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Abstract

The purpose of this paper is to study the dynamics of the interaction among a
special class of solutions of the one-dimensional Camassa-Holm equation. The equa-
tion yields soliton solutions whose identity is preserved through nonlinear interactions.
These solutions are characterized by a discontinuity at the peak in the wave shape and
are thus called peakon solutions. We apply a particle method to the Camassa-Holm
equation and show that the nonlinear interaction among the peakon solutions resembles
an elastic collision, i.e., the total energy of the system before the peakon interaction is
equal to the total energy and momentum of the system after the collision. From this
result, we provide several numerical illustrations which supports the analytical study,
as well as showcase the merits of using a particle method to simulate solutions to the
Camassa-Holm equation under a wide class of initial data.

1 Introduction

The purpose of this paper is to investigate the dynamics of the interaction among peakon
solutions for the one-dimensional (1-D) Camassa-Holm (CH) equation as well as showcase
the merits of using particle methods to simulate solutions to the CH equation using arbitrary
smooth initial data. To this extent, the CH equation is given by

mt + umx + 2mux = 0, m = u− α2uxx, (1.1)

which is subjected to the following initial data:

m(x, 0) = m0(x). (1.2)

Here, m is the momentum related to the fluid velocity u by the 1-D Helmhotz operator (see
(1.1)).
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Equation (1.1) arises in a wide range of scientific applications and, for example, can be
described as a bi-Hamiltonian model in the context of shallow water waves, see [2,13,14,16,
18]. It can also be used to quantify growth and other changes in shape, such as those which
occurs in a beating heart, by providing the transformative mathematical path between two
shapes (for instance, see [21]).

The CH equation exhibits some interesting properties among a class of nonlinear evo-
lutionary PDEs. For instance, the equation is completely integrable and thus possesses an
infinite number of conservation laws. Equation (1.1) yields soliton solutions–whose identity
is preserved through nonlinear interactions–which are characterized by a discontinuity at
the peak in the wave shape., see, e.g. [2, 3, 24, 28]. More precisely, equation (1.1) admits
traveling wave solutions of the form u(x, t) = ae−|x−ct| with speed proportional to ampli-
tude. For these reasons, soliton solutions generated from the CH equation are referred to as
peakons. Peakons are also orbitally stable as their shape is maintained under small pertur-
bations; see, e.g. [15,17,23]. We note that peakons can also be considered as waves of largest
amplitude that are exact solutions of the governing equations for irrotational water waves;
see [11, 12,27].

Simulating these peakon solutions numerically poses quite a challenge–especially if one is
interested in considering a peakon-antipeakon interaction (i.e., the interaction between pos-
itive and negative peakons). Several numerical methods have been proposed for simulating
peakon interactions for the CH equation such as finite-difference, finite-element, and spectral
methods, [1, 20, 26, 29]. Many of these methods are computationally intensive and require
very fine grids along with adaptivity techniques in order to model the peakon behavior.
Moreover, many of these methods are unable to successfully resolve the peakon-antipeakon
interaction.

Solutions of (1.1), (1.2) can be accurately captured by using a particle method, as shown
in [4–6]. In the particle method, described in [6,10], the solution is sought as a linear combi-
nation of Dirac distributions, whose positions and coefficients represent locations and weights
of the particles, respectively. The solution is then found by following the time evolution of
the locations and the weights of these particles according to a system of ODEs obtained
by considering a weak formulation of the problem. The particle methods presented in [4, 5]
have been derived using a discretization of a variational principle and provide the equivalent
representation of the ODE particle system. The main advantage of particle methods is their
(extremely) low numerical diffusion that allows one to capture a variety of nonlinear waves
with high resolution; see, e.g., [7–9,25] and references therein.

In this paper, we apply the particle method for the numerical solution of the CH equation
in order to study the elastic collisions among peakon solutions. We begin, in Section 2, with
a brief overview of the particle method and some of its main properties which are necessary
for the study of numerical collisions among peakon solutions. We then provide in Section 3
an analytical discussion about the behavior of peakon interactions for two positive peakons.
Finally, in Section 4, we present several numerical experiments which showcases both the
complex interactions among peakon solutions, as well as the merits of using a particle method
to simulate such solutions.
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2 Description of the Particle Method for the Camassa-

Holm Equation

In this section, we briefly describe a particle method for the CH equation. For a more
detailed description on the particle method for (1.1), we refer the reader to [6, 10]. We
begin by searching for a weak solution in the form of a linear combination of Dirac delta
distributions. In particular, we look for a solution of the form:

mN(x, t) =
N∑
i=1

pi(t)δ(x− xi(t))). (2.1)

Here, xi(t) and pi(t) represent the location of the i-th particle and its weight, and N denotes
the total number of particles. The solution is then found by following the time evolution of
the locations and the weights of the particles according to the following system of ODEs:

dxi(t)

dt
= u(xi(t), t), i = 1, . . . , N,

dpi(t)

dt
+ ux(xi(t), t)pi(t) = 0, i = 1, . . . , N.

(2.2)

Using the special relationship between m and u given in (1.1), one can directly compute the
velocity u and its derivative, by the convolution u = G ∗m, where G is the Green’s function

G(|x− y|) =
1

2α
e−|x−y|/α, (2.3)

associated with the one dimensional Helmholtz operator in (1.1). Thus we have the following
exact expressions for both u(x, t) and (by direct computation) ux(x, t):

uN(x, t) =
(
mN ∗G

)
(x, t) =

1

2α

N∑
i=1

pi(t)e
−|x−xi(t)|/α, (2.4)

uNx (x, t) =
(
mN ∗Gx

)
(x, t) = − 1

2α2

N∑
i=1

pi(t)sgn(x− xi(t))e−|x−xi(t)|/α. (2.5)

To initialize the particle method for the CH equation, one should choose the initial
positions of particles, xi(0), and the weights, pi(0), so that (2.1) represents a high-order
approximation to the initial data m0(x) in (1.1). The latter can be done in the sense of
measures on R. Namely, we choose (xi(0), pi(0)) in such a way such that for any test
function φ(x) ∈ C∞0 (R), we have that

〈
mN

0 (·), φ(·)
〉

=

∫
R
m0(x)φ(x)dx ≈

N∑
i=1

pi(0)φ(xi), (2.6)

where

mN
0 (x) =

N∑
i=1

pi(0)δ(x− xi(0))). (2.7)
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Based on (2.6), we observe that determining the initial weights, pi(0), is exactly equivalent
to solving a standard numerical quadrature problem. One way of solving this problem is to
cover the computational domain Ω with a uniform mesh of spacing ∆x and denote by Ωi the
interval

Ωi = [xi−1/2, xi+1/2] =
{
x | xi−1/2 ≤ x ≤ xi+1/2

}
, i = 1, . . . , N,

and by xi(0) = ∆x the center Ωi. For example, a midpoint quadrature will be then given
by setting pi(0) = ∆xm0(xi(0)). In general, one can build a sequence of basis functions
{ϕi(x)}Ni=1 and approximate the initial data by taking pi(0) =

∫
R ϕi(x) dm0 in (2.7). Note

that the latter makes sense if m0 ∈ M(R), where M(R) is the set of Radon measures and
one can prove that mN

0 converges weakly to m0(x) as N →∞.
In practice, except for very special cases, the functions xi(t) and pi(t), i = 1, . . . , N have

to be determined numerically and the system (2.2) must be integrated by an appropriate
ODE solver. For our numerical experiments, we considered a strong-stability preserving
(SSP) Runge-Kutta method from [19]. For a more complete description of this method, we
refer the reader to Appendix A.

It should be observed that once the positions, xi, of the particles and their weights,
pi, are obtained from (2.2), the solution at any point can be easily computed using (2.4).
Furthermore, if the initial data assumes the form of a peakon, then the peakon solution
generated by the particle method is exact, with any errors emanating solely from the ODE
solver.

Properties of the particle system

It should be instructive to discuss some of the general properties of the particle system which
are pertinent to our study on the investigation of elastic collisions of peakons. For a more
detailed description of the following properties including their proofs, we refer the reader
to [6, 10].

• We begin by observing that the functions xi(t) and pi(t) given by (2.2) satisfy the
following canonical Hamiltonian equations:

dxi
dt

=
∂HN

∂pi
,

dpi
dt

= −∂H
N

∂xi
, i = 1, . . . , n, (2.8)

where the Hamiltonian HN(t) is given as follows:

HN(t) =
1

2

N∑
i=1

N∑
j=1

pi(t)pj(t)G (xi(t)− xj(t)) . (2.9)

We note that HN(t) is conserved, i.e, HN(t) = HN(0) for all t > 0.

• Another important conservation law for the particle system (2.2) is the conservation
of the total momentum, i.e.,

d

dt

[
N∑
i=1

pi(t)

]
= 0. (2.10)
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• Finally, if the initial momenta given in (2.2) are positive, i.e., pi(0) > 0 for all i =
1, . . . , N , then pi(t) > 0 for all i = 1, . . . , N and t > 0. If, in addition, xi(0) < xi+1(0)
i = 1, . . . , N , then the particles never cross, i.e., xi(t) < xi+1(t) for any i = 1, . . . , N and
for all t. This important property was proved in [4] by using a Lax-Pair formulation.
It can also be proved by using a conservation law,

dPN(t)

dt
:=

d

dt

(
N∏
k=1

pk(t)
N−1∏
k=1

[
G(0)−G(xk(t)− xk+1(t))

])
= 0,

as it has been done in [10]. We will show in the next section, the peakon particles
indeed elastically bounce back after becoming close to each other.

3 Elastic Collisions Among Peakon Solutions

In this section, we take a close look at the dynamics and interactions of the peakon solutions
(2.4) associated with CH equation. In particular, we study the soliton-type behavior of
peakons and their elastic collisions. An elastic collision is an encounter between two bodies
in which the total kinetic energy and momentum of the two bodies after the encounter are
equal to their total kinetic energy and momentum before the encounter. That is, both the
conservation of momentum and conservation of kinetic energy are conserved. By conservation
of momentum, we mean that the sum of the momenta of all the objects of a system under
consideration cannot be changed by the interactions within the system. Additionally, the
total energy of a system remains constant at all times under the conservation of energy
principle. Using these principal conservation properties, we begin by showing analytically
that any collisions among peakons for the case where the initial weights are assumed to
be positive are elastic. That is, the collision is through the interaction potential in the
Hamiltonian given in (2.8) rather than a head on collision.

3.1 Analysis of Two-Peakon Interactions

Since the interaction of peakons is local, it is sufficient to investigate the interactions among
two peakons. To this extent, we consider a two-peakon system with weights p1(t), p2(t) and
locations x1(t), x2(t) that evolve in time according to the following system of ODEs (see
(2.2)): 

dx1(t)

dt
=

1

2α
p1(t) +

1

2α
p2(t)e−|x2(t)−x1(t)|/α,

dx2(t)

dt
=

1

2α
p2(t) +

1

2α
p1(t)e−|x1(t)−x2(t)|/α,

dp1(t)

dt
=

1

2α2
p1(t)p2(t)sgn(x1(t)− x2(t))e−|x1(t)−x2(t)|/α,

dp2(t)

dt
=

1

2α
p1(t)p2(t)sgn(x2(t)− x1(t))e−|x2(t)−x1(t)|/α.

(3.1)

We assume that there are two times, say tbefore and tafter such that |x1(tbefore)− x2(tbefore)| =
|x1(tafter) − x2(tafter)| with x1(t) 6= x2(t) for any finite time t. Here tbefore is some time
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t before the two peakons interact, and tafter is some time t after the peakons undergo a
nonlinear exchange of momentum.

We begin by recalling the two conservation properties of the particle system given in
Section 2: The conservation of the Hamiltonian (see (2.8)):

HN(t) = p2
1(t) + p2

2(t) + 2p1(t)p2(t)e−|x1(t)−x2(t)|/α = HN(0), ∀t > 0, (3.2)

and the conservation of momentum (see (2.10)):

p1(t) + p2(t) = p1(0) + p2(0), ∀t > 0. (3.3)

From (3.2) and (3.3), we observe that 2 (p1p2)before = 2 (p1p2)after. Indeed if we square both
sides of (3.3) and subtract (3.2), we obtain

2p1(tbefore)p2(tbefore)(1− e−|x1(tbefore)−x2(tbefore)|/α)

= 2p1(tafter)p2(tafter)(1− e−|x1(tafter)−x2(tafter)|/α).

From here, we use the fact that |x1(tbefore)− x2(tbefore)| = |x1(tafter)− x2(tafter)| to conclude
that 2 (p1p2)before = 2 (p1p2)after. This observation along with the conservation of momentum
property (see (3.3)) allows us to obtain the following system of equations:

p2
1(tbefore) + p2

2(tbefore) = p2
1(tafter) + p2

2(tafter),

p1(tbefore) + p2(tbefore) = p1(tafter) + p2(tafter).
(3.4)

The only possible solutions to the system of equation given above are,

p1(tbefore) = p1(tafter), p2(tbefore) = p2(tafter), (3.5)

and
p1(tbefore) = p2(tafter), p2(tbefore) = p1(tafter). (3.6)

The solution given by (3.5) implies that the peakons do not interact, which is not possible.
Hence, the solution to (3.4) is given by (3.6) which shows that the momentum is exchanged
after the collision. This explicitly shows the elastic collision behavior among peakon solutions
generated by solving (1.1) via a particle method. Below, we illustrate an example of the
interaction among two peakons which exhibits the elastic collision behavior as described
above.

3.1.1 An Illustration of the Two Positive Peakons Interaction

In this illustration, we begin by considering an interaction among two positive peakons
generated from solving the CH equation given in (1.1). To this extent, we consider two
positive peakons, which are initially placed at x1(0) = 0, and x2(0) = 5 with initial weights
p1(0) = 4 and p2(0) = 1, and move them exactly in time according to (3.1) with α = 1 on the
domain [a, b] = [−10, 30]. We observe that the peakon defined by its initial values at (x1, p1)
has a bigger weight and will hence move faster than the peakon defined by (x2, p2). Thus,
we expect that as the two peakons move closer to each other, they will undergo a complex
interaction which involves the exchange of momentum.
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In Figure 3.1, we provide snapshots of the solution u at different times. To plot the
velocity profile, we introduce a uniform grid of size ∆xp, i.e., xpj = j∆xp, ∆xp = b−a

Np
, j =

1, . . . Np, and compute the values of u(xpj , t), j = 1, . . . Np, according to formula (2.4) with

α = 1, i.e., uN(xpj , t) = 1
2

Np∑
i=1

pi(t)e
−|xpj−xi(t)|. As one can see, the peakons emerge unscathed

with the exception of a phase shift as predicted by the underlying integrable system. In
Figure 3.2, we also show the trajectories of each particle and its momentum as functions
of time. From this figure, we see that the particles do not cross; rather, they exchange
momentums as they undergo a complex nonlinear interaction with each other.
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Figure 3.1: Two positive peakon interaction for the CH equation (1.1) for various times.

To gain a better understanding of the elastic collision behavior among two peakon so-
lutions, we compare the particle method (3.1), in which each particle represents a peakon
with the multi-particle approach for simulating the evolution of two peakons. The latter
case assumes a simple form as well. We follow the method presented in [6] and consider a
suitably refined initial grid of particles to represent the two peakons, in which the initial
weights, pi, of the particles are all zero except for two particles that initially have weights
pn1(0) = 4 and pn2(0) = 1 and are placed at xn1(0) = 0 and xn2(0) = 5, respectively. In
this case, it follows from (2.2) that dpi/dt = 0 for each i 6= n1, n2, and thus the weights of
all of the weightless particles will remain constant in time. However, the locations of these
particles may change in time since the velocity of the particles depend explicitly on (2.4)
which is not necessarily zero. From (2.2) and (2.4), we observe that the u(xi(t), t) depends
solely on xn1(t), xn2(t) and pn1(t), pn2(t), and thus it is sufficient to evolve the same ODEs
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Figure 3.2: Location and momentum trajectories for the two positive peakon interaction.

for non-zero particles as before.

To rectify the issue of particles clustering around each other, we implement a swapping
algorithm, in which the particles are switched once a certain distance threshold is met.
In particular, if as before we let ∆xp be the distance between each equidistant point on
a computational grid, then we switch the weights, pi+1(t) ↔ pi(t), if xi+1(t) − xi(t) <
min(1

2
(xi(t)− xi−1(t)), 1

2
∆xp), and pi(t) ≥ pi+1(t). The results are shown in Figures 3.3–3.6

below – the blue lines correspond to the solution (trajectories) obtained by running the two
particles system (3.1), while the the red ones correspond to solution computed using the
multi-particle approach according to the system (2.2). Once again, to plot the computed
solution u(x, t), we recover its values on a uniform grid using (2.4). As one can see, the
trajectory paths with many particles agree with the trajectory paths for the solution in
which we consider only two particles. This shows that even when we consider the interaction
among many particles in a peakon simulation, the particle will never cross; rather, they
exchange momentums as the particles move closer to each other.
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Figure 3.3: The velocity u for the CH equation (1.1) at t=1, and the associated particle location
trajectories.
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Figure 3.4: The velocity u for the CH equation (1.1) at t=5, and the associated particle location
trajectories.
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Figure 3.5: The velocity u for the CH equation (1.1) at t=10, and the associated particle location
trajectories.
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Figure 3.6: The velocity u for the CH equation at t=15, and the associated particle location
trajectories.
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3.1.2 An Illustration of the Peakon-Antipeakon Interaction

One may also observe this no crossing behavior in the peakon-antipeakon case. In this
illustration, the peakon and antipeakon (a peakon with a negative initial weight) are initially
located at xn1(0) = −10 and xn2(0) = 10 and have momenta of equal magnitude but opposite
signs so that the total momentum is zero, i.e., pn1(0) = 1 and pn2(0) = −1. We move the
peakons exactly in time according to (3.1) with α = 1 on the domain [a, b] = [−30, 30].
During the simulation, the total momentum remains zero, however the magnitudes grow very
large as the peakon traveling from the left to the right approaches the antipeakon traveling
in the opposite direction. At some finite time, t∗, the peakon and antipeakon will collide.
Since the total momentum of the sytem is zero, we expect that the solution will be zero
at the collision time t∗. However, due to the inherent symmetry of the problem, u(x, t) →
−u(−x,−t), (c.f, [6] and references therein), peakons may develop after the collision time
and propagate in opposite directions, thus exhibiting the elastic collison properties discussed
in the previous section. To implement this numerically, we allow particles to cross each other,
if the particles associated with the nonzero weights are sufficiently close to each other, i.e.
|xn1−xn2| < d∗ where d∗ is some prescribed small distance. In our examples, d∗ = 1

2
∆xp. To

recover the solution u(x, t) as shown below , we once again calculate its values on a uniform
grid according to (2.4) (as before, we take xpj = j∆xp, ∆xp = b−a

Np
). In Figures 3.8 and 3.9 we

plot the location and momentum trajectories for the peakon and antipeakon as a function
of time. Here, we observe that similar to the two positive peakon example, the collision
between the peakon and antipeakon is elastic in the sense that it involves the exchange of
momentum.
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Figure 3.7: An Illustration of the peakon-antiPeakon phenomenon at various times.
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Figure 3.8: Location and momentum trajectories for the peakon-antiPeakon interaction.
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Figure 3.9: (Zoomed) Location trajectories for the peakon-antiPeakon interaction.

4 Numerical Experiments

In this section, we perform several numerical simulations, which solve the CH equation under
a wide range of initial data. We illustrate that the peakons’ behavior is reminiscent of the
soliton paradigm as the peakon represents a self-reinforcing solitary wave that maintains
its shape in while it travels at a constant finite speed. Peakons also exhibit remarkable
stability as their identity is retained through strong nonlinear interactions. The presented
numerical examples do not only corroborate the analytical results, but also demonstrate some
of the practical advantages that the particle method holds over other numerical methods. In
particular, we consider both peakon solutions and solutions arising from arbitrary smooth
initial data. In all cases, we compare the results obtained by the particle method (PM) with
those obtained using a finite volume (FV) approach, in particular, a semi-discrete central
upwind scheme described in Appendix A (see [22]). The obtained results demonstrate the
advantages that the particle method holds over the finite-volume method. In all of the
examples that follow, we take α = 1.
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4.1 Peakon Initial Data

Single Peakon. We begin by considering a single peakon solution and first implement the
multi-particle approach described in Section 3.1.1 in the context of two particles. To this
extent, we place Np = 600 equidistant particles in the interval [−30, 30] at t = 0 such that
pi = 0 for i 6= q and pq = 1. As we discussed before, the weights of all of the zero particles
in consideration will remain constant in time. Their locations will change in time according
to the values of the velocity u(xi(t), t), which in this case depends solely on xq(t) and pq(0),
and therefore can be computed explicitly:

u(xi(t), t) =
1

2
pq(t)e

−|xq(t)−xi(t)|, xq(t) =
1

2
pq(0)t+ xq(0). (4.1)

This remarkable simplicity in integrating the ODE as well as recovering the solution
at any t > 0 is one advantage that the particle method holds over say a finite volume
approach. To illustrate this, we compare the results generated from the particle method to
those obtained by applying a semi-discrete second-order central-upwind scheme described in
Appendix A to the CH equation (1.1). In the finite volume setting, we use a uniform grid
xj = j∆xc with ∆xc = 0.1 (i.e., Nc = 600) on the same interval [−30, 30]. To compare the
FV solution with the PM solution we run the simulations until t = 1 and t = 10 (initially
we place particles at the middle of each finite volume cell). The solutions obtained by
both methods are presented in Figure 4.1. As one can see, the particle solution generates a
more accurate approximation the solution of (1.1) due to the minimal effects of numerical
diffusion. We observe that the maximum height of the “peak” generated from the central-
upwind scheme becomes noticeably smaller as time progresses. This is due to the numerical
diffusion introduced by the finite volume method which is a result of the Eulerian nature of
the central-upwind scheme. In contrast, the particle method is Lagrangian in nature, and
hence is generally resistant to the numerical diffusion introduced in the approximation of
the solution. In Figure 4.2 we show that the FV solution converges to the particle solution
through an appropriate grid refinement study. In this Figure, we take Nc = 3000 in the FV
simulations while the number of particles remains Np = 600 as before.

Remark 4.1. We would like to remark that the examples considered in this paper are com-
parable with [29], in which they solved the CH equation with both peakon initial data and
non-peakon initial data. There, they considered a local discontinuous galerkin method to
numerically solve the CH equation.

Two Peakons. Next, we return to the two-peakon problem discussed in Section 3.1.1 and
perform a comparison against a central-upwind scheme. Similar to the previous example, for
the finite volume method, we use a uniform grid xj = j∆xc with ∆xc = 0.1 (i.e., Nc = 600)
on the same interval [−10, 30]. Similar to the one peakon case, we see in Figure 4.3 that the
peak associated with the FV solution is shorter than that of the PM solution which is a direct
consequence of the numerical diffusion introduced into the problem. Due to this dampening
of the peakon’s height from the finite volume method, we expect that as the peakons propa-
gate in time, the error between the central-upwind scheme and particle method grows. One
can reduce this error between the simulations by considering a finer computational grid for
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Figure 4.1: The single peakon solution obtained by both PM and FV at times t = 1, 10 with
Np = Nc = 600.
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Figure 4.2: The single peakon solution obtained by both PM and FV at times t = 1 with
Np = 600, Nc = 3000.
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the central-upwind scheme. In Figure 4.4, we consider such a refinement by taking Nc = 2000
while still having Np = 600. This shows that the particle method is able to capture compli-
cated nonlinear interactions among peakon solutions for (1.1) with considerably fewer points
compared to finite volume methods. We also see that as in the single peakon example, the
solution generated from the finite volume method will converge to the particle method.
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Figure 4.3: The velocity u for the CH equation obtained by FV and PM at various times with
Np = Nc = 600.
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Figure 4.4: The velocity u for the CH equation at t=9 with Np = 600, Nc = 2000.
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4.2 Arbitrary Smooth Initial Data

If we do not consider an initial condition in the form of a linear combination of peakon
solutions, then we are no longer guaranteed that the particle method will yield an exact
solution to (1.1).To this extent, we consider the following smooth initial data:

m(x, 0) =

{
3 cos2

(
1
4
x
)

: |x| ≤ π,

0 : |x| > π.
(4.2)

To simulate solutions using a particle method, we place Np = 500 equidistant particles in the
interval [−10, 30] at t = 0, with the initial weights given by pi(0) = ∆xpm(xi(0), 0) where
∆xp = 4

50
. We then evolve the locations and weights if the particles according to the system

of ODEs given by (2.2). As usual, we recover the velocity u(x, t) at some final time t by
computing its values on a uniform grid according to (2.4) (here we take the same ∆xp used
in the initial placement of the particles). To simulate solutions via a semi-discrete central-
upwind scheme, we use a uniform grid xj = j∆xc with ∆xc = ∆xp on the same interval
[−10, 30]. For clarity purposes, at further times (t > 4), we extend the computation domain
to [−10, 100] so that one may clearly see the “peakon train” that forms as we simulate the
solution for longer periods of time.

In Figure 4.5, we show that the PM solution generates a more accurate approximation
the solution of (1.1) due to low of numerical diffusion. We observe a “steepening behavior”
as was described in [3, 4] and the formations of peakons from arbitrarily smooth data. This
is due to the complete integrability of (1.1). In fact, we expect peakons to form after a finite
time for any smooth arbitrary initial data.

The accuracy of both the particle and finite volume method may be visualized by per-
forming a grid refinement study as is done in Figure 4.6. Similar to the peakon simulations in
4.1, we observe that the maximum height of the “peak” generated from the central-upwind
scheme becomes noticeably smaller as time progresses. Finally, in 4.7, we show that the
FV solution converges to the PM solution with a suitably refined grid. Here we consider
Nc = 3000 compared to the original Np = 500 particles placed in a uniform grid for the par-
ticle method. This shows once again that the particle method is able to resolve the solution
to (1.1) under a suitable class of smooth initial data, with less points than a a finite volume
method.

5 Conclusion

In this paper, we applied a particle method to the CH equation, (1.1) to show that the non-
linear interaction among peakon solutions for (1.1) is indeed an elastic collision. This was
accomplished by using the conservation of momentum and conservation of kinetic energy
associated with the particle system obtained from the particle method applied to the consid-
ered equations. We were able to visualize these results through a numerical implementation
of the method. Futhermore, we were able to explicitly showcase some of the advantages a
particle method holds over other numerical methods, such a semi-discrete central upwind
scheme, in simulating these solutions. For instance, the particle method allowed us to show
multiple solutions for the peakon-antipeakon interaction for the CH equation. We were also
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Figure 4.5: The velocity u for the CH equation obtained by FV and PM at various times with
Nc = Np = 500.
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Figure 4.7: The velocity u for the CH equation obtained by FV and PM at t = 10, Nc = 3000
and Np = 500.
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able to show that the particle method can capture the interaction and dynamics of the
solution with a lower resolution than a semi-discrete central upwind method.

To this extent, we have only provided an analytical and theoretical study of the dynamics
and interaction of peakon solutions for (1.1). In the future, numerical experiments will
performed on the analogous 2-D version of (1.1) more commonly referred to as the EPDiff
equation with arbitrary initial data. We will also analyze the interaction and dynamics of
peakon solutions generated from numerically solving the EPDiff equation.
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A Central Upwind Scheme for the CH Equation

In this section, we briefly describe a semi-discrete second-order central-upwind scheme used
for numerical solution of the CH equation (1.1). For additional details we refer the reader
to [22].

To implement the semi-discrete scheme for the CH equation, we first rewrite the equation
in the equivalent conservative form:

mt + f(m,u)x = 0, (A.1)

where the flux function f is defined as follows:

f(m,u) := um+
1

2
u2 − α2

2
u2
x, m = u− α2uxx. (A.2)

We divide the computational domain into the cells Cj = [xj− 1
2
, xj+ 1

2
] of size ∆xc with xj =

j∆xc, where ∆xc is a small spatial scale assumed, for simplicity, to be a constant. We then
denote the cell averages of m by

m(t) :=
1

∆xc

∫
Cj

m(x, t) dx, (A.3)

integrate (A.1) over cell Cj and divide both sides by ∆x to obtain

d

dt
mj(t) +

f(m,u)
∣∣∣
x
j+1

2

− f(m,u)
∣∣∣
x
j− 1

2

∆xc
= 0. (A.4)

The derivation of the scheme will be complete once the fluxes at the cell interfaces in (A.4)

are approximated numerically, that is, the numerical fluxes Hj± 1
2
(t) ≈ f(m,u)

∣∣∣
x
j± 1

2

are

constructed.
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We follow [22] and compute the numerical fluxes according to the central-upwind ap-
proach. Namely, for a particular choice of time, say t = tn, we consider (A.4), coupled with
a piecewise polynomial initial condition

m̃(x, tn) = Pj(x), x ∈ Cj, (A.5)

obtained from the cell averages available at t = tn. It should be observed that the order of
accuracy of the method will depend on the order of accuracy of the piecewise polynomial
reconstruction in (A.5). For instance, for the second-order scheme, one may use the following
piecewise linear polynomial reconstruction:

Pj(x, t) = mj(t) + (mx)j(x− xj), x ∈ Cj. (A.6)

For the resulting scheme to be non-oscillatory, one must use a nonlinear limiter when com-
puting the numerical derivatives (mx)j in (A.6). For instance, one may use

(mx)j = minmod

(
θ
mj −mj−1

∆xc
,
mj+1 −mj−1

2∆xc
, θ
mj+1 −mj

∆xc

)
, (A.7)

where 1 ≤ θ ≤ 2 and

minmod(z1, z2, . . .) :=


minj {zj} : zj > 0 ∀j,
maxj {zj} : zj < 0 ∀j.
0 : otherwise.

(A.8)

In our numerical simulations, we used θ = 1.5.
Given a piecewise polynomial reconstruction (A.6), we compute the point values go the

solution m at each cell interface, i.e,

m+
j+1/2 := Pj+1(xj+1/2) and m−j+1/2 := Pj(xj+1/2),

where xj±1/2 = xj ± ∆xc

2
.

It should be observed that there may exist discontinuities at the end points for each
value of j in our linear piecewise polynomial reconstruction. These possible discontinuities
propagate with right- and left sided local speeds, which may be estimated as follows

a+
j+1/2 = max

{
u−j+1/2, u

+
j+1/2, 0

}
,

a−j+1/2 = min
{
u−j+1/2, u

+
j+1/2, 0

}
,

where u±j+1/2 are the values of the velocities at cell interfaces. We recall that the momentum

and velocity in the C-H equation (1.1) are related through the modified Helmholtz equation,
which we solve by implementing a Fast Fourier Transform at each time step in order to
recover the required values of u.

According to [22], the second-order semi-discrete central-upwind scheme is then given as

d

dt
mj(t) = −

Hj+1/2(t)−Hj−1/2(t)

∆xc
, (A.9)
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where the numerical fluxes, Hj+1/2, are

Hj+1/2(t) =
a+
j+1/2f

(
m−j+1/2

)
− a−j+1/2f

(
m+
j+1/2

)
a+
j+1/2 − a

−
j+1/2

+
a+
j+1/2a

−
j+1/2

a+
j+1/2 − a

−
j+1/2

[
m+
j+1/2 −m

−
j+1/2

]
.

(A.10)
We remark that the resulting scheme (A.9), (A.10) is a system of time dependent ODEs

which should be solved using a high-order (at least second order accuracy) method. For our
numerical experiments, we used a third-order SSP (strong stability preserving) Runge-Kutta
method (see e.g. [19]) with adaptive time step ∆t < ∆xc

2amax
, where

amax := max
j

{
a+
j+1/2,−a

−
j+1/2

}
.
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