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1. Introduction

Passive rod-like and ellipsoidal particle suspensions in fluid are common in nature, such as liquid
crystal molecules moving in a solvent. The dilute suspensions of passive rod-like particles can be ef-
fectively modeled by a coupled microscopic Fokker-Planck equation and macroscopic (Navier-)Stokes
equation, known as the Doi model (see Doi [12] and Doi and Edwards [13]). We refer to Hezel, Otto
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Fig. 1. Pusher. Fig. 2. Flow field generated by pusher.

and Tzavaras [15,25,16] for recent in-depth studies on the Doi model for suspensions of passive rod-
like particles with and without considering the effects of gravity.

While the active rod-like and ellipsoidal particle suspensions are also very common in nature, such
as in micro-organisms like bacteria locomoting, they also appear in technological applications such as
the design of artificial swimmers. In 2008, Saintillan and Shelley [29,30] extended the Doi model for
active rod-like and ellipsoidal particle suspensions. For completeness, we sketch below the derivation
in Saintillan and Shelley [29,30] (we also follow some derivations in Doi and Edwards [13], Kim and
Karrila [22] and Hezel, Otto and Tzavaras [16]).

1.1. Derivation of the model

Let £2 c RY be a macroscopic physical bounded domain with boundary 32 of class C! and
S%-1 ¢ R? be the unit sphere. A system of identical active rod-like and ellipsoidal particles, described
by {(x;, n,)} L, Where x; € £2 is the position and n; € S%-1 is the orientation, suspend in an incom-
pressible ﬂu1d field with macroscopic velocity u(x,t).

An active particle, labeled as (x;, n;), moves along with the velocity u(x;,t), and with an active
motion of self-propulsion in the direction of its orientation n;, where it experiences the least drag, at
a constant speed Ug (known as self-propelled speed or terminal speed). This dynamics is described
by

d .
%:u(xi,t)+Uon,~. (11)

An active particle acts as a force dipole as we will explain below. The particle exerts a force of self-
propulsion, denoted by F, on the fluid. In the assumption of neglecting inertia, the particle also exerts
an equal and opposite force against drag on the fluid, which equals —F. According to the mechanism
for swimming, a particle can be classified into either a pusher or a puller. A particle that swims by
using its tail, is called a pusher. The tail of a pusher exerts a force F on the fluid in the opposite
direction of swimming. Since at the same time the tail propels the head forward, the head also exerts
a force —F on the fluid in the direction of swimming. Therefore, the pusher acts as an outward force
dipole (see Fig. 1), and hence generates local flow field as shown in Fig. 2. A particle that swims by
using its arms, is called a puller. In contrast with a pusher, a puller exerts an inward force dipole (see
Fig. 3) on the fluid and also generates flow field (see Fig. 4) in an opposite direction of the flow field
generated by a pusher.

A pusher (x;, n;) force dipole (see Fig. 5) can be expressed as

F = |F|n; [5x,~+§ni ®) =8y _tn, ®] (1.2)
where ¢ is the length of the particle. This force dipole can be uniquely decomposed by F =
Vx-S + Vx¢ in 2, where S is a symmetric traceless tensor with decay at infinity which is known
as the stresslet, and ¢ is a potential with decay at infinity. Let u be a fundamental solution to

Vxp = uAxu+F, Vx-u=0.

Then S = — (Vi + (Vxtr) ).
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Fig. 5. Pusher outward force dipole. Fig. 6. Puller inward force dipole.

Using multipole approximation (see pp. 28-30 [22]), one has that the stresslet exerted by a pusher
force dipole on fluid is approximated by

1
S%4H4m®m—#0%@) (1.3)

Here we reformulate the multipole approximation in a weak form. Indeed, for any test function v(x)
with Vx - v =0, we have

L l
/F -vdx=|F|n; - [v(x,- + fni) — v(xi — fn,'>]
2 2
Q

1
~ |F|n; - Vxv(x;)n; = |F|€<n,- Qn; — Eld> : Vxv(x;). (1.4)

It follows from integration-by-parts that

/F-vdx:f(Vx-S)‘vdx:—/S:vadx. (1.5)
2 Q

2

We deduce from (1.4) and (1.5) that (1.3) holds.
Similarly, the stresslet exerted by puller force dipole on fluid (see Fig. 6) is approximated by

1
smﬂ4m®m—TQ%@y (1.6)

Combining (1.3) and (1.6) together, we have that the stresslet exerted by the force dipole can be
approximated by

S ~ oo (dn; @ n; — 1d)dy, (X) (1.7)

where op := £|F|¢/d. For a pusher, o¢ < 0; whereas, for a puller, og > 0.
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Fig. 9. Particle’s alignment in straining flow. Fig. 10. Particle’s rotation in shear flow.

The local linear flow Vxu is composed of two parts, the symmetric part E = %(qu + (Vxu) 1),
called straining flow (see Fig. 7) and the anti-symmetric part W = %(qu — (Vxu) 1), called shear
flow (see Fig. 8).

Under the straining flow, the particle aligns along the local extensional axis (see Fig. 9) and in
the shear flow, the particle rotates (see Fig. 10) along the vorticity @ = V x u. Combining the two
effects, the change of particle’s direction arising from the local linear flow is described by the classical
Jeffery’s equation (p. 124, formula (5.33) [22]; also see [19])

dn;

S =d=m@n)(yE®, 0+ W@, 0)m; (18)
where Id € R4%4 denotes the unit matrix; (Id — n; ® m)(YE(x;,t) + W(x;, t))n; is the projection of
(Y E(x;,t) + W (x;,t))n; on the tangential space at n;. For the general case, Eq. (1.8) is also known as
Faxen’s law [22]. Eq. (1.8) can be recast as

M b+ Lo xn (19)
- = — — X .
dt )

where ¢ = —y%n - En is a potential, which drives the particle from high potential to low potential

and obtains the minimum at the eigenvector direction of the largest eigenvalue of E. This eigenvector
direction is known as the local extensional axis.

Here y € [-1,1] is a shape parameter. For an ellipsoidal particle with aspect ratio A, y =
(A2 —1)/(A2+1).If 0 <y <1 (ie. A> 1), the particle is prolate spheroidal; in the limit y — 1,
the prolate ellipsoid becomes a slender rod-like particle; if 0 > y > —1 (i.e. A < 1), the particle is
oblate spheroidal; in the limit y — —1, the oblate spheroidal particle becomes a thin disk.

We next consider the effects of the flow field generated by the force dipole on the background
flow. Since the particle most of time is aligned with the straining flow, local flow field generated by
pusher force dipole is basically in the same direction as the strain flow. Consequently, the pusher
force dipole increases the local background staining flow (see Fig. 11), and hence reduces the effec-
tive viscosity and enhances flow mixing, known as bio-mixing [34,21,29], which causes some kind of
instability. Saintillan and Shelley [29] refer to this phenomenon as instability for pusher, by observing
that low-wave number shear stress fluctuations will amplify exponentially in suspensions of pusher
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Fig. 11. Pusher force dipole increases straining flow. Fig. 12. Puller force dipole decreases straining flow.

(see also [31]). This instability can be explained by the fact that there is no entropy-dissipation rela-
tion for the pusher system. On the contrary, the puller force dipole decreases the local straining flow
(see Fig. 12) and hence slows down the background flow which tends to be stable.

Taking account of the Brownian motions in (1.1) and (1.8), the particles satisfy the following system
of coupled stochastic differential equations (which must be understood in the Stratonovich sense), for
1<i<N:

dx; = u(x;, t)dt + Uon; dt + ~/2D dB', (1.10)
dn; = (Id — n; @ ny) (Y E(%;, t) + W (i, ))m; dt + /2D, (Id — n; @ ;) o dB', (111)

where B! is the translational Brownian motion which stands for the independent standard Brownian
motions on R and dB! = (Id —n; ®n;) odB' is the rotational Brownian motion on S~! (see Hsu [18]
for more details on how to define Brownian motion on a Riemannian manifold).

The translational (center-of-mass) diffusion coefficient D and rotational coefficient D, in (1.10)
and (1.11) are related to each other by the classic Taylor dispersion relation D = Ué/GDr. This formula
was first derived by Brenner [5,6] and was referred to as the generalized Taylor dispersion theory.
There are many careful studies of this formula in experiments, simulations and theoretical derivations
in literature. We refer to Saintillan and Shelley [28], Hohenegger and Shelley [17], Lauga [23] for
recent discussions.

From the interacting particle dynamics system (1.10) and (1.11), we derive a mean-field limit as
the number of particles N tends to infinity. We define the empirical distribution fN by

N
1
fram 0 =53 Sen @ m),
i=1

where the Dirac distribution is defined by (8(xy.ng), ¥) o xsi-1 = ¢ (X0, ng) for any smooth function
with compact support ¢ € Cg°(§2 x S-1). For convenience, the total mass of the integration measure
on the sphere S%~! is supposed to be 1, so we have (fV, 1) o ysi-1 = 1. If there is no noise (when
D =D, =0), it is easy to see that fN satisfies the following partial differential equation (in the sense
of distributions)

N+ Vx- (w+Uom fN) = —Vn- (Ad —n@m)(yE+ W)nf"),

where Vy- denotes the tangential divergence operator on S¢~!. When noise is added, the empiri-
cal distribution fN tends to a probability density function f satisfying the following Smoluchowski
equation

O f+Vx- (u+Uon)f) =DAxf +DrAnf — V- (Id—n@n)(yE+ W)nf),  (112)

where A, denotes the Laplace-Beltrami operator on S%~1,

Please cite this article in press as: X. Chen, J.-G. Liu, Global weak entropy solution to Doi-Saintillan-Shelley model for active
and passive rod-like and ellipsoidal particle suspensions, J. Differential Equations (2013),
http://dx.doi.org/10.1016/j.jde.2013.01.005




YJDEQ:7066

6 X. Chen, J.-G. Liu / J. Differential Equations eee (eeee) eee—ecee

We note that the interaction operator on the right side of (1.12) can be recast as

DrAnf —Va-(Id—n®n)(yE+ W)nf)=Vy- <Dran + f(vn¢> - %w x n)) (113)

If fw x n is absent, then (1.13) is called the Fokker-Planck operator and can be rewritten as

f e?/Dr
Vn - (DY, Vn®)=D;Vp- [ MVp=), Mi=—"——.
n ( r llf+f l‘l¢) rvn ( l'lM> de7]e¢/Drdn

The major difficulty in the analysis of the Doi model is the presence of @ x n.
Integrating (1.12) over £2 x S9!, we have that

%/fdndx: / (w+an)f —DVxf)-vdnds,

2 x8d-1 902 xSd-1

where v is the unit outer normal of §2. To guarantee the conservation of fgxgdfl fdndx, a natural
condition is the no-flux boundary condition

(u+an)f —DVxf -v|ge =0. (1.14)

Based on Batchelor’s slender-body theory [4,26], also known as Kirkwood theory (see [13]), in
addition to the usual viscous stress, the stress exerted by the swimming of active particles is given by

0 =0y (dn®@n—1d)fdn. (115)
§d-1

We recall that the sign of oy depends on the swimming mechanism. For the pusher case, og <0,
whereas for the case, og > 0.

In fact, it follows from (1.7) and the definition of fN that the average of the stresslets for all
particles

N
1
oN ~ o0y X;(dni ®@n; — Id)sx, (%)
1=

=00= Y / (dn ® n — 1d)3y, (n)5x, (x) dn

N
1
=0 / (dnen—I1d) (N Z;(S(nhxi)(n, x)) dn
sd-1 1=

=09 | (dn®n—1d)fNdn. (1.16)
§d—1
Then we get (1.15) by taking the mean-field limit as N — oo in (1.16).

The velocity u of fluid is governed by the following incompressible Navier-Stokes equation with
no slip boundary condition
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p5(0cu + (U - Vi)u) — (LAxtt + Vyp = Vy - 0, (117)
Vx-u=0, (1.18)
ulye =0, (119)

where py is the density of the fluid and is assumed to be constant, p is the pressure and w denotes
the dynamic viscosity coefficient of fluid.

In summary, combining (1.12)-(1.19) and using non-dimensionalization, we can deduce the follow-
ing model:

O f+Vx-(w+oan)f)—DAxf=DrAnf — Vo (Id—n@n)(yE+W)nf), (1.20)

o= f(dn@n—ld)fdn, (1.21)
§d-1
Re(dcut + (1 - Vx)u) — Axtt + Vxp = Vx - 0, (1.22)
Vx-u=0, (1.23)
with boundary conditions
(@nf — DVxf)-v]pe =0, (1.24)
ulye =0, (1.25)

where E = 3(Vxu + (Vi) ") and W = 3(Vxu — (V) "), (t,2,m) € [0, T] x £2 x S~ with T > 0.
When o > 0, the model is called active. Moreover, if we choose o =0 in (1.20), the model is the
passive counterpart.

The coefficients Re > 0, y € [0, 1] and B € R are constants. If 8 < 0, the model is called a pusher,
whereas if 8 > 0, it is called a puller. The case for g < 0, i.e. the pusher case, is particularly interesting
in its unstable dynamics (see Saintillan and Shelley [30]). Note that if ¥ € [—1, 0], then the roles of
pusher and puller are switched. This can be seen in the entropy estimates below.

Ifa =0, 8>0and y =1, the model is reduced to the standard Doi model for passive rod-like par-
ticle suspensions. Hence our results also include this case. If Re > 0, we call (1.20)—(1.23) the Navier-
Stokes Doi-Saintillan-Shelley model and otherwise (i.e. Re = 0) the Stokes Doi-Saintillan-Shelley
model. Likewise, we call the Doi model involving a (Navier-)Stokes equation the (Navier-)Stokes Doi
model.

In this paper, we will investigate the Navier-Stokes Doi-Saintillan-Shelley model with boundary
conditions (1.24)—(1.25) and initial condition

U|i—o = Ui, in 2, (1.26)
flizo= fin in2 xS (127)

and the Stokes Doi-Saintillan-Shelley model with the same boundary conditions and initial condi-
tion (1.27).

1.2. Basic entropy and energy estimates

We now show a formal entropy estimate below. The positivity of f follows directly from (1.20).
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Multiplying (1.20) by In f and integrating on £2 x S, one could deduce that

% / (fAnf —1)+1)dndx+4D / |Vxy/ f1? dndx + 4D, / |Vay/f1? dndx
2x8d-1 2x84-1 2x84-1

=« / n-Vyfdndx + / (dd—n®n)(YE + W)n) - Vq f dndx. (1.28)
2x8d-1 2x84-1

The last term in (1.28) is a coupling term. We can gain one tangential gradient Vy on S¢-1 by using
integration-by-parts as stated in the following lemma. This estimate will be used in entropy estimate
(see also Section 3.2.1), global L? solution (Section 5.1) and uniqueness (Section 5.2).

Lemma 1.1. Let f € W-1(S9~1) and X € R9*4 be a constant matrix with tr(X) = 0. Then
/ (dd—n@m)Xn) - Vpfdn= / (dn®@n—1d)f: Xdn.
§d-1 gd—-1
Particularly, if X = —X T, then
/ (dd —n@m)Xn) - Vy fdn=0.
§d—-1
Here and in the following, X : Y denotes trace (Y X) for X, Y € R?*4, See Section 2 for the proof

of Lemma 1.1.
Using Lemma 1.1, we have from (1.28) that

d

0 / (fanf —1)+1)dndx+4D / |Vxy/f|?>dndx + 4D, / |Vay/f1? dndx
2 xSd-1 2 xSd-1 2 xSd—1

=« / n-Vyfdndx+y / (dn®@n—1d)f : Vxudndx. (1.29)
2xSd-1 2xSd-1

Multiplying (1.22) by u and integrating on $2, we have that

Re d
;E/|u|2dx+/|vxu|2dx=—ﬂ f (@dn®@n—1d)f : Vxudndx. (1.30)
2 2

2x8d-1

If By > 0, by canceling the coupling terms in (1.29) and (1.30), we have that

d Re
E/( f(f(lnf—1)+1)dn+’/Z—ﬂ|u|2>ax+4D f |Vxy/ f1? dndx
2  sd-1 2xSd-1
44D, / |Vm/f|2dndx+%/|vxu|2dx
2x8d-1 2
=« / n- Vyxfdndx. (1.31)

2 x8d-1
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Furthermore, if in addition o =0 (i.e. « =0, 8y > 0, including the Doi model), one has

% (/(f(lnf—1)+l)dn+7/2—;6|u|2)dx+4D f |Vxy/ f1? dndx

2 gd—1 2 xSd—1

+4D, / |Vm/f|2dndx+%/|vxu|2dxzo. (132)
2xSd-1 Q

Then the total energy

Eo(u, f) :=/< /(f(lnf—l)—i—l)dn—i— ’;—Ze|u|2>ax

o Sd—l

is dissipated. Moreover, defining the concentration density p := de’l fdn and taking the integral
over S%~!, when o = 0 we find that (1.20) becomes the convection diffusion equation

orp+u-Vxp —DAxp =0, (1.33)

and the maximum principle holds, which makes the passive model easy to be tackled in the com-
pactness argument.

However, for the active case, i.e. o # 0, especially with By < 0 (for pushers 8 <0, y > 0), there
exists no maximum principle for p and the total energy may increase due to the input of energy from
the pushers. This gives some difficulties in analysis. The following is our strategies to handle these
difficulties.

In fact, it follows from (1.29) and (1.30) that

4 / (fdnf —1)+1)dndx+4D / \Vxy/f1? dndx

dt
2x84-1 2x8d-1
2 Re d 2 2
+4D, |V f] dndx+ =~ [ uPdx+ [ |Vxul® dx
2xSd-1 2 2
=« / n-Vxfdndx+ (y — B) / (dn®@n—1d)f: Vxudndx. (1.34)
2x8d-1 2x8d-1

Applying Cauchy-Schwartz inequality, we can deduce that

% / (fanf—1)+1)dndx+2D / |Vxy/ f? dndx + 4D, / |Vay/fI? dndx

std—l _ngd—l _ngd—l
Re d 2 1 2
—— [ |u|*dx+ = Vxu|“ dx
+2dt/|| +2/|x|
Q Q
2
<C(IPlg, +1)- (135)
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Now, the key idea is to estimate ||o|l;2(g). Indeed, integrating (1.20) over S%-1, we deduce that
orp+u-Vxp+ Vy- ( / (omf)dn—Dpr>:0. (1.36)
sd-1

The no-flux boundary condition (1.24) implies

( f (omf)dn—DVx,o> Ve =0. (1.37)
d—1

S

Multiplying (1.36) by p and integrating on £2, we have

d1
E§/|p|2dx+D/|pr|2dx=a/< / nfdn) - Vxp dX. (1.38)
2 2 2  sd-1
One has from Cauchy-Schwartz inequality that
d1 2dx+D | |Vxp|Pdx < C|p|? (1.39)
gt | 1PI7dx+D [ 1Vxpl"dx < ClIPlIL o) :
Q Q
and hence from Gronwall’s inequality that
ol 20y < Ce“. (1.40)

Therefore (1.35) yields

Re
E1(f,u)(t) := ( (f(lnf—1)+1)dn+— |u|2>dx

sd-1
< Cet + E1(f, u)(0). (1.41)
The self-propelled motion and the pusher continuously pump energy into the system and results in
the increasing of total energy E;(f,u) in (1.41). This increasing of energy is consistent with a linear
stability analysis by Saintillan and Shelley [29] shown as before.
For the Stokes Doi-Saintillan-Shelley model (Re = 0), we also have L%-weak solutions in two and

three dimensions and uniqueness in two dimension.
In fact, (1.30) with Re =0 implies ||Vxut||;2(o) < Cllpoll;2(s), and hence from (1.40) that

IVxttll oo, 1;12(2y) < C- (1.42)

Inner producting (1.20) with f and using Lemma 1.1, we deduce that

1d
Ea / |f|2dndx+D / |fo|2dndx+ D, / |an|2dndx

2x8d-1 2x8d-1 2x8d-1
=« / nf.fodndx—}—% / (dn@n —1d) f? : Vxudndx. (1.43)
2x84-1 2x8d-1
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By (1.42) and Holder inequality, this yields

1d D
Ea / |f|2dndx+5 / |vxf|2dndX+Dr / |an|2dndx

2x8d-1 2x8d-1 2x8d-1
<C [ UPdnde IR g e, (144)
2x8d-1

Applying Gagliardo-Nirenberg inequality and Young inequality (see (5.8) and (5.9)), we have from
(1.44) that

Ea / |f|2dndx+z / |fo|2dndx—|—Dr / |an|2dndx
2x8d-1 2x8d-1 2x8§d-1

<C / |f|? dndx. (1.45)

2xsd-1

Gronwall's inequality implies the formal L2-estimate for Stokes Doi-Saintillan-Shelley model.

We follow the usual procedure in proving the existence of a global weak entropy solution. First,
we use a semi-implicit scheme to construct a sequence of approximate solutions. In this construction,
we apply the Leray-Schauder fixed-point theorem and cut-off techniques to prove the existence of a
solution to the discrete problem. Here we are motivated by Barrett and Siili’s [2,3] idea with cut-off
in the study of FENE-type and Hookean-type bead-spring chains model. Then, we use compactness to
show that these constructed solutions converge to a weak solution.

In the previous literature about the analysis of the Doi model for passive particle suspensions, the
energy is dissipated; the density p satisfies a transport equation (1.33) with and without diffusion
and hence the maximum principle holds. These are common foundations of their proofs. However,
their methods cannot be adapted to the analysis of active suspensions which is the main objective
of this paper. We shall also point out that there exist no discussions on the Doi model with no-flux
conditions in the literature.

More precisely, as for the Stokes Doi model, with a novel estimate for the Smoluchowski equation,
Otto and Tzavaras [25] obtained the stationary solution and showed that discontinuities in the velocity
gradient cannot occur in finite time. For the case without the center-of-mass diffusion (i.e. Axf),
Constantin [8] established the global smooth solution in T3.

As for the Navier-Stokes Doi model without the center-of-mass diffusion, a series of papers [9-11]
by Constantin and his coauthors proved the global smooth solutions of coupled Navier-Stokes and
Fokker-Planck equations, which covered the Doi case, in R? and T2. Sun and Zhang [32] investigated
the two-dimensional case in a bounded domain. Using the propagation of the compactness, Lions and
Masmoudi [24] established the global weak solution for this Doi model in T¢ (d = 2, 3). Recently,
based on a quasi-compressible approximation of the pressure, Bae and Trivisa [1] investigated the
three-dimensional case with Dirichlet boundary condition and obtained the existence of a global weak
solution.

The paper is organized as follows. Section 2 collects some preliminary notions, definitions and
lemmas which will be pertinent to our study. In Section 3, we establish the global weak entropy
solution for the two- and three-dimensional Navier-Stokes Doi-Saintillan-Shelley models, where a
semi-implicit scheme is used to construct the approximate problem and compactness was shown.
Section 4 provides similar results for Stokes Doi-Saintillan-Shelley model. Then in Section 5, we prove
the existence of a global L%(£2 x S%~1) weak solution to the Stokes Doi-Saintillan-Shelley model with
d =2, 3 and its uniqueness with d = 2.

For conciseness in presentation, we set D = D, = 1; and Re = 1 in the Navier-Stokes Doi-
Saintillan-Shelley model in the rest of this paper.
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2. Preliminaries

The following notations will be used in this paper.

LP(2)=LP(2,RY), H™@)=H™(2,RY), CF@) =CcL(2,RY),
¥ ={ueCP(2): Vx-u=0}, H={uel?(2): Vx-u=0, u-v|yp =0},
V={ueH\): Vx-u=0}, V"=V NH™(),

where ¥ is dense in H, V and V™; A< B (or A <><> B) denotes A is continuously (or compactly)

embedded in B; f; — (— or —*\) f in A denotes a sequence {f;};~0 C A converges strongly (weakly
or weakly star) to f in A as t — 0; C(a,b,...) denotes a constant only dependent on a,b,...;
C denotes a constant independent of L and N.

To prove Lemma 1.1, we need the following basic result.

Lemma 2.1. Let a : S~! — RY be a vector-valued function and f, g be scalar-valued functions on S%~1. Then

/(Vn.a)fdnz—/a~andn+(d—1)/(a-n)fdn, (2.1)
Sd—l Sd—l Sd—l

[ agrpan== [ Vug:Vasan. (22)
Sd—l Sd—l

Proof. Otto and Tzavaras [25, Appendix II], have proved formulas (2.1) and (2.2) for d = 3 with spher-
ical coordinates. For d =2, the proof is similar with coordinate transformation in R%, 0O

Proof of Lemma 1.1. Since C°°(S9~1) is dense in W-1(S¢1), we assume f € C*®(S¢~1). By noting
that ((Id —n®mn)Xn) L n, we deduce from (2.1) of Lemma 2.1 that

/((Id—n@n)Xn)-andn:— / (Va- (0d —n®@n)Xn)) f dn.

gd-1 gd-1

It follows from tr(X) =0 that
—Vn - ((Id—n®n)Xn) =dn-Xn) and ([dn@n—-Id)f:X=dn-Xn)f.
This finishes the proof of Lemma 1.1. O
Denote
F(s):=s(Ins—1)+1, se][0,00)

and define some cut-off functions which will be used in the approximate problem, entropy estimate
and L? estimate.
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Definition 2.2. Let L > 1. Define

0, ifs<0,
Qls):={s ifo<s<lL,
L, ifs>1L;
FL(s):: s§1n§—1)+1, 0<s<IL,
S 4s(nl—1)+1, s>1L;
G(s) = 7. ssb
Liis—1), s>L.

With elementary computation, one could verify the following properties (also see Barrett and
Siili [2,3] for some of them).

Lemma 2.3. Let L > 1. Then

Qlec®™®); Grec™'®);  rlec®'(RT)Nc([0,00)), (2.3)
A =eks), Gle< % Vs € [0, 00), (2.4)
FEs)=F (s), Vse[0,00), (2.5)

(FY'© = (k) =57, VseR™, (2.6)
r’'s+8< % V8 € (0,1), Vs € [0, 00), (2.7)
¥se[0,00), lim Q'(s) =5, (2.8)

FrQ's)+8) <o+ g +F(s+38), V8€(0,1), Vse[0,00). (2.9)

The global weak solutions with finite entropy for Navier-Stokes Doi-Saintillan-Shelley model and
Stokes Doi-Saintillan-Shelley model are defined as follows.

Definition 2.4. Let d = 2, 3. Suppose ui; € H and fi; € L2(£2; L' (S?~1)) such that

fin>0 ae.in 2 xS, / F (fin) dndx < occ. (2.10)
2 x8d-1
A pair of measurable functions (u, f) is called a global weak entropy solution of Navier-Stokes Doi-

Saintillan-Shelley model with boundary conditions (1.24)-(1.25) and initial conditions (1.26)-(1.27)
if

uel®0,T; H)NL*©0,T;V), uecH'(0,T;(Vv?)), (211)

f>0 aein[0,T]x 2 xS, / F(f(H)dndx <oo ae.in[0,T], (212)
2 x8e-1

fer=(0,T; 2(2: L' (s7")),  Vfel?(0.T;H'(2 xs7)), (213)

feH'(0,T; (H4(22 x s471))); (2.14)
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and for any v € C3°([0, T) x £2) with Vx-v =0,

T T T
—//u~8tvdxdt+//vxu:vadxdt+//(u~vx)u-vdxdt
0 2 0 2 0 2

T
= —ﬂ/ / (dn®@n—1Id)f: Vxvdndxdt +/u,-n(x) -v(0, x) dx; (2.15)

0 @x§d-1 2
for any ¢ € C°°([0, T] x 2 x S9~1) with ¢(T) =0,

T T

T
—/ / fatqodndxdt—i—/ / (u~fo)(pdndxdt—/ / (anf) - Vxpdndxdt

0 @2xs§d-1 0 2xsd-1 0 @2x§d-1

T
+/ / (Vxf - Vx@ + Vnf - Vo) dndxdt
0 QxSd-1

T
:/ / (dd—n®n)(YE + W)nf) - Vo dndxdt
0 @xsd-1
+ / fin(x,m)(0, x, n) dndx. (2.16)
2 x8d-1
Definition 2.5. Let d = 2,3. Suppose fi, € L2(2; L'(S%"1)) satisfying (2.10). A pair of measurable
functions (u, f) is called a global weak entropy solution of Stokes Doi-Saintillan-Shelley model

with boundary conditions (1.24)-(1.25) and initial conditions (1.27) if u € L°°(0,T; V), f satisfies
(212)-(2.14) and for any v € L?(0, T; V),

T T

//qu:vadxdtz—,B/ / (dn®@n—1d)f : Vxvdndxdt; (217)
2

0 0 2xsd-1

for any ¢ € C*°([0, T] x 2 x S9-1y with ©(T) =0, (2.16) holds.
3. Global weak entropy solutions to Navier-Stokes Doi-Saintillan-Shelley model
In this section, we prove the following theorem.

Theorem 3.1. Let d = 2, 3. Suppose i, € H and fip, € L2(2; L1 (S%~1)) such that fi, > 0 a.e. on £2 x S,
frzxsd—l F (fin)dndx < oo. Then for any coefficients y € [—-1,1], 8 € R and o € [0, 00), there exists a
global weak entropy solution (u, f) to Navier-Stokes Doi-Saintillan-Shelley model with boundary condi-
tions (1.24)-(1.25) and initial conditions (1.26)-(1.27) which satisfies the following energy inequalities for
ae.tel0,T],

t
)| 0, +2 / F(f©)dndx + f |9t g ds
2xSd—1 0
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t

+ 4/(” Vxv () HiZ(:szH) + ”VHV O] ”iz(rzxsdfl)) ds
0

< ||um||i2(9)+2 / F(fin)dndx+C(a,/3, VﬂT)("fiﬂ"%Z(Q;L1(Sd—1))+1)' (31)
2xsi-1

Moreover, if =0, By > 0 (including the Navier-Stokes Doi model), then

t
%Hu(t)”iz(m—i-2 / F(f()dndx + %/ \vxu(s)yLz(Q)
0

2 xSd-1

t
+4/(||VXV Q) “iz((zxsd—l) + [ Vav/f(s) ”iZ((zxsd—l))dS
0

<%||um||§2(m+2 / I (fin) dndx. (32)
2 x8d-1

3.1. Approximate problem

In this subsection, we will use a semi-implicit time scheme to construct the approximate problem
with cut-off from the top by L and below by 0 and then apply Leray-Schauder Fixed-point theorem
to solve it. In the proof, the cut-off is the key to proving some boundedness of the linear functional
defined by the discrete Fokker-Planck equation and the boundedness for fixed-points. Using this ef-
fective cut-off, we obtain the V x H! weak solution for approximate problem, and then by applying
the standard method for elliptic equation we get the positivity.

let Ne N and set t =T/N, k=0,1,...,N. We can divide the time interval (0,T] into
U,’:’ﬂ((k — 1)7,kt]. For any k=1,2,..., N, given (u,ﬁ_l, ka—1)' the approximate problem with cut-
off reads

L L
u —u
f%-vdx+/qu/€:Vdex+f("1€—1 - Va)uy - vdx

2 2 2
=-8 / (dn®n—1d)f}: Vxvdndx, YveV; (3.3)
2x8d-1
/ i~ f" el dndx+ / (uf_, - Vxfl)pdndx
2xse-1 QxSd-1

- / (anQ*(f})) - Vxpdndx + / (Vxft - Vx@ + Y ff - Vng) dndx
2x8e-1 2xse-1

= / ((d—n®n)(yEL + WhHn)Q (fl) - Vapdndx, Ve e H'(2 xS, (3.4)
2x8d-1

where EL = J(Vxul + (Vxub) "), WE = 3 (Viub — (Vxub)™).
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Remark 3.2. We note that (3.4) implies a weak formulation of the discrete (1.36), saying for any
Y eH' (),

L L
pf - pL
/%Iﬁdxntf(ui_l .pr,f)wdx-{—/vxpt.vxwdx

2 2

/( /omQ fk)dﬂ>~vx1/fdx, (3.5)

2  sd-1

where ,o,f = -/Sd’l ka dn, 0 <k < N. This plays a crucial role in the proof of the uniform estimate (see
Section 3.2.1) and strong convergence for ka (see Section 3.3.1).

Define

Z:={fel?(2xS""): f>0ae.on2 xS} (3.6)

Proposition 3.3. Let (uL_, fl |) € V x Z. Then there exists (uL, fl) e V x (Z n H'(2 x S*~1)) which
solves (3.3)-(3.4).

Proof. Step 1. Let f € L2(£2 x S9~1). We claim that there exists a unique element u € V such that

a(u,v)=A(f)(v), VveV, (3.7)

where

a(u,v):/u-vdx+rfvxu:vadx—i—t/(u,ﬁ_] Vx)u-vdx, Vu,veV;
2 2 2

A(f)(v):/u,’;q-vdx—tﬂ f (dn@n—1d)f: Vyvdndx, VYveV.

2 2x8d-1

In fact, noting that H'(£2) < L5(£2) and Vx - uj_, =0, we have

< ug_, ||L4(_Q) IVxutll 22y 1VIpa2) < Clltll gy VI H1 2y

’/(u,i1 - Vy)u - vdx
2

and [, (u} ;- Vy)u-udx=0. Then thanks to

w [ e
L) gd-1

we have that a(-,-) is a bounded, coercive bilinear functional on V x V and A(f) € V'. Hence by the
Lax-Milgram theorem, we finish the proof of Step 1.

Step 2. We prove that for such f € L2(£2 x S%=1) and solution u € V in (3.7), there exists a unique
element f € H1(£2 x S9=1) such that

/ (dn®@n—1d)fdn

gd—1

22) < C”f“LZ(QXSdfl),
L=(
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b(f.9)=B(f.u) (@), VeeH'(2xs"), (3.8)

where

b(f,p)= / fodndx+1t f (Vxf - Vx@ + Vnf - Vo) dndx
2 xSd-1 2xSd-1

+T f (uf_,-Vxf)pdndx, Vf,@eH'(2xs"1);
2x8d-1
B(f,u)(p) = / flpdndx+7 / (anQ!(f)) - Vxpdndx
2x8d-1 2x8S4-1
+1 / (Id—n@n)(yE+W)n)QL(f) Vapdndx, VeeH'(2 xs').

2x8d-1

Indeed, noting H'(£2 x $9=1) < [3(£2 x S%~1) and Vx -u}_, =0, we have

/ (up_, - Vxf)pdndx

2xsd-1

L
< Jlwesr s o) 1 Vx f 2@ xse-1) 19113 (2 xs-1)

< C“f”Hl(Qde*l)”(p”Hl(Qde*])
and frzxsd—l (ulﬁ_l - Vx f)fdndx = 0. Therefore b(-,-) is a bounded and coercive bilinear functional on
H'(£2 x S, 1t follows from [QL(s)| <L (Vs € R) that B(f,u) € (H'($2 x S~1))". We thus finish
the proof of Step 2 by Lax-Milgram theorem. _

Step 3. Define the mapping @ : L2(£2 x S$9™1) — L2(2 xS by & (f) = f € H'(£2 x S~ 1) via the
procedure (3.7) and (3.8). By the Leray-Schauder fixed-point theorem (see [14, p. 280, Theorem 11.3]),
we obtain a solution f to @(f) = f, and hence a solution (u, f) € V x H' (£ xS%1) to (3.3) and (3.4).
For explicitness, we relabel (u, f) as (uf, fl).

To prove this, we only need to show the following three claims to apply Leray-Schauder fixed-
point theorem.

Claim1. @ : [2(£2 x S 1) — [2(2 x S 1) is continuous.
Claim 2. @ is compact.

Claim3. A :={f € L2(2 x S*1): f =0 ®(f) for some o € (0, 1]} is bounded in L%(£2 x S4~1).
Proof of Claim 1. Set f := @ (f) and fi:= ®(f;), ie N. If

fi—>f in LZ(.Q X Sd’l) asi— oo, (3.9)
we need to show

fi— f inL?(2 xS asi— oo. (3.10)

Indeed, for f and f;, in view of the definition of @, there exist unique u € V and u; € V such that
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au, v)=Af)(v), a@;,v)=AfHV), VveV, (3.11)
b(f.@)=B(f.w)(@).  b(fi,p)=B(fi.u)(@), YoeH'(2xS""). (3.12)

In (3.11), subtracting a(u;, v) —a(u, v) = A(j_‘i)(v) —A(j_‘)(v) and taking v = u; — u, we have by noting
Jo@t Vi —u) - (u; —u)dx =0 that

/|u,-—u|2dx+r/|vxu,-—qu|2dx<Cr / lfi — flIVxtti — Vxu| dndx

2 2 2xSd-1
and from Cauchy-Schwartz inequality that |ju; — "”%{1(:2) <Clfi- f”iZ(Qdefl)' Thus (3.9) yields
i —>u in H(£2)asi— oco. (313)

In (3.12), using the same procedure and noting fgxsdfl (u,ﬁf1 -Vx(fi — f)(fi — f)dndx =0, one has

1fi = f i ey, < CIQTF — QM |20 wsery + [ (0d —n@m)(y Ei + Wm) QL (fi)
— (d—n@m(yE+Wn)Q ()] 20 se1))
=:C(I + I3).

Clearly, we have from Q! e €%1(R) with Lipschitz coefficient 1 that I; < || fi — fll,_z(gxga-l). Now we
estimate I,

I < [((d=n@m(yEi+Wi—yE—-Wm)Q"(f) g i)

+[(1d—n@myE+wWin)(Q"(f) — Q" ())] 2@xsi )
=:I1+177.

Clearly (3.13) yields I 1 < CL||Vx(tt; — )|l 2() — 0 as i — oco. We only need to deal with I ;. In
fact, since |y E + W| < C|Vxu| € L%(£2) and C*®(£2) is dense in L?(£2), we deduce that

Ve >0, 3X e CX(@)suchthat [(E+W) =X zq, < 7-

Moreover, we have from Q! e C%1(R) with Lipschitz coefficient 1 and (3.9) that
IKeN, Vi>K, [X(Q"(f) = Q"N pigysit) < IXli=@) I fi = Flli2(oxsi-1) <&
Therefore
L% L3
La<|[(Md—n@n)(yE+W —X)n)(Q"(fi) — Q" (f)) HLz(stm)

+ [ (ad —n@mxn)(Q"(f) - Q" (M) 2 g st

SCL|(YE+W) — X“LZ(Qde-l) +C[x(Qt(f - QL(T))”LZ(Qde-l) <Ce.

Consequently f; — f in H'(£2 x S¢=1) and hence (3.10) holds. This ends the proof of Claim 1. O
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Proof of Claim 2. It is quite easy to deduce that
3T, 1) >0, Vf e L2 (2 xS71), (D)1 gzt SC@ DA+ 1fll2(@xs01))-
This and H' (2 x S%71) <> [2(§2 x S¢-1) establish Claim 2. O

Proof of Claim 3. For any f € A, there exists a unique u € V such that

a(u,v)=A(f)(v), YveV, (3.14)
b(f,9)=0B(f,u)(g), VoeH'(2xs"T). (3.15)

Taking v =u in (3.14) and using the identity

2(a—b)-a=la®*+|a—b]®>—|b?>, Va,beRY, (3.16)

one has from ]9 (u,L1 - Vx)u - udx =0 and Cauchy-Schwartz inequality that

1 1
§/|u|2dx+5/\u—u£_1\2dx+r/|vxu|2dx
2 2 2

1
< E/Wﬁ_llzderC(ﬂ)r / | fI|Vxu|dndx

2 2xSd-1
< lf}ul | dx + E/lV ul>dx+C(B)t| fII? (317)
2 )k 2) @il -
2 2
Therefore
t”VXu”%Z(Q) < C(k - 1) + C(:B)t”f”iZ(_std—l) (318)

Taking ¢ = f in (3.15), we deduce from (3.16), fQXSd’l (u,L1 - Vxf)fdndx =0 and Cauchy-Schwartz
inequality that

1 1
3 / |f|2dnclx+5 / \f—af,f_lyzdndxﬂ / (IVxfI* + |VnfI?) dndx

2xS4-1 2x84-1 O xSd-1
1

=3 / o S| dndx + o / (@nQ*(f)) - Vxf dndx
2xSi-1 2 xSd-1

+ot / (1d—n®@n)(yE+W)n)QL(f) - Vafdndx

2 x8d-1

1
<§ / \f,f_1|2dndx+C(a)r / | fl|Vxfldndx+ C(y)Lt / |Vxtt||Vn f| dndx
2 x8d—1 2xSd-1 2xSd-1
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<Ch-1+ f (IVxf12 + [V fI2) dndx

2x8d-1
+C(a)T / |f|2dndx+C(y)L2r/|vxu|2dx. (3.19)
QxSd-1 2
Thus (3.18) and (3.19) yield [| 117, g ca-1) < C(k = 1.y, L) + C(@, . YIL’TI f 117, 5 ga-1,- Note that
1 L
which is independent of k — 1, (3.20)

T<
2C(a, B, y)L2

we obtain || fllj2(pxsd-1) < C(k— 1, ¥, L) and then establish Claim 3. O

Step 4. We prove the positivity.
In fact, set [f}]~ := min{ff,0}. Then [f}]~ € H'(£2 x S¢~1). Choosing ¢ = [f}]~ in (3.4) and
noting that Q- (fHVx[f{1™ = QL (fH) Valf1™ =0, we deduce that

[ Y Pandxr [ (WP + [Vl dnax
2x8§d-1 2x8§d-1

_ / LA dndx<o. (321)

2x8d-1

Therefore [fl]~ =0 ae. on £2 x S’~1 and hence ff >0 ae. on £2 xS*"1. Thus f} € Z. This finishes
the proof of Proposition 3.3. O

3.2. Uniform estimates in L and N
Suppose i, € H and fi, € L?(2; L'(S971)) satisfying (2.10). We regularize uj, by ul which is the
weak solution of ul, — I Aul =uj;, (L > 1). Therefore

1
bl o + 7 1 Vxtthl o o) < lninli2 o (3:22)

and ul, — uj, in H as L — oc. Furthermore, let u§ =ul,, ff = Q(fin). Then (u}, f}) € V x Z. Using
Proposition 3.3 iteratively, we obtain a sequence of approximate solutions

(ul, fHyev x (ZnH'(2 xs*7"), fork=1,2,...,N (3.23)

to (3.3)-(3.4). We will establish the uniform estimates in L and N. Define pj, := -/‘Sd’l findn and recall
that pf := fsa_1 fifdn (0<k<N).

32.1. || ll2(e) estimate

Lemma 3.4.

N N
12<1<I3N”plf HiZ(.Q) + Z”;O,f — Pk HiZ(Q) +7 ZHVXPIf Hi2(9) < e, T)”pi"”%Z(Q)' (3.24)
A k=1 k=1
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Proof. Clearly p- € H'(£2). Taking v = p} in (3.5), we have

/O]L - /O]L 2
/%p,fd.w—/(u,ﬁq -pr,f),o,fdx—i—/wxp,ﬂ dx
2 2

=/< / anQL(f,f)dn>.vxp,§dx. (3.25)
2

§d-1

Integrating by parts and noting p,’(' = ”ka”Ll(Sd*l)v Vx + u,’; =0 and (3.16), one has from Cauchy-
Schwartz inequality that

1 1
3 [t ax+ 5 [ lok = oy P [ [Tupkfax
2 2 2

1 2
< E/|p,f_1|2dx+%/|vxp,f|2dx+ |a|2tf‘,0,ﬂ2dx. (3.26)
2 2 2

Summing up (3.26) and then for o # 0, letting T < ‘2, one has that

/|p,<|dx+ > [ vt Pax< ] /|p0|d+'°‘"2/| P ax

119 119

Then it follows from the discrete Gronwall’s inequality that

1
E ” p/f ”iZ(Q) < ”Ioé ||i2(g)62|a‘2T < ||/0in”§2(9)82|a‘21" (327)

Clearly, (3.27) is also true for o = 0. Moreover (3.26) and (3.27) imply (3.24). This ends the proof of
Lemma 3.4. O

3.2.2. Entropy estimate
The entropy estimate is the key to the construction of a global entropy weak solution. We use
(FL)’(ka +8) as a test function and then let § — 0, to deal with the singularity when fi(x,n) =0 on

some subset of 2 x S¢~1. Another problem is tackling the term [, <o 1((Id —n®@n)(y Ef +Whn) -

Vh ka dndx in the proof. By gaining one tangential gradient on S9!, we apply Lemma 1.1 to solve this
problem.

Lemma 3.5. Forany 1 <k <N,

k
1 2 1 2
E”ulg ||L2(.(2) + / F(fi)dndx+ 5 Z |uf —ui, ||L2(Q)
i=1

£2x8d-1
k
1 2 2

+3 TZ||VXuL”L2(S2)+2TZ |VX\/f7iL“L2(.Q><Sd*1)+HV“\/fTL”LZ(Qde*]))
i=1 i=1

1

< 5 Il ) + / F (finydndx +C(er, B,y T) (Il pinll 2 ) +1)- (328)
2 x8d-1
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Moreover, ifaa =0, By > 0, then

k

)4 2 14 2

28 | ug HLZ(Q) + / F(fy)dndx+ 28 Z |uf —ut, HLZ(Q)
2xSi-1 i=1

k k
y L2 L 2 L 2
+ Et Z | Vx; ”LZ(Q) +2t Z(”VX\/ fi ||L2(.Q><Sd_1) +| Vny/ fi I LZ(Qde-l))
i=1 i=1
14 2
< ﬁ”uiﬂ”LZ(_Q) + F(fiﬂ)dndx' (329)
2x8d-1
Proof. Let § € (0, 1). Taking ¢ = (F 1)/ (f} +6) € H'($2 x S9~1) in (3.4) and noting

[ Gk e G oyaman= [ a5 ) =,
2x8Sd-1 2x8Sd-1

we have from the convexity of /! that

[ s =tk v o)t [ (Vs [Sas) () (5 + ) dnd

2 x8d-1 2 x8Sd-1
ST / (@ (FE)(FN" (£ +8))(0d —n @ m)(y Ef + W()n) - Va ff dndx
2xSd-1
+at f (QL(FY (Y (fE+8))n- Vxfldndx=: J1 + J>. (3.30)
2xSd-1

For J1, one divides it into two parts as below

Jimr [ QU ()~ 1) (0 nm L+ Whn) st na
£2x8d-1

+7 / (1d —n®n)(yEg + Wi)n) - Vo fEdndx=: J11+ J1.2. (331)
2x8d-1

The Cauchy-Schwartz inequality, QL e C%1(R) with Lipschitz coefficient 1, (2.6) and (2.7) imply

pascr [ (Babl|Tas(Y) (7f + )llQH(5E +9) - QH(fE) dnd

2x8d-1
<cvir [ (S| Sarty (1) (5 +5) dnax

2x8d-1

<carf |qu,ﬂ2dx+§ f Vo fEP (1) (FE + ) dnd. (3.32)
2

2x8d-1
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It follows from Lemma 1.1 that
Jia=vyT / (dn®n—ld)fk quk dndx. (3.33)
2x8d-1
Now we estimate J,. Since
o =at / (QLHFH(FY' (FE+8) —V)n- Vxfldndx + at / n- Vxfldndx

2xSd-1 2 xSd-1
=:J21+ J2.2, (3.34)

similarly as (3.32), we have

J2.1 <COT + 2 / |fokL|2(FL)”(ka +8)dndx; (3.35)

£2x8d-1

J22<Ct / |Vxfi|dndx = Ct / | ka \/ﬁdndx
2 xsi-1 oz VI T8

T IVxf, |2
<€t +Ct| fEl pguirry + 5 / Ly dnx (3.36)
2xSd-1 k

Taking v = uf in (3.3), one has from (3.16) that

/]uk‘ dx—i—z/]uk u£_1‘2dx+r/‘vxu,ﬂ2dx

2 b, a5

/’uk 1| dx — Bt / (dn®@n-— ld)fk qukdndx
2x8d-1

1

— 5/|u,€71|2dx—1<. (3.37)
2

Since
(3.38)

fa-k<ce [ g valande< S [ (vt ans oo
2 x8d-1 £2

combining (3.30)-(3.38) and summing up, we have by noting fé = QL(fi,) that

%/|u,€|2dx+ f L +8)dndx+ = Z/ uf —ul | |"dx
2

2x8d-1 =g

—(1—C5)Zf|vqu\ dx+ - Z / (VP + | Va FEP) (P (FF + 6) dndx

i=lg Qde 1
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%;Z / }foﬂz((FL)//(fiL +8) — ﬁ) dndx

xS§d-1

k
1
<§/|um|2dx+ / FHQL(fin) +8) dndx+CT Y (| oF |52 +1) +CT6. (3.39)
2

2xsd-1 =1

Thus it follows from (2.5), (2.6), (2.9) and (3.24) that

1
5/|u,ﬁ|2dx+ / F(fl+5)dndx+ - Z/|u ul | |*dx
2

2x8d-1 =g

L2 L2
—(1—C8)Z/|quL| dx + - Z / (':fig |;?Jic|s>dndx

i=1g .QSd

1 52
< 5/|um|2dx+ / <8+3+F(fm+8)> dndx+CT(||p,-n||%2(Q)+1)+CT§.
2 2xSd-1

Choosing a sufficiently small § > 0 and then performing § — 0, one finishes the proof by applying
Lebesgue’s dominated convergence theorem and Fatou’s lemma. With more concern on constants in
the proof, we find that C = C(«, ﬁ y,T) in (3.28).

If o =0, By >0, then J1— LK = 0. Therefore, with a similar discussion, one could deduce (3.29).

B
This finishes the proof of Lemma 3.5. O

3.2.3. Time regularity estimate

Lemma 3.6.

N oL gL
Z u—up_ |? fk
‘E [ ——

k=1

<C. (3.40)

T (HA(£2 xSd-1yy

N
k=
Proof. It follows from (3.3) that for any v € V? < [®(£2),

L _ L
u, —u
/u vdx| <
T
Q2

and hence from (3.24) and (3.28) that

>

k=1

(v2 )’

< (]| wxg HLZ(Q) + || Vg HLZ(_Q) g 1”L2(9> +C|l o ||L2(Q))||V||V2

"k "k 1

2 N N
( > [543 [ 2, [ r)
Wy k=1 IS

<C.

For any ¢ € H*(£2 x $9=1) — W1%°(£2 x 9~ and noting

f ("£—1'fozf)¢d"dxz— f (u£_1-Vx(p)kadndx,

2x8d-1 2x8d-1
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we deduce from (3.4) that

fe = fie
V%-q)dxlg / |V fL||Vxepldndx + / |V f¢||Vag| dndx
2

2x8d-1 2 xSd-1

+ / | fH|ui_ || Vxpldndx + C / | fEVxg| dndx
2xSd-1 2 xSi-1

+C / |Vxug || fE] Vagl dndx.

2 x8d-1
Now it follows from (3.24) and Holder inequality that

/ |V fL|| V| dndx = 2 / [V FE| I 5Vl d

2 x8d-1 2 x8d-1
S 2” VX\/JTkL”LZ(QxSM) ”\/f»kL”LZ(Qdefl)||VX¢”L°°(9><Sd‘1)
< C||vx\/f7kL“L2(QXSd—l) ||(P||1-14(Q><Sd*1);

/ |Vt || £ [| Vgl dndax < | Vg ||L2(.Q) | £ ”LZ(Q;U(SM))”Vﬂ‘p“L“(ﬁxS"‘l)
2xSd-1

<C || qullg “LZ(_Q) ”(p”H“(Qde*ly

Similarly, we deal with the other three parts. Therefore

fE-fE
‘/ % “pdx| < C(”VX\/TkL”LZ(.Qde*]) + ”V“\/fikL”LZ(Qde*l) +[ug_, “LZ(.Q)
2

+1+ ||qu,€ ||L2(_Q))||§0”H4(_ngd—l).

This and (3.28) imply that

fie = féa |

T

rznwf? 1220 st 1)+rz||wf7 22 x0-1,

(HA(@xE )y ( P

5%

k=1

N
+T15;IIJ H"k 1||L2(.(2)+T+TZHVXukHL2(-Q)) <G

This finishes the proof of Lemma 3.6. O
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3.3. Convergence and proof of Theorem 3.1

Definition 3.7. Define the piecewise function in t by

ubt, ) i=up(),  meub(t,)=ug_,(), te(k-Dr.kt], k=1,2,....N
and the difference quotient of size T by

oful(t,):= 7%(') 0

, te(k—1Drt,kt], k=1,2,...,N.

Likewise, define p%, fI and 9f fL. To pass the limit with T — 0 and L — co simultaneously, we
choose T =o0(L2) in view of (3.20).

3.3.1. Convergence

The compactness discussion is crucial in obtaining strong convergence. Using Aubin-Lions-Simon
lemma with hypothesis on derivatives, the traditional Rothe method in evolution PEDs (see [27]
and [20]) requires the construction of linear interpolation functions (also known as Rothe func-
tions). However, the dealing with Rothe functions is fairly indirect and tedious, where more estimates
and sometimes even more regularity discussion of initial data are needed. Here, we shall apply a
simple version of Aubin-Lions-Simon lemma with hypothesis on time translation (see Dreher and
Jingel [7, Theorem 1]) directly to avoid using Rothe functions and making the discussion more
clean.

Proposition 3.8. As T = o(L~2) — 0, there exist a subsequence of{(u%, fTL)}L>1, not relabeled, and a pair of
function (u, f) satisfying u € L°°(0, T; H) N L2(0, T; V), (2.12)-(2.13) and (3.1) such that

ul Su inL®0,T; H), (3.41)

ul ~u inl?0,T; V), (3.42)

ub —u inL?(0,T; LP(2)) (V2 < p <6), (3.43)
meul —u inL3((0,T) x ), (3.44)
fE—f inl?(0,T) x 2; L' (s*7), (3.45)
fE—Vf inL*(0,T) x £2; L2(s*71)), (3.46)
\/EA Vf o inl*(0,T; H'(2 x s71)), (3.47)
QLH(fEy — f inL*((0,T) x 2; L' (s71)). (3.48)

Proof. Applying (3.28), we deduce that there exists a subsequence of {ug}bh not relabeled, and
uel®0,T; HyN L%, T; V) such that (3.41)-(3.42) hold. For any t € (0, 1), we have from (3.40)
that

N—1
2 2
”Trug —u; “LZ(O,Tfr;(VZ)/) =T Z ”"IEH —uj ”(VZ)’ <cr?, (3.49)
k=1
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where o uk(t) := ul(t + 7). Since (3.28) implies [[u% ;2 1.y, < C, we obtain (3.43) from (3.49) and
V << LP(2)NH < (V?)' (V2 < p < 6) by employing Dreher and Jiingel [7, Theorem 1]. It follows
from (3.28) that

N

2 2
|wcul —ul “LZ((O,T)X.Q) =T Z”“IE -, ”LZ(Q) sCr.
k=1
This and (3.43) yield (3.44).
It follows from (3.40) that
2 = 2
HTfer - er ”L2(O,T—r;(H4(Q><Sd*1))/) =T Z kaL+1 - ka H (H4(2xSe-1)y <cr. (3.50)
k=1

Since (3.24) and (3.28) imply

” VXer? Vﬂer ||L2(0,T;L1(Q><Sd*1)) S 2” VX\/JTrL; Vﬂ\/jTrL“ L2(0,T;L2(2xS4-1)) ||\/f>TL||L°C(0,T;L2(Q><Sd*1))
<C

)

we have ||f-£”LZ(O,Tgwl,l(QXSLi—‘I)) < C. This and (3.50), together with the embedding

W2 xS s [P(2 x §471) < (HA(2 x s471)) <v1 <p< ;d_ 1)

yield

fE—f in?(0,T; LP(22 x S™1)) <V1<p< 35:;) (3.51)

by applying Dreher and Jiingel [7, Theorem 1]. Also employing Dreher and Jiingel [7, Theorem 1], with
the same discussion as (3.43), we deduce from (3.24) that

pt— p inL(0,T;LP(£2)) (V2 < p <6). (3.52)

By noting pt = [4-1 fLdn, one has from (3.51) and (3.52) that

p:/fdn and /ffdne/fdn inL?(0, T; LP(£2)) (Y2 <p <6).  (3.53)
Sd—] Sd—l Sd—l

It follows from Gagliardo-Nirenberg inequality that

d/4 1-d/4
||,0$ HL4(.Q) < Hp% ”H/l(_(Z)”p'l: ||L2(.(2)

and then from (3.24) and Holder inequality that

d/4 1-d/4
”er ” 18/d(0,T;L4(2;L1(S4-1y)) = ||,0£ ||L8/d(0,T;L4(Q)) < ”’Oé ”LZ(O.,T;H](-Q)) ”'Oé “L”(O,T;LZ(-Q)) <C

Moreover, (3.24) also yields
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L * : o) .72
pr—p inL>(0,T;L°(£2)), (3.54)
pt—p inL?(0,T; H'(2)). (3.55)

Therefore f e L8/4(0, T; L*(£2; L1(S¢~1))). Consequently, by the interpolation inequality for LP-norms,
we have

4/(8—d) (4—d)/(8—d)
H er - fHLZ((O,T)xQ;U(Sd*l)) < Her - fHLs/d((O,T)XQ;Ll(Sd—l)) ”er - fHLl((o,T)xQ;Ll(Sd—l))
(4-d)/(8—d)

< C” er - f||L1((O,T)><Q;L1(Sd’1))'

This and (3.51) imply (3.45) and hence f >0 a.e. on [0, T] x £ x S¢~1. Therefore we have (3.46) by
considering the inequality |/a — vb|2 < |a — b| (a,b > 0) and (3.47) in view of (3.28). In addition,
one has from (3.53) and (3.54) that f € L°°(0, T; L%(s2; L' (S¢~1))). In light of the weakly lower semi-
continuity of norm, we obtain the energy inequalities (3.1) directly from (3.28) and the convergent
results (3.41)-(3.43) and (3.45)-(3.47).

At last, we prove (3.48). Indeed, we have from Q' e C%1(R) with Lipschitz coefficient 1 that

” QL(er) - f”LZ((O,T)xQ;L](Sd’]))
< ” QL(er) - QL(f) HLZ((O,T)xQ;U(SH)) + ” QL(f) - f”LZ((O,T)x.Q;L‘(Sd*l))

< Her - f”LZ((o,T)xQ;Ll(Sdﬂ)) + HQL(f) - f”LZ((o,T)xg;Ll(Sdfl))' (3.56)

Moreover, employing Lebesgue’ dominated convergence theorem, one deduces from (2.8) and

[QL(f)I < f that

L -2
e (f)_f”L2((0,T)><.(2;L1(Sd—1))_>0 ast=0(L"%) —>0. (3.57)
This, (3.45) and (3.56) imply (3.48) and end the proof of Proposition 3.8. O

3.3.2. Proof of Theorem 3.1

Next we shall prove Theorem 3.1. The key point is to establish the convergence of discrete deriva-
tives 9 ué and 9 fTL as well as their weak integrals. These follow from the time regularity estimate
(Lemma 3.6) of afu%, af fTL and their convergence to d:u, d; f in the sense of distribution.

Proof of Theorem 3.1. In view of Definition 3.7, the weak approximation form of (3.3)-(3.4) reads

T T T
//8fu§-vdxdt+//qu§:vadxdt+//(nru$ - Vx)uk - vdxdt
0 2 0 2 0 2

T
z—ﬂf f (dn®n—1d)fL : Vyvdndxdt,

0 @xsd-1

Vv e C3°([0, T) x £2) with Vx - v =0, (3.58)
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T T
// 3ff$</>dndxdt+/ f (reul - Ve fE)pdndxdt

0 @2xsd-1 0 Q2xsd-1

T T
—/ / (anQL(ka))-Vx(pdndde—/ f (Vxfi - Vx + VafE - Vng)dndxdt

0 @xsd-1 0 @xsd-1

zf / (1d—n@m)(yEL + WHn) QL (fL) - Vap dndxd,
0 @xsd-1

Vo € ([0, T] x £2 x S*1) with ¢(T) = 0. (3.59)

We first claim that as T =o(L™2) — 0,

T
/ / 3 flodndxde

0 2xsd-1
T
— —/ / forpdndxdt — / fin(x,m)@(0, x, n) dndx, (3.60)
0 2xsd-1 2 xSd-1
of fL—~ o f inL?(0,T; (H4(2 x s471))"). (3.61)

Indeed,

T
/ / o frodndxdt

0 2xsd-1
T T
Leey — fLr — Ly — fl
:/ / fe®—frt-7) ?( T)(pdndxdt+/ / 7fr()r f’"(pdndxdt
T 2xSi-1 0 QxSi-1

T L T-t1 L
=/ / @(pdndxdt—/ / @q)(t—i—r)dndxdt

0 oxgi-t 0 x5t
([ QiUw
—/ / fgodndxdt
0 2xsd-1
T T—1
:/ / fLo? dndxde - / / fr(t)(o(H_T) 2O indxde
T—7 Qx§d-1 i 0 @xsi-1
T
—/ / QL (fi 2 dndxdt.
0 2xsd-1 ‘
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Then

T T
/ / 8ffﬁ¢dndxdt+/ / forpdndxdt + / fin(x, M) (0, x, n) dndx

0 @xsd-1 0 Qx§i-1 2x8d-1
T
/ / ( +f8t(p> dndxdt| + (fat(p flw> dn dxdt
T—7 Qxgd-1 O xSd-1 T
T
+ f (finfﬂ(o)— QL(fin)/ %dt) dndx
2 x§d-1 0
=:P1+ P2+ Ps.

Thanks to ¢(T) =0, we have from the mean value theorem of differentials that

L
Py < tIIBrwlle«o,r)xgst)(||fr |11 2xsim1y) T 1 i, ms11@xs0-1y)) < €T

( fﬂ(H—T) wt))dndx / f (f - fr)fﬂ(f-l-f) 40) dndx

2xSd-1

2 x§d-1
< 75||att§0||1_00((oj)xgxgd—1)||f||L°°(0,T;L1(Qde—1))
+ -1 “Ll((o,r)x(zxsd—l)”angHL“((O,T)xQxS"*])
Cle+|f-f: ”Ll((O,T)xQde*]))'
It follows from the proof of (3.57) and the mean value theorem that,

T

1
¢(0) — ;[<P(t)df

0

dndx — 0.

Py < / | fin — QL(fin)||0(0) | dndx + / QL (fin)

2x8d-1 2x8d-1
Therefore (3.60) is proved. Moreover, by taking ¢ € C3°((0, T) x 2 x $%1, (3.60) implies
of fL—acf in2'((0,T); (C*(2 xST1)))). (3.62)

We have from (3.40) that ||at’fTL||Lz(0,T;(H4(QXSd71)),) < C. This and (3.62) yield (3.61). Likewise, we
deduce from (3.40) that

T T
//.8t’ué-vdxdt—> —//uatvdndxdt—/u,-n(x)v(o,x)dx, (3.63)
0 2 02 2

oful —du inL?(0,T; (V?)). (3.64)
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Next, we prove
T T
/ f VxfL- ngadndxdt—>/ f Vxf - Vxg dndxdt, (3.65)
0 @xsd-1 0 @xsd-1
T T
/ / anrL'Vngodndxdt—>/ / Vaf - V@ dndxdt, (3.66)
0 @xsd-1 0 Qx§i-1
T T
/ / (rruk -foTL)(pdndxdt—>/ / (u - Vxf)pdndxdt. (3.67)
0 2xsd-1 0 Q2xsd-1

In fact, it follows from (3.46) and (3.47) that

/T / (Vxft = Vxf) - Vxp dndxdt

0 2xsd-1
T
gz/ / (\/E—\/?)Vx\/fj'vx(pdndxdt
0 @xsi-1
T
+2/ f VF (Y FE = Vx/F) - Vapdnddt| — 0.
0 Q2x§d-1

Similarly, one has (3.66). Noting nru%, u € V and integrating by parts, we then establish (3.67) di-
rectly from (3.41) and (3.45).

The convergence of two terms with cut-off QL(ka) in (3.59) could be deduced directly by (3.42)
and (3.48). The convergence of the remaining terms in (3.58) is clearly implied by (3.42), (3.44) and
(3.45). This and Proposition 3.8 finish the proof of Theorem 3.1. O

4. Global weak entropy solution to Stokes Doi-Saintillan-Shelley model
In this section, we prove the following theorem.

Theorem 4.1. Let d = 2, 3. Suppose fi, € L2(£2; L1(S41)) satisfy (2.10). Then for any coefficients y € [—1, 1],
B € R and o € [0, 0), there exists a global weak entropy solution (u, f) to Stokes Doi-Saintillan-Shelley
model with boundary conditions (1.24)-(1.25) and initial condition (1.27) which satisfies the following energy
inequalities for a.e. t € [0, T},

t
[ 1 GOy inas+2 [ (19T g s+ 150V T fq0) 85
0

2x8d-1

< / F(fin)dndx+C(O(,ﬁ, Y, T)(”fin”%z(Q;Ll(Sd—l))+1)’

2 x8d-1

Moreover, if o =0, By > 0 (including the Stokes Doi model), then C(«, 8,y ,T) =0.
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Let fin € L2(£2; L'(S971)) satisfying (2.10) and f} = QL(fin). Then f} e Z. With a similar dis-

cussion as Section 3.1, we have that, for any k =1,2,..., N, if given ka—1 € Z, then there exists
k., fb e v x (Z n H'(2 x S%1)) which solves the approximate problem with cut-off

/qu,ﬁzvxvdx:—ﬂ / (dne@n—1d)fl: Vxvdndx, VveV; (4.1)
2 2xsd-1

/ fi - f" e lydndx+ f (ul - Ve fL)pdndx

2x8d-1 2x8d-1

- / (@nQ(fL)) - Vg dndx + / (VxfL - Ve + Vi fl - Vo) dndx
2 x8d-1 2 x8d-1

= / (Md—n®n)(yEf + WhHn) Q! (fl) - Vapdndx, Yo e H'(2 xS™"), (42)
2xSd-1

where Ef = J(Vxul + (Vxub) "), Wk = J(Vxul — (Vxub)™). Then similarly as Section 3.2, we deduce
the following lemmas.

Lemma 4.2.

12{113 | ok HLZ(Q) + Z ok — ox 1||L2(_Q) +21 Z [ Vxof ”LZ(.Q) Cla, T)||Pm||L2(_Q)
SkSN k=1 k=1

Lemma 4.3.

sup | Vxtth |72y < CCt. B. Dl pinl 2 .

1<k<N

Lemma 4.4 (Entropy estimate). Forany 1 <k <N,

k
2 2
F(ka) dndx + 2t Z(”VX\/ ft ”LZ(QXSd*]) + ”Vﬂ\/ ft ||L2(std71))
i=1

2x8d-1

< / F(fiydndx+Ce, B.y, D(Ilpinl 7> (g, +1)-
2xsi-1

Moreover, ifa =0, By > 0, then C(c, B,y,T) =

Lemma 4.5 (Time regularity estimate).

fk fk 1

T

<C.
(H4(@2xSe-1)y

k=1

Proof of Theorem 4.1. Using these uniform estimates, it is sufficient for us to prove Theorem 4.1 with
a similar discussion as Section 3.3. O
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5. Global L? solution to Stokes Doi-Saintillan-Shelley model and uniqueness

The main difficulty in obtaining a global L% solution and uniqueness is how to deal with the
discrete weak form of Vg - (Id —n®mn)(yE + W)nf). By gaining one tangential gradient on S%1, we
apply Lemma 1.1 to solve this problem.

Theorem 5.1. Let d = 2, 3. Suppose fi, € L2(§2 x S¢=1) satisfying (2.10). Then the solution in Theorem 4.1
has more regularity

uel’(0,T; H2(2)),  fel™(0,T;L%(2 xS 1)) nL?(0, T; HI(2 xS1)),  (51)
few!¥do,T; (H'(2 x s 1)) (5.2)

and moreover

oo 0,7:12(2))n120.1; H2(2)) T 1 los 0,712 (2 xst-1 )12 0, 1 (2 x5-1) < C- (5.3)

Theorem 5.2. Let d = 2. Suppose fi; € L2($2 x S=1) satisfying (2.10). Then the solution in Theorem 4.1 is
unique.

5.1. Global L? solution

Letd =2,3 and fi, € L2(£2 x S4~1) satisfying (2.10). To prove Theorem 5.1, we need more estimates
of the approximation solution (uf, f{) uniformly in L and N.

Lemma 5.3 (L%-estimate). Forany 1 <k <N,

k
2 2
”ka ||L2(Q><Sd*1) + Z ”ka - kaq ”LZ(QxStH)
i=1
k L2 L2
+7 Z(HVXfi HLZ(Qde’l) + H Vnfi HLZ(.QXSd*l)) <C (5.4)

i=1

Proof. Taking ¢ = ka in (4.2) and performing a similar procedure as (3.19), we have

1
/ | dndx+ [ \fE— £k [P dndx+ < / (IVx L] + | VafiE|?) dndx

2

2x80-1 2xsd-1 2 xSi-1
1 2

=3 / |fioa|"dndx+t f (anQ*(f¥)) - Vxfi dndx
2x§d-1 2 xSd-1

+1 / (d—n@n)(yEg + WHn) QL (f{) - Vafi dndx

2x8d-1

— f IfL P dndx+ 01+ 0, (5.5)

2x8d-1
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and
T
01<Ct / [ FelIVafi[dndx < 5 / |Vx fE|? dndx + Ct / |fL[? dndx.  (5.6)
2x8d-1 £2x8d-1 2xsd-1
It follows from Lemma 1.1, (2.4), Lemma 4.3 and Hoélder inequality that
O2=1 / (1d —n@n)(y Ef + Wi)n) - VoG (i) dndx
2x8sd-1

=yT / dnen—1d)GH(fl): Vxuldndx < Ct / |GE () || Vxug | dndx

2xSd-1 2x8Sd-1
<cr [ ISt vl andr < Co 5 g e 1y (57)
2x8d-1

Applying Gagliardo-Nirenberg inequality, we have that

2 d/2 2-d/2
H ka ||L4(Q;L2(Sd*1)) < CkaL ”Hl(.Q;LZ(Sd”)) H ka HLZ(.Q;Lz(Sd*l))
d/2 2—d/2 2
< C(”VkaL ”Lz(Qde*l)H ka ”LZ(rszd*l) + ” ka ”LZ(QxSfH))' (58)
Therefore by Young inequality, one has
T 2 2
02< Z”v"ka ||L2(.Q><Sd*1) + CT”ka ”Lz(Qde*])' (5.9)

Combining (5.5), (5.6) and (5.9), then summing up, we deduce that

k k
2 2 2 2
”ka ”LZ(QxS'H) + Z ”fiL - fiL—1 HL%.QxSﬂH) +7 Z(”VXfiL “LZ(QxSH) + ”aniL ||L2(std71))
i=1 i=1
2 ¢ 2
< ”fiﬁ “LZ(.QxStH) +CT Z ” fiL ||L2(Q><Sd*1)' (5.10)
i=1

Letting T < ;—C this implies (5.4) by employing discrete Gronwall’s inequality. O

Lemma 5.4. Forany 1 <k <N,

”ulé ”HZ(Q) < C”v"ka ||L2(9;L1(Sd—1))~ (511)

Proof. It follows from the regularity of Stokes equation (see [33, p. 35, Proposition 2.3]) that

g C ” fokL ||L2(.Q;L1 (Sd_l))'

[ 2, < €| -6 [ @men—10) s an
e 12(2)

This ends the proof. O
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Lemma 5.5.
L
|uz HLOO(O,T;V)mLZ(o,T;HZ(Q)) <G, (5.12)
L
|| f'f || L®(0,T;L2(2xS4=1))NL2(0,T; H! (£2 xS4-1)) <C (513)

Proof. We deduce (5.12)—(5.13) directly from Lemma 4.3 and Lemmas 5.3-5.4. O

Lemma 5.6 (Time regularity estimate).

||3trfrl ”L4/d(0,T;(H1(9xsd—1)y) <C (5.14)

Proof. We deduce from (4.2) that for any ¢ € H'(£2 x S¢1),

fi = fia

Tk k=1 ax| <
I/ - pax
2

f |Vxfit|| Vx| dndx + f |Va || Vagldndx

2x8d-1 2 xSd-1
+ / |Vxfr|[ug |l dndx + C / | ]I Vxe| dndx
2xSd-1 2xSd-1

+C / |Vxup|| £ || Vagl| dndx.
2 x8i-1

Therefore in light of H!(£2 x S9-1) «— L[4(§2; L2(S%")) that

fk fk 1

T

(H1 (2 x84y
< C(” ka ||H1(9xsd4) + H vakL H [2(£2xS-1) ”“IIE ” L4(£2) + ||qu,€ka ||L2(.(2xsd4))' (5.15)

Hence

” 3 er ” L44(0,T; (H1(£2xS4-1)))

d/4
f f 4/d
B Jk k=1
k=1 (H'(2xS%-1yy

T
N kt
< c( > [ U e, + 155 s 18 e

kzl(k—l)r

d/4
4/d
I ] ) )

C(”er “ L2(0,T;H1(£2xSd-1)) + ”VXer ”LZ((O,T)X.QXSd*]) ”"l% ||L°°(O,T;L4(.Q))

+ ” er H L4/@=1)(0,T;12d(2;12(S4-1))) H qué ” L4(O,T;L2‘1/(d*1)(9)))' (5.16)
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It follows from Gagliardo-Nirenberg inequality that

| Vxuz “de/(d—l)(g) < Cluz ”;1/22(9) | Vxuz ||¥?.Q)

and hence by Holder inequality that

1/2 1/2

[Vxut | 12(0,T; H2($2)) | Vxuz HLOO(OJ:LZ(Q))'

< Cllut| (517)

L4(0,T; L24/@=1(£2))

Now we estimate ”f.g'”L4/(d—1)(O.T;LZd(Q;LZ(Sd—I)))-
Case 1. d = 2. Similar as the estimate of (5.17), we deduce from Gagliardo-Nirenberg inequality
and Holder inequality that

1/2 1/2
||er ||L4((0,T)xQ;L2(Sd—1)) < ”er “LZ(O.T;H](Qde*l)) ” er ||L°0(0,T;L2(Q><Sd*1))‘ (5.18)
Case 2. d = 3. The embedding H!(£2 x S%~1) — 16(2; L2(S* 1)) implies
” er ”LZ(O,T;LS(Q;LZ(S"*U)) < C”er ||L2(O,T;H1(Q><Sd*1))' (5.19)

Clearly, H1(£2) — L*(£2) implies ||u§ Lo 0.1:14(02)) < C||u§||LOC(O!T;H1(Q)). Combining this and (5.16)-
(5.19), we get (5.14) from Lemma 5.5. This finishes the proof of the lemma. O

Proof of Theorem 5.1. We could deduce the same result as (3.62). Then it follows from (5.14) that
(5.2) holds. Clearly, Lemma 5.5 implies (5.1) and (5.3). This ends the proof. O

5.2. Uniqueness for L? solution (d = 2)

Proof of Theorem 5.2. Since f € L%(0,T; H'(£2 x SY)) N H'(0, T; (H'(£2 x S1))), we have f e
C([0, T]; L2(£2 x S1)) and

d
Enfnfz(gxgl) =2(3:f. f). (5.20)

where (-,-) denotes the dual product between H'(§2 x S!) and its dual (H'(§2 x S1))’ (see [33, p. 260,
Lemma 1.2]). Suppose (u1, f1) and (43, f>) are both solutions of (2.16)-(2.17). That is, for a.e. t € [0, T]
and i =1, 2, they satisfy

/qui :Vxvdx = —ﬂ/(2n®n— Id) fi : Vxvdndx, VvelV, (5.21)
2 2
O fi, @) + (Ui - Vx fi, ) + (Vx fi —anfi, Vx@) + (Va fi, Va@)
=(Ud—n®n)(yEi + Wpnfi, Vap), VYeeH'(2 xS'); (5.22)
filt=o= fin ae.on2 xS, (5.23)

where (-,-) denotes the inner product in L2(£2 x S!). By subtracting and then setting v =
u; —uy in (5.21), we have by Cauchy-Schwartz inequality and the regularity of the weak solution to
Stokes equation (see [33, p. 35, Proposition 2.3]) that for a.e. t € [0, T],
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IVxt1 — Vxuz |l 2oy < Cllfi = fa 22 xstys (5.24)
1 — 2l 200y < CIVaf1 — Vi falliz st (5.25)

By subtracting and then setting ¢ = f1 — f> in (5.22), we have by noting (5.20) that for a.e. t € [0, T],

| =

1f1 = fallf2 g wsty + 191 = Y f2llDa g sty + 1V f1 = Vaf2ll o g e

N —
j=%

t
=—((u1 —u2) - Vxf1. f1 — f2) — (w2 - Va(f1 = f2). fi — f2) + (an(fi — f2), Vaf1 — Vxf2)

+ (dd—n@n)((YE1 + W1) — (YE2 + W2))nf1, Vafi — Vaf2)

+ (Ad —n@n)(y Ez + Wo)n(f1 — f2), Vaf1 — Vaf2)
=:51+S2+S3+4+ 5S4+ Ss. (5.26)

We deduce from (5.24), Holder inequality, Gagliardo-Nirenberg inequality, Poincaré inequality and
Young inequality that for a.e. t € [0, T],

Si<lun — u2||L4(.Q)||fo1||L2(Q;L2(s1)) I f1— f2||L4(_Q;L2(§1))
1/2 1/2
12(2) 12(2)

1/2 1/2
X It = Fall v g2 gny 11 = Foll g s IVxf1ll 2 xsn)

< C|IVxuq — Vg || lug —ux||

1/2 3/2
< CIVxf1 = Va2l b g s 11 = Fallsca sn 1V fi 2 st

+ 11 = F2172 g s 1V fill 2@ xsn)

1
< gIVxf1 = Vafall g ey + I = Fall g ey

4/3
X (IVxf1ll kg sy + 1V 1 ll2(@xen)- (527)
Clearly
1 2
52=—5(u2,Vx(f1 - f2)?)=0; (5.28)
1
S3 < gIVaf1 = Vafallz g usny + €I = Fall2go o (5.29)

Similar as (5.27), in light of (5.24)-(5.25) and (5.3) we have that for a.e. t € [0, T],

Sa < C|IVxtr — Vxtallpa o) | f1ll a2 1261y 1 Ve f1 = Va fall 22 xs1y

1/2 1/2 1/2 1/2
/ oAy, /

< C”u1 - uZHHZ(_Q) ||qu1 - VXuZHLZ(_Q) Hl(Q;Lz(Sl)) ”f] “LZ(QXSl)”an] - Vl'lfz”Lz(QXSl)

1/2 1/2 1/2
< CIVaf1 = Vafall bt s 11 = P2l i o 111 o e 1Vnf1 = Vo f2ll 2 o)
1 2 1 2
< EHVl’lf] - Vl‘leHLZ(stl) + g”vxfl - VXfZHLZ(QXSl)

+Clf1 = ol g 1 F1l 1 o kst (5.30)
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It follows from Lemma 1.1, Gagliardo-Nirenberg inequality and (5.3) that for a.e. t € [0, T],

1
S5 = 5((]d —n@n)(YE; + Wyn, Vu(f1 — f2)2)
= L(enen—10)(fi - f2*: Va)

<Clf1 = follfagg. 2@y I Vxti2ll2 o)

< C(IVxf1 = Vxf2lliz@exsh L fi = fallizgexst) + 11 — f2||z2(9><§1))
1
< gIVaf1—=Vafs 1220 xaty + CILFL = P2l 72 g ) (5.31)

Combining (5.26)-(5.31), we have for a.e. t € [0, T],

d 4/3
il = Pl e < CO+ I ftllnasy + 11l e, + 1 g csn)

< ILfi = falfa g sty (5.32)

Since (5.3) implies || f1llj20,7:11(@2xsty) < C and (5.23) yields (f1 — f2)lt=0 =0, it follows from Gron-
wall’s inequality that f; = f; a.e. on [0, T] x £2 x S! and hence from (5.24) and Poincaré inequality
that u; = u, on ae. [0, T] x £2 x S!. This ends the proof of uniqueness. O
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