximated minimizers is in one-half width of the global minimizer. For both

13



methods, we run 100 simulations and each simulation we run 104 steps. In addition, we

initialize w0 from uniform distribution in [−3, 3], and set

γ = 0.01, m = 104, n = 20.

Besides, for our method, we set

N = 100, ,M = 20, σ = 5, β = 30,

and use the partial updates. For each simulation, the algorithm stops either when the

stopping criterion in Step 3 of Algorithm 2.1 is satisfied with ε = 10−3, or it finishes 104

steps.

Figure 2: The table shows the success rate of SGD and Algorithm 2.1.

From the table we can see that our method performs significantly better than SGD.

Notice here M = 20, that means, there are only 20 particles interacting with each other

in each step, which is also computationally efficient.

4.2 The Rastrigin function in d = 20

In this section, we compare our method with the one introduced in [37]. The goal

is to find the global minimum of the Rastrigin function, which reads

L(x) =
1

d

d∑
i=1

[
(xi −B)2 − 10 cos (2π(xi −B)) + 10

]
+ C, (4.3)

with B = argmin L(x) and C = minL(x).

Figure 3 shows the shape of the Rastrigin function L(w) when w ∈ R1, B = C = 0

in (4.3). This illustration reveals that the local minima of this function are very close

to the global minimum, so it is not easy for optimization algorithms to discern the

location of the global minimum. The numerical experiments of [37] indicate that their

method performs well in finding the global minimum of the one-dimensional and twenty-

dimensional Ackley functions. However, compared to the Ackley function, the local

minima of the Rastrigin function are much closer to the global minimum, so it is harder

to find its global minimum. The performance of their method for d = 20 is not good

enough for the same set of parameters, as shown in [37, Table 2]. The success rate in
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Figure 3

their numerical experiments for N = 50, 100, 200 is from 34% to 64%.

In our numerical experiments, we set C = 0 and B = 0, 1, 2. We initialize all the

particles uniformly on the interval [−3, 3]. For the cases B = 1, 2, the minimizer is not

at the center of the initialization, which increases the difficulty of converging towards

it. Besides we use partial updates in Step 3 and set γ = 0.01 and β = 30. For each

simulation, we run 104 steps. Our results are shown in Figure 4. We display the success

rate and averaged distance to the global minimum for 100 simulations. Notice that in

[37, Table 2], vf (T ) corresponds to x̄∗k in our paper if readers are interested in comparing

performances. Here we consider one simulation is successful if the final x̄∗k is close to

the global minimum x∗ in the sense that,

|(x̄∗k)i − (x∗)i| < 0.25, for all i,

which means our result is in one-half width of the global minimizer and 0.25 is in order

to keep consistency with [37]. Figure 4 shows that our method is not only more efficient,

but also performs better in terms of finding the global minimizer. Notice that although

condition (3.5) is violated, as we mentioned in Remark 3.1, the algorithm approaches

the global minimum.

As a concluding remark, we have shown in our numerical examples that, two alter-

native numerical methods, one where only random batch is involved without the diffusion

term, one where x̄∗k is directly equal to the argmin of the particles’ value, performs as

well as our method. However, the theoretical proof will be left for future study.
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Rastrigin function in               with 

 N = 50, M = 40 N = 100, M = 70 N = 200, M = 100 
 

x* = 0, success rate 97% 99% 98% 

x* = 0,  5.6E-03 5.03E-04 9.71E-04 

x* = 1, success rate 94% 99% 95% 

x* = 1,  3.9E-03 4.95E-04 3E-03 

x* = 2, success rate 97% 100% 92% 

x* = 2,  3.0E-03 8.06E-06 4E-03 

Computing time saved 22.03% 30.11% 36.14% 
 

Figure 4: This table shows the success rate and the error of our algorithm towards the global
minimum for different Rastrigin functions with parameters leading to the global minimum being
given by the constant vectors specified in each row. We also show the computational savings.

4.3 Experiments on MNIST data sets

In this section, we will run an optimization problem from machine learning, in order

to show that our method also works for high dimensionality. The MNIST data is a set of

pictures with grayscale numbers from 0 to 9. The input data is a vector of dimension 728,

which records the Grayscale of each pixel. We use the Neural Network without hidden

layers to model this classification problem, the function defining the neural network is

given by

f(x, x̂) = a(ReLu(θx̂+B)), x = (θ,B),

is a function depending on the parameter x and mapping x̂ ∈ R728 to R10. Here θ ∈
R10×728, B ∈ R10. ReLu(x) = x1x≥0 = ((xi)+)j∈{1,...,728} is an activation function with

(r)+ being the positive part of the number r, while a(x) is another activation function

called softmax, which reads

a(x) =
exj∑
j e

xj
.

So that the j−th component of f represents the probability of x being the image asso-

ciated to number j − 1. The objective function to be minimized is the following,

L(x) =
1

n

n∑
i=1

`(f(x, x̂i), ŷi), `(f, y) = −
10∑
k=1

ŷk log(fk), (4.4)
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where the observations belong to the subset ŷ ∈ {~ek}10
k=1, ek is a vector of dimension 10

with only the k-th element 1.

In the setup of deep learning, one uses deep neural network to construct the model.

As the neural network gets deeper or wider, the dimension d of parameter w becomes

very large, d � n � 1, which results in potentially many local minima. So the goal

here is not only finding the global minimum, but also the good global minimum. It is

common practice to quantify the quality of the minimum by the test accuracy. We take

the largest component as the prediction of our model at x̂, that is,

g(x∗, x̂) = ~ej , where j = argmax
i

f(x∗, x̂)i

and f(x∗, x̂)i means the i-th component. We further define the test accuracy by

accuracytest(x
∗) =

1

p

p∑
i=1

1{g(x∗,x̂testi )=ŷtesti }, (4.5)

where p is the size of the test set, number of data in the test set, obviously different

from the training data set.

Let us first discuss how different elements in the algorithm influence the convergence

rate. For all experiments, we use exactly the same initialization, which is drawn from

standard normal distribution. Besides, we use the full update in Step 3 and set as

reference case for our simulations the values

N = 100, M = 10, n = 104, m = 50, γ = 0.1, σ =
√

0.1, λ = 1. (4.6)

Here N is the number of total particles, M is the batch size used to update x̄∗; n is the

number of total training data, m is the batch size used to calculate the estimated objec-

tive function L̂j ; γ, σ, λ are the learning rate, the noise rate and drift rate respectively.

As mentioned in Remark 2.3, we allow all the particles to do an independent Brownian

motion with variance σ when x̄∗ stops updating and then the algorithm repeats until

stabilization.

In both Figures 5 and 6, the x-axis represents for the number of epoch. Here one

epoch is equal to n/m steps, which means we go through the whole training data set:

200 steps for m = 50 and 1 step for m = n. The y-axis represents the test accuracy as

defined in (4.5) over p = 104 data sets. The test data set elements (xtesti , ytesti )10000
i=1 are

all different from the training data set elements we used in the objective function (4.4).

In Figure 5 we compare the performance over the neural network of the reference

solution with the parameters in (4.6) with respect to other set of parameters. The main

general observations inferred are:

• Using estimated value L̂j is better than using the exact value Lj . The small batch
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Figure 5: Comparison of the performance between the reference solution with parameter in
(4.6) and first set of data with different parameters as explained in the inlet.

m = 50 not only saves 99.5% of the computational cost when calculating Lj , the

increase rate of the accuracy is even better than the full batch.

• Using more particles in the interaction, larger M , to compute the average x̄∗

increases the overall performance as expected. However, we have to point out

that the case where M = 10 save 40% of computing time compared to the case

M = 100.

• The number of agents N does not need to be large. Increasing the total number

of particles N from 100 to 500 does not change the accuracy significantly, rather

just increases the cost heavily.

• Larger β corresponds to faster convergence rate. As β becomes larger, it achieves

better accuracy faster. However, β cannot be too large, otherwise µj , defined as

in (2.3), is smaller than the minimal threshold positive value for the computer,

which makes x̄∗ infinity.

In Figure 6 we compare our results with parameters (4.6) with the simulations using

the variations of the new CBO model (2.2) discussed in Section 2. We use the variant

of the CBO model without the noise term and the variant of the CBO model using the

minimal value of the cost (2.5) over the agents rather than the average x̄∗. We deduce

the following general observations:
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• A similar behavior in the performance with or without the last term in (2.4) is

obtained. Since there is already stochasticity involved when calculating L̂j and

selecting random subsets of particles, it is usually not necessary to add extra noise

when updating the positions of particles for these machine learning problems.

However, for other optimization problems like the numerical experiment in Sec-

tion 4.2, the geometric Brownian noise seems necessary to avoid clogging in local

minima.

• Using argmin L̂(Xj) to update x∗k has also a similar performance.

Figure 6: Comparison of the performance between our new CBO algorithm and its variants.

5 Conclusion

We improve the gradient-free optimization method upon [37], to make it effective

for high dimensional optimization problems. We show in Theorem 3.1 and Proposition

3.1 that because of the component-wise geometric Brownian motion, the mean field limit

of the method always converges to its good approximation of the global minimum with

all the parameters independent of dimensionality. We show in Section 4.3 that for the

MNIST data with two layers Neural Network, which is a 7290-dimensional optimization

problem, only with 100 particles, it can already achieve 82% accuracy. In another

example 4.2, our method has a significant higher success rate in finding the global
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minimum of the Rastrigin function compared to the practical implementation of the

original method introduced in [37].

There are still lots of open problems in this direction, among them:

• Theoretical study for the method. Our theorems have not involved the random

batch on particles and random batch on the data set. How the random batch

method will affect the process of finding the global minimum will be the object of

future studies.

• Stability condition for the method and criteria of choosing the optimal variables,

such as, M,N, β, σ, γ remain to be understood.
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A Proof of Theorem 3.1

To prove this theorem, we need some preparation.

Lemma A.1. V (t) and M(t) satisfy the following:

d

dt
V (t) ≤ −

(
2λ− 1

2
σ2 − 1

2
σ2 e

−βLm

M0

)
V (t), (A.1a)

d

dt
M2
L ≥ −2βcL(2λ+ σ2)e−2βLmV (t). (A.1b)

Proof. By Itô’s calculus, it holds that

d|X − EX|2 = 2(X − EX) · dX − 2(X − EX) · dEX +
1

2
σ2
∑
i

(X − x̄∗)2
i dt.

Hence, one can deduce that

d

dt
V (t) = −2λE

[
(X − EX) · (X − x̄∗)

]
+

1

2
σ2E|X − x̄∗|2

= −2λV (t) +
1

2
σ2E|X − x̄∗|2.

Here, we used the fact E(X − EX) · (EX − x̄∗) = 0. Moreover, we get E|X − x̄∗|2 =
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V (t) + |EX − x̄∗|2. By Jensen’s inequality, for any a ∈ Rd,

|a− x̄∗|2 ≤ EX1∼X |a−X1|2e−βL(X1)

ML
, (A.2)

where X1 ∼ X means X1 has the same distribution as X. Therefore,

E|X − x̄∗|2 ≤ V (t) + e−βLm
V (t)

ML
,

and (A.1a) follows.

Analogously, by Itô’s calculus, one can infer that

dEe−βL(X) = −βEe−βL(X)∇L(X) · dX

+
1

2
σ2
∑
i

E
[
e−βL(X)(X − x̄∗)2

i (β
2(∂iL)2 − β∂iiL(X))

]
dt =: (I1 + I2)dt.

By definition and Assumption 3.1, one obtains

I1 = βλEe−βL(X)(∇L(X)−∇L(x̄∗)) · (X − x̄∗) ≥ −βλe−βLmcLE|X − x̄∗|2

where Ee−βL(X)∇L(x̄∗) · (X − x̄∗) = 0 is used. For I2, one has

I2 ≥
1

2
σ2(−βcL)e−βLmE|X − x̄∗|2.

Hence, we conclude that

dML

dt
≥ −βcLe−βLm(λ+

1

2
σ2)E|X − x̄∗|2. (A.3)

Using the same estimate as in (A.2), one finds

E|X − x̄∗|2 ≤ V (t) +
e−βLm

ML
V (t) ≤ 2

e−βLm

ML
V (t). (A.4)

Inserting (A.4) into the differential inequality (A.3), the desired estimate follows.

Proof of Theorem 3.1. Define

T := sup

{
t : ML(s) ≥ 1

2
ML(0), for all s ∈ [0, t]

}
.

Clearly, T > 0. Assume that T < ∞. Then, for t ∈ [0, T ], by the assumption on µ in
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(3.3), one can deduce that

2λ− 1

2
σ2 − 1

2
σ2 e

−βLm

ML
≥ 2λ− 1

2
σ2 − σ2 e

−βLm

ML(0)
= µ > 0.

Consequently, one has
dV

dt
≤ −µV (t).

and thus

V (t) ≤ V (0) exp(−µt).

Hence, by the assumption on ν in (3.3),

M2
L(t) ≥M2

L(0)− 2βcL(2λ+ σ2)e−2βLmV (0)

∫ t

0
e−µs ds

> M2
L(0)− 2V (0)βcL(2λ+ σ2)e−2βLm

µ
≥ 1

4
M2
L(0).

This means that there exists δ > 0 such that M2
L(t) ≥ 1

4M
2
L(0) in [T, T + δ) as well.

This then contradicts with the definition of T . Hence, T =∞. Consequently,

V (t) ≤ V (0) exp(−µt) (A.5)

holds and

ML(t) >
1

2
ML(0) (A.6)

for all t > 0. Using again Jensen’s inequality (A.2) and (A.5)-(A.6), we infer that

|EX − x̄∗|2 ≤ EX1∼X |X1 − x̄∗|2e−βL(X1)

ML
≤ e−βLm V (t)

ML
≤ C exp(−µt).

Moreover, one has

| d
dt

EX| ≤ λE|X − x̄∗| ≤ λ
√

E|X − x̄∗|2 ≤ λ
√
V (t) + |EX − x̄∗|2 ≤ C exp(−µt/2).

Since the right-hand side is integrable on time, it follows that EX → x̃ for some x̃ and

x̄∗ → x̃, with exponential rate. Since EX → x̃ and V (t)→ 0, ML(t)→ e−βL(x̃). Hence,

e−2βL(x̃) > M2
L(0)(1− ν).

Therefore, we conclude that

L(x̃) < − 1

β
logML(0)− 1

2β
log(1− ν).
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By the assumption on ν in (3.3), one thus has

L(x̃) < − 1

β
logML(0) +

log 2

β
.

By the Laplace principle (1.5), − 1
β logML(0) = Lm + O(β−1), and thus L(x̃) ≤ Lm +

O(β−1). See more details in [10].

B Proof of Proposition 3.1

Proof. Since x̄∗n is constant during the time interval, we find that the mean value m(t)

satisfies
d

dt
(m(t)− x̄∗n) = −λ(m(t)− x̄∗n)

Therefore, we get m(tn) − x̄∗n = (m(tn−1) − x̄∗n)e−λτ . Hence, one obtains m(tn) =

m(tn−1)e−λτ + x̄∗n(1− e−λτ ). Consequently, it holds that

m(tn) = m0e
−λnτ +

n−1∑
m=0

(1− e−λτ )x̄∗me
−(n−m)λτ .

If x̄∗m is bounded, this summation converges, and the sum is controlled by C supm ‖x̄∗m‖
with C independent of τ . By Itô’s calculus, the second moment satisfies

d

dt
E|X − x̄∗n|2 = (−2λ+ σ2)E|X − x̄∗n|2.

Since the variance is given by

V (tn) = E|X − x̄∗n|2 − (m(tn)− x̄∗n)2,

we have

V (tn) = S(tn−1)e(−2λ+σ2)τ + (e(−2λ+σ2)τ − e−2λτ )(m(tn−1)− x̄∗n)2.

If {x̄∗n} is bounded, then m(tn) is bounded as has been shown. Hence, if σ2 < 2λ direct

summation shows that V (tn)→ 0. Moreover, it is also clear that

m̄ := lim
n→∞

m(tn)

exists.

Using Chebyshev’s inequality, it is easy to see that for any ε > 0, there exists R > 0

such that

sup
t≥0

E1X∈Rd\B(0,R) ≤ ε.
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For any test function ϕ ∈ Cb, we find R > |m̄|, φ ∈ C2
b (Rd) such that ‖φ1‖Cb ≤

2‖ϕ‖Cb , and that

sup
x∈B(0,R)

|φ− ϕ| ≤ ε,

and

sup
t≥0

E1X∈Rd\B(0,R) ≤
ε

‖ϕ‖Cb
.

Then, we deduce that

|Eϕ(X)−ϕ(m̄)| ≤ |Eφ(X)−ϕ(m̄)|+E|φ(X)−ϕ(X)| → |φ(m̄)−ϕ(m̄)|+E|φ(X)−ϕ(X)| ≤ 2ε.

Consequently, we have

Ee−βL(X) → Ee−βL(m̄) > 0.

Hence, we conclude that

inf
t>0

Ee−βL(X) > 0.

Finally, using similar estimates as in the time continuous case, we obtain that

|x̄∗n −m(tn)|2 → 0,

consistent with the fact that x̄∗n is bounded. This finishes the proof.
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