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2-CNRS; Institut de Mathématiques de Toulouse UMR 5219 ;

F-31062 Toulouse, France.
email: pierre.degond@math.univ-toulouse.fr

3- Department of Physics and Department of Mathematics
Duke University

Durham, NC 27708, USA
email: jliu@phy.duke.edu

4-Center of Scientific Computation and Mathematical Modeling (CSCAMM)
University of Maryland

College Park, MD 20742, USA
email: smotsch@cscamm.umd.edu

5- Department of Mathematics
California State University, Northridge

18111 Nordhoff St
Northridge, CA 91330-8313

email: vladislav.panferov@csun.edu

Abstract

This paper is concerned with the derivation and analysis of hydrodynamic models
for systems of self-propelled particles subject to alignment interaction and attraction-
repulsion. Introducing various scalings, the effects of the alignment and attraction-
repulsion interactions give rise to a variety of hydrodynamic limits. For instance,
local alignment produces a pressure term at the hydrodynamic limit whereas near-
local alignment induces a viscosity term. Depending on the scalings, attraction-
repulsion either yields an additional pressure term or a capillary force (also termed
’Korteweg force’). The hydrodynamic limits are shown to be symmetrizable hyper-
bolic systems with viscosity terms. A local-in-time existence result is proved in the
2D case for the viscous model and in the 3D case for the inviscid model.
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1 Introduction

There has been an intense literature about the modeling of interactions between individ-
uals among animal societies such as fish schools, bird flocks, herds of mammals, etc. We
refer e.g. to [1, 2, 36, 9, 21] but an exhaustive bibliography is out of reach. Among these
models, the Vicsek model [41] has received particular attention due to its simplicity and
the universality of its qualitative features. This model is a discrete particle model (or
’Individual-Based Model’ or ’Agent-Based model’) which consists of a time-discretized
set of Ordinary Differential Equations for the particle positions and velocities. The ve-
locities are supposed to be of constant norm and are updated according to an alignment
rule: each agent tries to align its velocity to that of its neighbors in some sensing region.
Some angular noise is added to account for imperfections of the perception or communi-
cation apparatus of the agents. A time-continuous version of this model and its kinetic
formulation are available in [10, 13]. A rigorous derivation of this kinetic model from the
time-continuous Vicsek model can be found in [3].

The present work starts with an Individual-Based Model which appears to be a gener-
alization of the Vicsek model [41] with the addition of an attraction-repulsion interaction
potential (see e.g. [7, 10, 22]). Again, the self-propulsion speed is supposed to be con-
stant and identical for all the particles. Therefore, the velocity variable reduces to its
orientation. In addition to the alignment rule which tends to relax the particle velocities
to their local orientation (already present in the original Vicsek model [41]), the particle
interactions involve an attraction-repulsion rule. It makes the particles move closer or
farther away from each other according to whether the interaction is attractive or repul-
sive. Typically, we will consider short-range attraction and long-range repulsion, in the
spirit of the three-zone model [2, 36, 9]. Additionally, velocity orientations undergo a
Brownian motion which describes the effect of noise in the communication between the
agents. Therefore, this model can be seen as a continuous version of the three zone model
[2, 36, 9].

In [13], the hydrodynamic limit of the time-continuous Vicsek model is performed
through an asymptotic analysis of its kinetic version [3]. The resulting model is a system
of balance equations for the density and mean velocity orientation (or polarization vector).
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The model has been later referred to as the Self-Organized Hydrodynamics (SOH) and is
studied numerically in [12, 29]. The main concern of the paper is to study the modifica-
tions of the SOH model that are induced by (i) the introduction of the attraction-repulsion
force as described above and (ii) different scaling assumptions about the size of the sensing
region which involve a higher level of nonlocality. As proved in [13], the strict combination
of alignment and noise results in the appearance of a pressure term in the SOH model.
Introducing an attraction-repulsion force and spanning various scaling assumptions on
this force and on the size of the sensing region, we obtain a variety of effects that are not
encompassed in [13]. First, we try to take a better account of the non-local character of
the interaction forces than in [13]. To this aim, the scaling assumption relating the range
of the interaction force to the micro and macro-scopic scales is modified. The chosen
scaling makes the interaction range large compared to the microscopic scale but small
compared to the macroscopic one. The non-local character of the interaction force at
the microscopic level results in the appearance of higher order derivative terms, such as
viscosity terms, at the macroscopic level. The specific effect of the attraction-repulsion
force in the hydrodynamic limit is to add either an extra pressure term or a capillary (or
Korteweg) force term depending on the chosen scalings.

Beyond the statements of the models, we prove a local-in-time existence theorem in
the 2D case for the viscous model (when the non-local effects are retained) and in the 3D
case for the inviscid model (when the non-local effects are omitted). Both proofs rely on
a suitable symmetrization of the system and on the energy method.

Hydrodynamic models are attractive over particle ones due to their computational
efficiency. For this reason, many such models have been proposed in the literature [5, 6,
8, 18, 27, 28, 30, 38, 39]. However, most of them are phenomenological. [13] proposes one
of the first rigorous derivations of a hydrodynamic version of the Vicsek model (see also
[24, 33, 34] for phenomenological derivations). It has been expanded in [14] to account for
a model of fish behavior where particles interact through curvature control, and in [15] to
include diffusive corrections. Other variants have also been investigated. For instance, [19]
studies the influence of a vision angle and of the dependency of the alignment frequency
upon the local density. [11, 20] propose a modification of the model which results in phase
transitions from disordered to ordered equilibria as the density increases and reaches a
threshold, in a way similar to polymer models [17, 31].

The organization of the paper is as follows. In Section 2, we introduce the model
of self-propelled particles and set up the associated kinetic equation. We then discuss
various scalings which lead to the derivation of the studied hydrodynamic models. We
introduce four dimensionless parameters in the problem: the scaled interaction mean-free
path ε, the radius of the sensing region η, the noise intensity δ and the relative strength
between the attraction-repulsion and the alignment forces χ̃. The scaling considered in
[13] ignores the attraction-repulsion force (i.e. χ̃ = 0) and supposes that ε = η → 0 with
δ = O(1). Here, we investigate four different scaling relations.

1. The weakly non-local interaction scaling without noise: η =
√
ε, δ = 0, χ̃ = η2. The

resulting model is a viscous version of the SOH model. We recall (see e.g. [13]) that
the SOH model is a variant of the inviscid isothermal compressible Euler equations
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where the fluid velocity is constrained to be of unit norm. More precisely, in the
SOH model, the unknown fluid velocity is replaced by the fluid velocity direction
(or polarization vector). As a result of this constraint, the momentum balance
equation is non-conservative. In this scaling, we assume that the solutions of the
kinetic equation are monokinetic. We justify this assumption by studying the space
homogeneous kinetic model and prove that the solutions converge on the fast ε time
scale to the monokinetic distribution. We also highlight the variational structure of
this space homogeneous kinetic model. Note that the scaling assumption η =

√
ε

is different from the one used in [13]. It corresponds to increasing the size of the
interaction region in the microscopic variables by a factor 1/

√
ε, as ε → 0. Therefore,

more and more non-local effects are picked up in the hydrodynamic limit. These
non-local effects give rise to the viscosity term in the viscous SOH model, which
makes an original addition from previous works.

2. The local interaction scaling with noise. This is the scaling proposed in [13]. It
is recalled here just for the sake of comparisons. It consists in letting η ≪ ε,
δ = O(1), χ̃ ≤ η2. The resulting model is the inviscid SOH model (see presentation
in the previous item).

3. The weakly non-local interaction scaling with noise. This scaling unifies the two
previous scalings. It consists in letting η =

√
ε, δ = O(1), χ̃ = η2. Again, the

resulting model is a viscous SOH model, but with modified coefficients as compared
to the first scaling. We note however, that in the zero noise limit δ → 0, we recover
the system obtained with the first scaling, which provides another justification of
the monokinetic assumption in the derivation of the model.

4. Strong potential force scaling. This corresponds to η =
√
ε, δ = O(1), χ̃ = 1.

Therefore, here, the attraction repulsion force is of the same order as the alignment
force. However, we make the additional assumption that the zero-th order moment
of the potential is zero, which expresses some kind of balance between the attraction
and repulsion effects. Equivalently, we can say that we modify the potential with
van der Waals modification [40]. This results in an SOH model with the addition
of a term analog to the capillary force (or Korteweg term [23]), induced from the
attractive part of the potential.

In Section 3, we prove local well-posedness for all the models derived in Section 2,
except the last one (strong potential force scaling). All these systems have the same form
of a symmetrizable hyperbolic system with additional viscosity. In Section 3.1, we prove
the local-in-time existence of solutions for the viscous system in 2D and in Section 3.2, we
show the same result for the inviscid system in 3D based on the energy method. Finally,
a conclusion is drawn in Section 4.
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2 Derivation of Self-Organized Hydrodynamic mod-

els

2.1 Individual-Based Model of self-alignment with attraction-

repulsion

The starting point of this study is an Individual-Based Model of particles interacting
through self-alignment [41] and attraction-repulsion [2, 36, 9]. Specifically, we consider
N particles xk ∈ Rn, k = 1, . . . , N , moving at a constant speed a > 0 with direction
vk ∈ Sn−1. Each particle adjusts its velocity to align with its neighbors or to get closer
to or further away from them. The evolution of each particle is modeled by the following
dynamics:

dxk
dt

= avk, (2.1)

dvk = Pv⊥
k
◦
(

σvk dt+
√
2d dBk

t

)

. (2.2)

Here, Pv⊥
k
= Id− vk ⊗ vk is the projection matrix onto the normal plane to vk. It ensures

that vk stays of norm 1. Bk
t are independent Brownian motions in Rn and the stochastic

differential equation (2.2) is to be understood in the Stratonovitch sense. The quantities
d and σ represent the noise and social force intensities respectively. The social force
describes attraction at large distances, repulsion at short distances and alignment in the
intermediate range, in accordance to the so-called three zone model [2, 36, 9]. Both the
alignment and attraction-repulsion rules are encoded in the vector vk:

vk =
jk + χrk
|jk + χrk|

,

where jk counts for the alignment and rk for the attraction-repulsion:

jk =
1

N

N
∑

j=1

K(|xj − xk|)vj, (2.3)

rk = −∇x

( 1

N

N
∑

j=1

Φ(|x− xj |)
)∣

∣

∣

x=xk

= − 1

N

N
∑

j=1

Φ′(|xk − xj |)
xk − xj
|xk − xj |

, (2.4)

and χ measures the strength of the attraction-repulsion force relative to the alignment
force (and has physical dimension of a length). We denote by Φ′ the derivative of Φ with
respect to |x|. We assume that the kernel K is positive and that both kernels K and Φ
are integrable and that K and Φ are ’normalized’ in the following sense:

K ≥ 0,

∫

Rn

K(|x|) dx = 1,

∫

Rn

|Φ(|x|)| dx = 1. (2.5)

In addition, we assume that Φ tends to zero at infinity (i.e. Φ(r) → 0 when r → ∞).
We note that Φ′ can be negative in some regions (the repulsion regions) and positive
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in other regions (the attraction regions). In figure 1, we give examples of functions K
and Φ modeling the popular three-zone model for fish behavior [2, 9, 32]. We make the
assumption that both potentials describe a certain interaction scale R and we highlight
this fact by writing

K(|x|) = 1

Rn
K̃
( |x|
R

)

, Φ(|x|) = 1

Rn
Φ̃
( |x|
R

)

,

where K̃ and Φ̃ are reference interaction kernels and R is the sensing radius.

attraction

alignment

repulsion

alignment attractionrepulsion

Φ(r)

K(r)

0 r

Figure 1: The three-zone model (repulsion-alignment-attraction) can be viewed as a spe-
cial choice of kernel K and potential Φ.

When the number of particles becomes large (i.e. N → ∞), one can formally derive
the equation satisfied by the particle distribution function f(x, v, t) (i.e. the probability
distribution of the particles in phase-space (x, v)). Under suitable assumptions [3, 13, 37],
f satisfies the following kinetic equation:

ft + av · ∇xf = −σ∇v · [(Pv⊥vf )f ] + d∆vf, (2.6)

where

vf =
jf + χrf
|jf + χrf |

, (2.7)

jf =
1

Rn

∫

x′,v′
K̃
( |x′ − x|

R

)

v′ f(x′, v′, t) dx′dv′, (2.8)

rf = − 1

Rn
∇x

∫

x′,v′
Φ̃
( |x′ − x|

R

)

f(x′, v′, t) dx′dv′, (2.9)

The operator ∇v denotes the tangential gradient on the sphere and ∆v is the Laplace-
Beltrami operator. Using this kinetic formulation, we want to explore the asymptotic
behavior of the model in different regimes. For this purpose, we introduce a scaling of the
physical variables. This is the purpose of the next section.
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2.2 Scaling parameters

We now introduce dimensionless variables and scaling assumptions. Let t0 be a time
unit and let x0 = at0, f0 = 1/(x0)

n. We choose t0 in such a way that σt0 = 1 and
introduce the quantity δ = dt0 = O(1). Introducing new variables x̃ = x/x0, t̃ = t/t0,
f̃(x̃, v, t̃) = f(x, v, t)/f0, eq. (2.6) is written:

f̃t̃ + v · ∇x̃f̃ = −∇v ·
[

(Pv⊥vf̃ )f̃
]

+ δ∆vf̃ , (2.10)

In this choice of units, the influence of the social force and of the noise are of order unity.
We now introduce

R̃ =
R

x0
, χ̃ =

χ

x0
.

Then, eqs (2.7)-(2.9) are now written in dimensionless variables:

vf̃ =
j̃f̃ + χ̃r̃f̃

|j̃f̃ + χ̃r̃f̃ |
, (2.11)

j̃f̃ =

∫

x̃′,v′
K̃
( |x̃′ − x̃|

R̃

)

v′ f̃(x̃′, v′, t̃) dx̃′dv′, (2.12)

r̃f̃ = −∇x̃

∫

x̃′,v′
Φ̃
( |x̃′ − x̃|

R̃

)

f̃(x̃′, v′, t̃) dx̃′dv′, (2.13)

where j̃f̃ (x̃, t̃) = Rn jf (x, t) and r̃f̃(x̃, t̃) = Rn rf(x, t).
We now introduce hydrodynamic scale, this means that we change the space and

time units to new ones x′0, t
′
0 which are large compared to the microscopic units x0, t0.

Specifically, we let ε ≪ 1 be a small parameter and define x′0 = x0/ε, t
′
0 = t0/ε. By doing

so, we change the space and time variables x̃ and t̃ to macroscopic variables x̂ = εx̃, t̂ = εt̃
and define f̂(x̂, v, t̂) = ε−nf̃(x̃, v, t̃). Finally, we define

η = εR̃.

In all sections but Section 2.6, we scale the relative intensity of the attraction-repulsion
force to the alignment force χ̃ as:

χ̃ = η2. (2.14)

We refer to this scaling as the weak potential force scaling. In Section 2.6, this assumption
will be changed to χ̃ = 1 under van der Waals modification of the potential. This other
scaling is referred to as the strong potential force scaling.

Performing this new change of variables and dropping the hats on the variables for the
sake of simplicity, we are led to the following system for the kinetic distribution function
f(x, v, t):

ft + v · ∇xf =
1

ε

(

−∇v ·
[

(Pv⊥v
η
f)f

]

+ δ∆vf
)

, (2.15)
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where, in the weak potential force scaling (2.14), we have:

vηf =
jηf + η2rηf
|jηf + η2rηf |

, (2.16)

jηf =

∫

(x′,v′)∈Rn×Sn−1

K

( |x′ − x|
η

)

v′ f(x′, v′, t) dx′ dv′, (2.17)

rηf = −∇x

∫

(x′,v′)∈Rn×Sn−1

Φ

( |x′ − x|
η

)

f(x′, v′, t) dx′ dv′. (2.18)

Reminding that K is normalized by (2.5), we denote:

k =
1

2n

∫

ξ∈Rn

K(|ξ|) |ξ|2 dξ, Θ =

∫

ξ∈Rn

Φ(|ξ|) dξ.

The potential Φ is said to be globally repulsive if Θ ≥ 0. Indeed, we will see that
the introduction of the potential gives rise to an additional isothermal pressure force
associated to an equivalent temperature Θ in the SOH model. If Θ is negative, then the
SOH model may become nonhyperbolic. This occurs when particle attraction at large
distances overtakes particle repulsion at short distances. Such potentials are thus referred
to as globally attractive ones. We want to avoid them. Therefore, we make the assumption
of a globally repulsive potential, with Θ ≥ 0.

Defining the moments ρf and ρfuf of f by

ρf =

∫

v∈Sn−1

f(v) dv, ρfuf =

∫

v∈Sn−1

f(v) v dv,

we have the following Taylor expansion of the quantity vηf (given by (2.16)) in the weak
potential force scaling:

vηf = Ωf + η2
1

ρf |uf |
ℓf + o(η2), (2.19)

Ωf =
uf
|uf |

, ℓf = PΩ⊥

f
(k∆x(ρfuf)−Θ∇xρf).

Inserting this expression into the kinetic equation (2.15), we get

ft + v · ∇xf = −1

ε
∇v · [(Pv⊥Ωf )f ]

−η
2

ε

1

ρf |uf |
∇v · [(Pv⊥ℓf )f ] +

δ

ε
∆vf + o(

η2

ε
). (2.20)

We now consider four different scaling limits which lead to models for which we will
prove local existence of classical solutions. They are all concerned with the limits η → 0
and ε → 0 but assume different relations between η and ε. In addition, in some cases,
we distinguish between the noisy case δ 6= 0 and the noiseless case δ = 0. The first three
scalings are relative to the weak potential force scaling, while the fourth one considers the
strong potential force scaling. Specifically, these scalings are (see the discussion at the
end of Section 1):
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1. Weakly non-local interaction without noise: η2/ε = O(1) and δ = 0.

2. Local interaction with noise: η2/ε = o(1) and δ = O(1).

3. Weakly non-local interaction with noise: η2/ε = O(1) and δ = O(1)

4. Strong potential force scaling: large attraction-repulsion force χ̃ = O(1), with van
der Waals modification of the potential. Note that in this last scaling, expansion
(2.19) is not true (and consequently neither is (2.20)). The correct expansion for
this case will be performed in Section 2.6.

The weakly non-local interaction scaling allows us to retain some of the nonlocality of the
social force in the macroscopic model, while the local one does not. Indeed, ε corresponds
to the characteristic distance needed by an individual to react to the social force, while
η is the typical distance at which agents are able to detect their congeners. For instance,
the local scaling is satisfied if η = O(ε). In this case, these two distances are of the
same order of magnitude. By contrast, in the non-local interaction scaling, the agents’
detection region is large compared to the reaction distance. Which one of these two
regimes is biologically relevant depends on the situation. For instance, we can imagine
that the local interaction scaling will be more relevant in denser swarms because in such
systems, far agents are concealed by closer ones. We will present these various scaling
sequentially, starting from the first one (Section 2.3), then moving successively towards
the second (Section 2.4), third (Section 2.5) and fourth (Section 2.6) ones.

2.3 Weakly non-local interaction scaling without noise

In this scaling limit, we assume no noise δ = 0 and the following ordering between the
two parameters ε and η:

ε → 0, η → 0,
η2

ε
→ 1.

f ε satisfies (keeping only the O(1) terms in ε or larger):

f ε
t + v · ∇xf

ε +
1

ρfε |ufε|∇v · [(Pv⊥ℓfε)f ε] = −1

ε
∇v · [(Pv⊥Ωfε)f ε] . (2.21)

This equation results from (2.20) by making η2/ε = 1 in the second term at the right-hand
side of (2.20) and moving it to the left-hand side and by omitting the third term.

In order to study the limit ε → 0, we have to determine the stable equilibria i.e. the
stable solutions of ∇v · [(Pv⊥Ωfε)f ε] = 0. Such stable equilibria are defined as the limits
as time tends to infinity of the spatially homogeneous equation:

ft = −1

ε
∇v · [(Pv⊥Ωf )f ] . (2.22)

In the following lemma, we show that its solution relaxes to a monokinetic distribution:

f ε(v, t) → ρ δΩ(v), (2.23)
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with ρ > 0, Ω ∈ S
n−1 and where δΩ(v) denotes the Dirac delta at v = Ω. Moreover, this

limit occurs at the fast ε time scale. More precisely, we have

Proposition 2.1 We assume that
∫

f |t=0 dv = 1 so that
∫

f(v, t) dv = 1 and u =
∫

v f(v) dv for all times (we omit the index f when the context is clear). We also as-
sume that ut=0 6= 0, otherwise, the dynamics is not defined. Then, any stable limit point
of the solution f(t) of (2.22) as t→ ∞ is of the form δΩ(v) for some Ω ∈ Sn−1.

Proof. We introduce the free energy:

F(f) =

∫

(

1− u · v
)

f(v) dv,

and note that F(f) = 1 − |u|2 ≥ 0 because |u| ≤ 1. We note that |u|2 is the classical
order parameter [41]. In Lemma 2.2 below, we prove that F(f) satisfies the following
dissipation equation:

∂

∂t
F(f) +D(f) = 0, D(f) =

2

ε

∫ |u|2 − (v · u)2
|u| f(v) dv. (2.24)

Since |u|2 − (v · u)2 ≥ 0, we have
∂

∂t
F(f) ≤ 0.

Therefore, F(f) is a decreasing function of time. Furthermore, if f is a distribution such
that

D(f) = 0 =
2

ε

∫ |u|2 − (v · u)2
|u| f(v) dv =

|u|
2ε

∫

∣

∣v − u

|u|
∣

∣

2 ∣
∣v +

u

|u|
∣

∣

2
f(v) dv, (2.25)

then f is of the form of a dipole:

f = αδΩ(v) + (1− α)δ−Ω(v), (2.26)

where α ∈ [0, 1] and Ω = u
|u|

∈ Sn−1. Indeed, f is a positive measure and the quantity at

the right-hand side of (2.25) can only be zero if f is supported by either Ω or −Ω. Now,
any dipole such that α 6= 1 is trajectorily unstable. Indeed, eq. (2.22) is a first order
conservation law on the sphere. The characteristics of this equation are given by:

v̇ =
1

ε
Pv⊥Ω. (2.27)

This dynamical system has two stationary points: Ω and −Ω. The point Ω is a sink and
is stable. By contrast, the point −Ω is a source and hence is unstable. Therefore, a dipole
with α 6= 1 can never be reached in the course of the dynamics, unless it is initially a
dipole or a perturbation of a dipole with cylindrical symmetry around the dipole axis.
We illustrate the geometry of the characteristics given by (2.27) in Fig. 2, which shows
the source −Ω and sink Ω of this system.
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To conclude, we collect all these observations. The quantity F(f) is decreasing with
time and tends to a limit F∞ as t→ ∞. Therefore, the dissipation rate D(f) tends to 0.
This implies that any limit point f∞ of f(t) satisfies D(f∞) = 0. Owing to the instability
of the dipole, this implies that any stable limit point f∞ is of the form f∞ = δΩ(v) for
some Ω ∈ Sn−1 with typical convergence rate ε−1.

Ω

−Ω

Figure 2: The trajectories of the differential equation (2.27) on the sphere, showing the
source −Ω and sink Ω.

Lemma 2.2 Any solution f of (2.22) satisfies (2.24).

Proof. We write

∂

∂t
F(f) =

∫

(1− (u · v)) ∂tf(v) dv − ut ·
∫

v f(v) dv

=

∫

(1− (u · v)) ∂tf(v) dv −
∫

v ∂tf(v) dv · u

= ∂t(

∫

f(v) dv)− 2

∫

(u · v) ∂tf(v) dv

= −2

∫

(u · v) ∂tf(v) dv.

To pass from the first to the second line in the last term, we note that
∫

v f(v) dv = u
and therefore, ut ·

∫

v f(v) dv = u ·
∫

v ft(v) dv. In the last equality, we have used that
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∫

f(v, t) dv = 1. Now, multiplying (2.22) by −2(u ·v), integrating with respect to v, using
Green’s formula on the sphere and the fact that ∇v(v · u) = Pv⊥u, we get:

∂

∂t
F(f) +

2

ε

∫

(Pv⊥u · Pv⊥Ω) f(v) dv = 0.

But by definition of Ω, we have Ω = u
|u|
, so that we find:

Pv⊥u · Pv⊥Ω =
1

|u|(|u|
2 − (u · v)2),

which leads to the result.

Now, we return to the space-inhomogeneous system (2.21). Using the previous study,
we can state the

Theorem 2.3 If ε tends to 0 in (2.21), we formally have f ε → ρδΩ where δΩ(v) is the
Dirac delta distribution at v = Ω and ρ = ρ(x, t) and Ω = Ω(x, t) satisfy the following
SOH system:

∂tρ+∇x · (ρΩ) = 0, (2.28)

∂t(ρΩ) +∇x · (ρΩ⊗ Ω) + ΘPΩ⊥∇xρ = kPu⊥∆x(ρΩ). (2.29)

We formally have |Ω(·, t)| = 1 for all t > 0 as soon as the initial data (ρ0,Ω0) satisfies
|Ω0| = 1.

Remark 2.1 The repulsive force contributes for a pressure term at the left-hand side of
the momentum equation, which otherwise would not be strictly hyperbolic, and would fall
in the class of Pressureless Gas Dynamics models [4].

Elements of the proof. We begin with some remarks. For the sake of simplicity, we
note

〈ϕ〉Sn−1 =

∫

v∈Sn−1

ϕ(v) dv.

We first notice the (easy and left to the reader) identity

〈v∇vA(v)〉Sn−1 = −〈A(v)〉Sn−1 , (2.30)

which is valid for any smooth tangent vector field A(v) on S
n−1. Now, we form the vector

test function

ϕf(v) =
PΩ⊥

f
v

|PΩ⊥

f
v| . (2.31)

We note that ϕf can be written:

ϕf(v) = Ψ(v · Ωf ) PΩ⊥

f
v, Ψ(X) =

1

(1−X2)1/2
, X = v · Ωf ∈ [−1, 1].
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The following identity holds:

〈ϕf ∇v · (Pv⊥Ωf f)〉Sn−1 = 0, (2.32)

for all distribution function f(v) on Sn−1. This identity is proved at Lemma 2.4 below.
Now, first we note that, because of proposition 2.1, we have

f ε(x, v, t) → ρ(x, t) δΩ(x,t)(v) as ε→ 0. (2.33)

In other words, in the limit ε→ 0, f ε converges to a monokinetic distribution function.
Now, we integrate (2.21) upon v ∈ S

n−1. By Green’s formula, the integrals of the last
term of the left-hand side and of the right-hand side vanish and we are left with the mass
conservation equation

(ρfε)t +∇x · (ρfεufε) = 0.

Now, taking the limit ε → 0 and using (2.33), we have ufε → u = Ω and we finally get
(2.28).

In order to find an equation for Ω, we multiply (2.21) by the GCI (2.31) and get

〈

(

f ε
t + v · ∇xf

ε +
1

ρfε |ufε|∇v · [(Pv⊥ℓfε)f ε]

)

ϕfε

〉

Sn−1 = 0. (2.34)

Now, we intend to pass to the limit ε→ 0 in this equation. However, notice that the GCI
(2.31) is singular near v = Ω while f ε concentrates to a Dirac delta at this point. There-
fore, this limit is not straightforward and requires some smoothing procedure. Instead,
in the next section, we consider a noisy version of this problem such that f ε converges
to a smooth distribution, which allows to pass to the limit easily (see eq. (2.41)). If we
let δ → 0 in eq. (2.41) below, we get the momentum balance equation (2.29). The direct
proof from using (2.34) is left to future work.

Lemma 2.4 The following identity holds:

〈ϕf ∇v · (Pv⊥Ωf f)〉Sn−1 = 0, (2.35)

for all distribution function f(v) on Sn−1.

Proof. We omit the subscript f to Ω, the dependence of Ψ upon (v · Ω) and the indices
S
n−1 to the brackets for the sake of simplicity. We denote by B the quantity to be

evaluated, i.e;

B = 〈ΨPΩ⊥v∇v · (Pv⊥Ω f)〉

Pulling PΩ⊥ outside the bracket and using Leibnitz formula, we have:

B = PΩ⊥〈Ψ v∇v · (Pv⊥Ω f)〉
= PΩ⊥〈v∇v · (ΨPv⊥Ω f)〉 − PΩ⊥〈v∇vΨ · Pv⊥Ω f〉
= −PΩ⊥〈ΨPv⊥Ω f〉 − PΩ⊥〈vΨ′|Pv⊥Ω|2 f〉,
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where we have used (2.30) and the fact that ∇vΨ = Ψ′Pv⊥Ω to simplify the first and
second brackets in the last equation. We denote by Ψ′(X) the derivative or Ψ(X) with
respect to X . Now, we remark that

PΩ⊥ Pv⊥ Ω = (Id− Ω⊗ Ω)(Id− v ⊗ v)Ω

= −(v · Ω) (Id− Ω⊗ Ω)v = −(v · Ω)PΩ⊥v,

and that |Pv⊥Ω|2 = 1− (v · Ω)2. This leads to

B = 〈PΩ⊥v
(

(v · Ω)Ψ− (1− (v · Ω)2) Ψ′
)

f〉

Now, since Ψ satisfies the differential equation

XΨ(X)− (1−X2)Ψ′(x) = 0,

we have B = 0, which proves (2.35).

Remark 2.2 The n − 1 independent functions (ϕf)k = ϕf · ek where (e1, . . . , en−1) is
an orthonormal basis of {Span(Ωf )}⊥ are the ’Generalized Collision Invariants’ (or GCI)
associated to the operator Q(f) = −∇v · (Pv⊥Ωf f) in the sense of [13] (see proof of
Theorem 2.5 below for more detail on the GCI).

Remark 2.3 The quantity F(f) is a free energy for the spatially homogeneous problem
(2.22) and provides a variational structure. First, let us denote by ν = δF

δf
the first

variation of F with respect to f . It is defined by

〈δF
δf

, g〉 = d

dǫ

∣

∣

∣

ǫ=0
F(f + ǫg),

where g is an increment of f , i.e. a function g(v) satisfying
∫

g(v) dv = 0 (so that f + ǫg
satisfies the admissibility condition

∫

(f + ǫg) dv = 1) and such that there exists ǫ0 with
f + ǫg ≥ 0 for all ǫ < ǫ0. Eq. (2.22) can be recast as

ft −
1

ε|u|∇v · {[∇v(
δF
δf

)]f} = 0, (2.36)

which shows that the flow of (2.22) has a gradient flow structure in the Wasserstein metric
[43]. We have:

F(f)t +
1

ε|u|

∫

|∇v(
δF
δf

)|2 f dv = 0, (2.37)

which provides another proof of the decay of F(f) with time. Indeed, we have:

δF
δf

(g) = −2u ·
∫

g(v) v dv = 〈−2(u · v), g〉,
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which yields

ν =
δF
δf

= −2u · v.

A simple computation shows that

∇vν = −Pv⊥u = −|u|Pv⊥Ω.

Therefore, eq. (2.22) can be written as (2.36). Now, multiplying by δF
δf
, integrating over

v and using Green’s formula, we get (2.37). The variational structure of (2.22) will be
exploited in future work.

2.4 Local interaction scaling with noise

In this scaling we assume that δ 6= 0 is a given constant. We also assume that ε and η
are such that:

ε → 0, η → 0,
η2

ε
→ 0.

With this last assumption, the O(η
2

ε
) term in (2.20), which results from the non-locality

of the average alignment direction, vanishes. Therefore, this scaling keeps only the local
contribution of the alignment interaction. The resulting asymptotic problem, keeping
only terms of order O(1) or larger, is written:

f ε
t + v · ∇xf

ε =
1

ε
{−∇v · [(Pv⊥Ωε)f ε] + δ∆vf

ε} . (2.38)

The difference with (2.20) it that the second term at the right-hand side of (2.20) is
omitted. The limit of (2.38) as ε→ 0 has been studied in [13] in dimension 3 and in [19]
in any dimensions. The result is stated in the following theorem.

Theorem 2.5 If ε tends to 0 in (2.38), we formally have f ε → ρMΩ where MΩ(v) is the
Von Mises-Fischer distribution:

MΩ(v) =
exp(β(v · Ω)) dv

∫

v∈Sn−1 exp(β(v · Ω)) dv
, β =

1

δ
, (2.39)

and ρ and Ω satisfy the following Self-Organized Hydrodynamic (SOH) system:

∂tρ+ c1∇x · (ρΩ) = 0, (2.40)

ρ(∂tΩ + c2Ω · ∇xΩ) + δPΩ⊥∇xρ = 0. (2.41)

The constants c1 and c2 are defined by

c1 =

∫

v∈Sn−1

MΩ(v) (v · Ω) dv, (2.42)

c2 =

∫

v∈Sn−1 MΩ(v) h(v · Ω) (1− (v · Ω)2) (v · Ω) dv
∫

v∈Sn−1 MΩ(v) h(v · Ω) (1− (v · Ω)2) dv , (2.43)
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where h(v ·Ω) is the Generalized Collision Invariants (GCI) [13] and is defined as follows
in the n-dimensional case [19]. Set ψa(v) = h(Ω · v) (a · v) where a ∈ Rn is any vector
such that a · Ω = 0. Then, ψa is the unique solution in the Sobolev space H1(Sn−1) with
zero mean, of the following elliptic problem:

−∆vψ − β(Ω · ∇v)ψ = a · v. (2.44)

Finally, we formally have |Ω(·, t)| = 1 for all t > 0 as soon as the initial data (ρ0,Ω0)
satisfies |Ω0| = 1.

Sketch of the proof. We refer to [13] in the three dimensional case and [19] in the
general n-dimensional case for more details. We denote by

Q(f) = −∇v · [(Pv⊥Ωf )f ] + δ∆vf, Ωf =
jf
|jf |

, jf =

∫

f(v) v dv,

the ’collision’ operator and write (2.38) as

f ε
t + v · ∇xf

ε =
1

ε
Q(f ε). (2.45)

We assume that f ε → f as ε→ 0 as smoothly as needed (which means in particular that
derivatives of f ε converge to the corresponding derivatives of f). From (2.45), we notice
that Q(f ε) = O(ε), which implies that Q(f) = 0. The functions ϕ(v) such that Q(ϕ) = 0
are the so-called equilibria of Q. It is shown in [13, 19] that the equilibria of Q are of
the form ϕ(v) = ρMΩ(v) with MΩ given by (2.39) and ρ > 0, Ω ∈ Sn−1 are arbitrary.
Therefore,

f(x, v, t) = ρ(x, t)MΩ(x,t)(v), (2.46)

where ρ(x, t) and Ω(x, t) need now to be determined.
In order to find equations for ρ and Ω, we introduce the notion of a ’Generalized

Collision Invariant’ or GCI. In kinetic theory, a ’Collision Invariant’ (or CI) of the collision
operator Q is a function ψ(v) such that

∫

Q(f)(v)ψ(v) dv = 0, ∀ functions f(v).

In this formal proof, we do not specify the functional setting any further. Here, following
this definition, we find that the set of CI’s is the one-dimensional space spanned by
the constants. But the dimension of the space of the CI’s determines the number of
conservation equations for the macroscopic model. Here, we only get one conservation
equation (namely the mass conservation equation, which determines ρ) with this concept.
We are lacking n − 1 independent equations to determine the unit vector Ω. In order to
find these additional equations, we weaken the concept of a CI to define the concept of a
GCI. For this purpose, we introduce the operator

Q(Ω, f) = −∇v · [(Pv⊥Ω)f ] + δ∆vf.

We note that for fixed Ω, Q(Ω, f) is a linear operator of f . The GCI’s are now defined
as follows:
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Definition 2.6 Let Ω ∈ S
n−1 be given. The function ψΩ(v) is a ’Generalized Collision

Invariant’ or GCI of Q associated to the direction Ω if and only if we have

∫

Q(Ω, f)ψΩ(v) dv = 0, ∀ functions f(v) such that Ωf = ±Ω. (2.47)

The constraint Ωf = ±Ω is a linear constraint on f and it is shown in [13, 19] that
condition (2.47) is equivalent to saying that there exists a vector a ∈ Rn, with a · Ω = 0
such that ψΩ = ψa solves the equation:

Q∗(Ω, ψa) = a · v, (2.48)

where Q∗(Ω, ·) is the L2-adjoint of Q(Ω, ·). We easily see that (2.48) leads to (2.44).
Furthermore, by rotational invariance, ψa is, up to a constant, of the form h(Ω · v)(a · v).
Therefore, the vector space of GCI’s is spanned by the function 1 and the n−1 independent

functions h(Ω·v) v ·ek, where (e1, . . . , ek, . . . , en−1) is an orthonormal basis of
(

Span{Ω}
)⊥

.
Now, (2.40) and (2.41) are obtained by pre-multiplying (2.38) by respectively 1 (for

(2.40)) and a non-constant GCI ψΩfε
(for (2.41)) and integrating them with respect to

v. By (2.47), the contributions of the singular term involving Q disappear and we can
let ε → 0 in the resulting equations, which only involve regular terms in ε. After some
analytic computations which are detailed in [13, 19], we find eqs. (2.40), (2.41) together
with the coefficients (2.42), (2.43).

Remark 2.4 We note that c1 is such that 0 < c1 < 1. The parameter c1 is the classical
order parameter of the Von-Mises distribution. The parameter c2 satisfies 0 < c2 < c1. In
more general situations (involving a limited field of vision), the range of values of c2 may
be much larger. It can be negative or larger than c1 (see [19] for details).

2.5 Weakly non-local interaction scaling with noise

In this section, we propose a scaling which unifies the two previous ones. In this scaling
we assume that δ is a given constant and that:

ε → 0, η → 0,
η2

ε
→ 1.

Here η2

ε
→ 1 instead of 0 like in the previous section. Inserting these assumptions into

(2.20), and keeping terms of order O(1) or larger, we get

f ε
t + v · ∇xf

ε +
1

ρfε |ufε|∇v · [(Pv⊥ℓfε)f ε] =

1

ε
{−∇v · [(Pv⊥Ωfε)f ε] + δ∆vf

ε} . (2.49)
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The difference with (2.20) it that the second term at the right-hand side of (2.20) is moved
to the left-hand side while making η2/ε = 1. The limit of (2.49) as ε→ 0 can been studied
by the same techniques as in [13, 19] (see also proof of Theorem 2.5). The result is stated
in the following theorem.

Theorem 2.7 If ε tends to 0 in (2.49), we formally have f ε → ρMΩ where MΩ(v) is the
Von Mises-Fischer distribution (2.39). ρ and Ω satisfy the following viscous SOH system:

∂tρ+ c1∇x · (ρΩ) = 0, (2.50)

ρ(∂tΩ + c2Ω · ∇xΩ) + (δ + c3Θ)PΩ⊥∇xρ = c3kc1PΩ⊥∆x(ρΩ), (2.51)

where the constants c1 and c2 are defined as in Theorem 2.5 and

c3 =
(n− 1)δ + c2

c1
. (2.52)

We formally have |Ω(·, t)| = 1 for all t > 0 as soon as the initial data (ρ0,Ω0) satisfies
|Ω0| = 1.

Remark 2.5 We notice that ck → 1 as δ → 0 for k = 1, 2, 3 and we recover the noiseless
system (2.28), (2.29) when δ → 0.

Proof. We write (2.49) as

(T1 + T2)f
ε =

1

ε
Q(f ε),

where T1 + T2 and Q are respectively the operators appearing at the left and right hand
sides of (2.49). T1 = ∂t + v · ∇x and T2 is the remaining part of the left-hand side.
Integrating over v and letting f ε → ρMΩ leads to the mass conservation equation (2.40)
unchanged, since T2 is in divergence form and vanishes through integration with respect
to v.

Now, to get the momentum equation, we proceed like in [13, 19] or as in the proof of
Theorem 2.5. From the Generalized Collision Invariant property, it follows that

PΩ⊥

∫

v∈Sn−1

T (ρMΩ) h v dv = 0.

Now, the term

P1 := PΩ⊥

∫

v∈Sn−1

T1(ρMΩ) h v dv

gives rise to the same expression as in Theorem 2.5. This expression is

P1 = βαρ∂tΩ + γΩ · ∇xΩ + αPΩ⊥∇xρ,
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with

α =
1

n− 1

∫

v∈Sn−1

MΩ(v) h (1− (v · Ω)2) dv,

γ =
1

(n− 1)δ

∫

v∈Sn−1

MΩ(v) h (1− (v · Ω)2) (v · Ω) dv.

Dividing by αβ, we find the coefficients c2 and δ of (2.41) (we recall that βδ = 1).
We introduce the notation

ℓ := ℓρMΩ
= PΩ⊥(kc1∆x(ρΩ)−Θ∇xρ),

and consider

P2 := PΩ⊥

∫

v∈Sn−1

T2(ρMΩ) h v dv

=
1

c1
PΩ⊥

∫

v∈Sn−1

∇v · [(Pv⊥ℓ)MΩ] h v dv.

Using Green’s formula, we get

P2 = − 1

c1
PΩ⊥

∫

v∈Sn−1

[Pv⊥ℓ] · ∇v(h v)MΩ dv.

We note that (Pv⊥ℓ) ·∇vϕ = ℓ ·∇vϕ, with ϕ being any component of h v. We deduce that

P2 = − 1

c1
PΩ⊥

∫

v∈Sn−1

(ℓ · ∇v)(h v)MΩ dv

= − 1

c1
PΩ⊥

(
∫

v∈Sn−1

∇v(h v)MΩ dv

)T

ℓ. (2.53)

Now, we use the formulas:
∫

Sn−1

∇vg dv = (n− 1)

∫

S2

vg dv
∫

Sn−1

(∇vg)h dv = (n− 1)

∫

S2

vgh dv −
∫

S2

(∇vh)g dv

for any pair of scalar functions g, h on Sn−1. We recall that ∇vMΩ = βPv⊥ΩMΩ. Since
ℓ · Ω = 0, we compute the matrix

D :=

(
∫

v∈Sn−1

∇v(h v)MΩ dv

)T

PΩ⊥

= (n− 1)

(
∫

v∈Sn−1

(v ⊗ v)hMΩ dv

)

PΩ⊥

−β
(
∫

v∈Sn−1

(v ⊗ Pv⊥Ω)hMΩ dv

)

PΩ⊥

:= (n− 1)D1 −D2.
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We decompose
v = v⊥ + v‖, v⊥ = PΩ⊥v, v‖ = (v · Ω)Ω.

Using this decomposition and the fact that integrals of odd degree polynomials of v⊥ over
Sn−1 vanish, we have:

D1 =

(
∫

v∈Sn−1

(v⊥ ⊗ v⊥)hMΩ dv

)

PΩ⊥ = αPΩ⊥,

and

D2 = β

(
∫

v∈Sn−1

(v‖ + v⊥)⊗ (Ω− (Ω · v)(v‖ + v⊥)) hMΩ dv

)

PΩ⊥.

Owing to the fact that any term of the form (A⊗ v‖)PΩ⊥ = 0 for any vector A, we have
since v‖ is parallel to Ω:

D2 = −β
(
∫

v∈Sn−1

(v⊥ ⊗ v⊥)(Ω · v) hMΩ dv

)

PΩ⊥ = −γPΩ⊥ .

Inserting these results into (2.53), we get

P2 = −(n− 1)α + γ

c1
ℓ.

Collecting all the results and dividing by αβ, we are led to the momentum equation (2.51),
which ends the proof.

2.6 Strong potential force scaling: induced capillary (or Ko-

rteweg) force

In this section, we investigate the case where the attraction-repulsion force term is of the
same order as the alignment term in the expression of the alignment direction vηf , i.e. we
change vηf into ṽηf in (2.15), with ṽηf given by:

ṽηf =
jηf + rηf
|jηf + rηf |

, (2.54)

where jηf and rηf are respectively given by (2.17) and (2.18). Note that, by contrast to
(2.16), there is no η2 in front of rηf in (2.54).

The Taylor expansion of ṽηf is now given by

ṽηf = Ω̂f + η2
1

ρf |uf |
ℓf + o(η2),

Ω̂f =
uf −Θ∇xρf
|uf −Θ∇xρf |

, ℓf = PΩ̂⊥

f
(k∆x(ρfuf)−Θ2∇x∆xρf ),
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where

1

2n

∫

x′∈Rn

Φ(|ξ|) |ξ|2 dξ = Θ2.

Here, we suppose like in [2], that the potential is repulsive at short scales and attractive
at large scales (see Fig. 3). Therefore, Φ(|ξ|) is supposed to decrease for |ξ| ∈ [0, ξ∗] and
to increase for |ξ| ∈ [ξ∗,+∞). Furthermore, since Φ(|ξ|) is supposed integrable on Rn, we
have Φ(|ξ|) → 0 as |ξ| → ∞. It results that Φ(ξ∗) < 0 and that Φ ≥ 0 for |ξ| ∈ [0, ξ0]
and Φ ≤ 0 for |ξ| ∈ [ξ0,+∞) where ξ0 < ξ∗. We make the additional assumption that the
zero-th order moment vanishes:

Θ = 0, (2.55)

which expresses the balance between the attractive and repulsive parts of Φ. Given the
above assumptions, the second moment is negative:

Θ2 < 0. (2.56)

Equivalently, we can modify the expression of the attraction-repulsion (2.18) as:

rηf = −∇x

∫

(x′,v′)∈Rn×Sn−1

Φ

( |x′ − x|
η

)

(

f(x′, v′, t)− f(x, v, t)
)

dx′ dv′, (2.57)

instead of making the assumption (2.55). This modification of the interaction potential
was first introduced by van der Waals [40]. In this case, the inequality (2.56) has to be
put as an assumption.

ξ∗ξ0

Φ(|ξ|)

|ξ|

Figure 3: The attraction-repulsion potential Φ.

With these assumptions, the Taylor expansion of vηf simplifies and becomes:

ṽηf = Ωf + η2
1

ρf |uf |
ℓf + o(η2),

Ωf =
uf
|uf |

, ℓf = PΩ⊥

f
(k∆x(ρfuf)−Θ2∇x∆xρf ). (2.58)
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Now, we can develop the same theory as before, assuming that

ε → 0, η → 0,
η2

ε
→ 1.

Inserting these assumptions into (2.20), and keeping terms of order O(1) or larger, we get

f ε
t + v · ∇xf

ε +
1

ρfε |ufε|∇v · [(Pv⊥ℓfε)f ε] =

1

ε
{−∇v · [(Pv⊥Ωfε)f ε] + δ∆vf

ε} . (2.59)

with ℓf given by (2.58). The limit ε → 0 can be performed like in Section 2.5 and we
obtain the following theorem:

Theorem 2.8 If ε tends to 0 in (2.59) and under the assumption (2.55) (if the expression
(2.18) of the potential force is used) or (2.56) (if the expression (2.57) is used), we formally
have f ε → ρMΩ whereMΩ(v) is the Von Mises-Fischer distribution (2.39). ρ and Ω satisfy
the viscous SOH system with capillary (or Korteweg) force term:

∂tρ+ c1∇x · (ρΩ) = 0, (2.60)

ρ(∂tΩ+ c2Ω · ∇xΩ) + δPΩ⊥∇xρ = c3kc1PΩ⊥∆x(ρΩ) + c3|Θ2|PΩ⊥∇x∆xρ, (2.61)

where the constants c1 and c2 are defined as in Theorem 2.5 and c3 as in Theorem 2.7.
We formally have |Ω(·, t)| = 1 for all t > 0 as soon as the initial data (ρ0,Ω0) satisfies
|Ω0| = 1.

Remark 2.6 The last term at the right-hand side of (2.61) has the same expression as
the capillary force (or Korteweg term [23]) in fluid dynamics, except for the projection
operator PΩ⊥. This capillary force is induced by the attractive part of the potential Φ.

3 Existence theory

3.1 Existence in 2D with viscosity

This section is concerned with a local existence result in 2D for an SOH system of the
general form

∂tρ+∇x · (ρΩ) = 0, (3.1)

ρ(∂tΩ + cΩ · ∇xΩ) + PΩ⊥∇x(p(ρ)) = µPΩ⊥∆x(ρΩ), (3.2)

where the constants c ∈ R and µ ≥ 0 are given and the pressure relation p(ρ) satisfies
p′(ρ) > 0. All systems derived in the previous section can by recast in this form, with a
particular choice of c, µ and p(ρ), after time rescaling, except for the last one (Section 2.6)
involving the capillary force. The system is supplemented with initial data ρ0 > 0 and

22



Ω0 such that |Ω0| = 1. Because of the presence of the projection operator PΩ⊥, this unit
norm constraint |Ω(x, t)| = 1 is preserved by the dynamics but at the price of a loss of
conservativity. Because of this, a notion of entropy condition for shock solutions is open.
In [29], a selection criterion based on a numerical comparison with the particle system is
proposed. It is based on the approximation of this system by a conservative system with
a stiff relaxation right-hand side. This relaxation approach is also quite common in the
Ericksen-Leslie theory of liquid crystals [25, 26] and has been recently extended to convex
constraints [16].

We assume that the domain is the square box Π2 = [0, 1]2 with periodic boundary
conditions. The consideration of physical boundary conditions for the short-time existence
of smooth solutions of quasi-linear symmetrizable hyperbolic systems is rather technical.
The strictly dissipative property is required for the boundary condition [35]. Here the
assumption of periodic boundary condition allows to avoid these complications which are
not the purpose of this paper.

Theorem 3.1 We assume that the initial data belong to Hm(Π2) with m > 2. Then,
there exists a time T > 0 and a unique solution (ρ, ϕ) of the system (3.1)-(3.2) in
L∞([0, T ], Hm(Π2)) ∩H1([0, T ], Hm−1(Π2)) such that ρ remains positive. If, in addition,
µ > 0, then, the solution also belongs to L2([0, T ], Hm+1(Π2)).

Proof. In 2D, we can set Ω = (cosϕ, sinϕ). We recall that

∂tΩ = Ω⊥ ∂tϕ, ∇x · Ω = (Ω⊥ · ∇x)ϕ, PΩ⊥ = Ω⊥ ⊗ Ω⊥,

with Ω⊥ = (− sinϕ, cosϕ). Then, we have

∆x(ρΩ) = ∆xρ Ω + 2Ω⊥(∇xρ · ∇xϕ)− 2ρΩ |∇xϕ|2 + ρΩ⊥∆xϕ,

Ω⊥ ·∆x(ρΩ) = ρ∆xϕ+ 2 (∇xρ · ∇xϕ).

Therefore, system (3.1), (3.2) is written:

(∂t + Ω · ∇x)ρ+ ρ (Ω⊥ · ∇x)ϕ = 0, (3.3)

(∂t + cΩ · ∇x)ϕ+
p′(ρ)

ρ
(Ω⊥ · ∇x)ρ = µ

(

∆xϕ+ 2
∇xρ · ∇xϕ

ρ

)

. (3.4)

Introduce ρ̂ = a(ρ) and λ(ρ̂) such that

a′(ρ) =

√

p′(ρ)

ρ
, λ(ρ̂) = a′(ρ)ρ, h(ρ̂) = 2 lnρ. (3.5)

Then, system (3.3), (3.4) becomes:

(∂t + Ω · ∇x)ρ̂+ λ(ρ̂) (Ω⊥ · ∇x)ϕ = 0, (3.6)

(∂t + cΩ · ∇x)ϕ+ λ(ρ̂) (Ω⊥ · ∇x)ρ̂ = µ (∆xϕ+∇xh(ρ̂) · ∇xϕ) . (3.7)
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From (3.3), we have the following a priori estimate (maximum principle):

ρmin exp(−
∫ t

0

‖∇xϕ(·, s)‖L∞(Π2) ds) ≤ ρ ≤ ρmax exp(

∫ t

0

‖∇xϕ(·, s)‖L∞(Π2) ds), (3.8)

where
ρmin = min

x∈Π2
ρ0(x), ρmax = max

x∈Π2
ρ0(x).

We remind the following lemma [42]:

Lemma 3.2 For any pair of functions f , g in Hm(Rn) ∩ L∞(Rn), we have:

‖fg‖Hm ≤ C (‖f‖Hm‖g‖L∞ + ‖f‖L∞‖g‖Hm) .

If additionally, we suppose that ∇xf ∈ L∞(Rn), we have, for any α ∈ Nn, with |α| =
∑n

i=1 αi = m :

‖Dα(fg)− fDαg‖Hm ≤ C (‖f‖Hm‖g‖L∞ + ‖∇xf‖L∞‖g‖Hm−1) ,

where Dα = ∂xα1
1

...xαn
n
.

Now, with |α| ≤ m, we take the Dα derivative of (3.6), multiply it by Dαρ̂ and
integrate it with respect to x. Similarly, we take the Dα derivative of (3.7), multiply it
by Dαϕ and integrate it with respect to x. We sum up the resulting identities. Using the
notation

〈f, g〉 =
∫

Π2

f g dx,

we find:

0 = 〈Dαρ̂, Dαρ̂t〉+ 〈Dαϕ,Dαϕt〉
+〈Dαρ̂, Dα((Ω · ∇x)ρ̂)〉+ c〈Dαϕ,Dα((Ω · ∇x)ϕ)〉
+〈Dαρ̂, Dα(λ(ρ̂) (Ω⊥ · ∇x)ϕ)〉+ 〈Dαϕ,Dα(λ(ρ̂) (Ω⊥ · ∇x)ρ̂)〉
−µ〈Dαϕ,Dα∆xϕ〉
−µ〈Dαϕ,Dα(∇xh(ρ̂) · ∇xϕ)〉

= I1 + . . .+ I5

Then:

I1 =
1

2

d

dt
(‖Dαρ̂‖2 + ‖Dαϕ‖2),

and

I4 = µ‖Dα∇xϕ‖2,

where ‖·‖ just indicates an L2 norm. Now, for the remaining terms, we have the following
lemma
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Lemma 3.3 We have:

|Ik| ≤ C(‖ρ̂‖W 1,∞ + ‖ϕ‖W 1,∞) (‖ρ̂‖2Hm + ‖ϕ‖2Hm), k = 2, 3,

|I5| ≤ µ

2
‖∇Dαϕ‖2 + C(‖ρ̂‖2W 1,∞ + ‖ϕ‖2W 1,∞) (‖ρ̂‖2Hm + ‖ϕ‖2Hm),

where C denote generic constants depending on the parameters of the problem.

The proof of the lemma is postponed at the end.
Adding all these terms together for all possible indices α such that |α| ≤ m, we have,

1

2

d

dt
(‖ρ̂‖2Hm + ‖ϕ‖2Hm) + µ‖∇xϕ‖2Hm ≤ µ

2
‖∇xϕ‖2Hm +

+C(‖ρ̂‖2W 1,∞ + ‖ϕ‖2W 1,∞ + 1) (‖ρ̂‖2Hm + ‖ϕ‖2Hm).

For m ≥ n
2
+ 1, we have

‖ρ̂‖W 1,∞ + ‖ϕ‖W 1,∞ ≤ C(‖ρ̂‖Hm + ‖ϕ‖Hm),

and get

1

2

d

dt
(‖ρ̂‖2Hm + ‖ϕ‖2Hm) +

µ

2
‖∇xϕ‖2Hm ≤ C (‖ρ̂‖2Hm + ‖ϕ‖2Hm + 1)2.

Gronwall’s inequality leads to the local existence of a solution (ρ̂, ϕ) in L∞([0, T ], Hm(Π2))
which, if µ > 0, also belongs to L2([0, T ], Hm+1(Π2)) and which satisfies the a priori bound
(3.8). To get time regularity, we directly use eqs. (3.6), (3.7), take the Hm−1 norm, apply
Lemma 3.2, and find

‖ρ̂t‖Hm−1 + ‖ϕt‖Hm−1 ≤ C‖ϕ‖Hm+1 + C(‖ρ̂‖W 1,∞ + ‖ϕ‖W 1,∞) (‖ρ̂‖Hm + ‖ϕ‖Hm).

Using the previous estimates, we deduce that (ρ̂, ϕ) also belongs to H1([0, T ], Hm−1(Π2)).
The estimates on ρ̂ immediately transfer to ρ since a(ρ) is smooth and invertible for ρ > 0.

Proof of Lemma 3.3. Estimate of I5: Using Green’s formula and Cauchy-Schwartz
inequality, we have:

|I5| ≤ µ‖∇xD
αϕ‖ ‖∇xh(ρ̂) · ∇xϕ‖Hm−1

≤ C‖∇xD
αϕ‖ (‖ρ̂‖Hm‖∇xϕ‖L∞ + ‖∇xρ̂‖L∞‖ϕ‖Hm)

≤ µ

2
‖∇xD

αϕ‖2 + C (‖ρ̂‖Hm‖∇xϕ‖L∞ + ‖∇xρ̂‖L∞‖ϕ‖Hm)2

≤ µ

2
‖∇xD

αϕ‖2 + C(‖ρ̂‖2W 1,∞ + ‖ϕ‖2W 1,∞) (‖ρ̂‖2Hm + ‖ϕ‖2Hm).

The second inequality uses Lemma 3.2 and the third one uses Young’s inequality.
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Estimate of I3: We write

I3 = 〈Dαρ̂, λ(ρ̂) (Ω⊥ · ∇x)D
αϕ〉 + 〈Dαϕ, (λ(ρ̂) (Ω⊥ · ∇x)D

αρ̂)〉
+〈Dαρ̂,

(

Dα(λ(ρ̂) (Ω⊥ · ∇x)ϕ)− λ(ρ̂) (Ω⊥ · ∇x)D
αϕ

)

〉
+〈Dαϕ,

(

Dα(λ(ρ̂) (Ω⊥ · ∇x)ρ̂)− λ(ρ̂) (Ω⊥ · ∇x)D
αρ̂
)

〉
= J1 + J2 + J3.

Using Green’s formula, we find

|J1| = |〈∇x · (λ(ρ̂) Ω⊥)Dαρ̂, Dαϕ〉|
≤ C(‖ρ̂‖W 1,∞ + ‖ϕ‖W 1,∞) (‖ρ̂‖2Hm + ‖ϕ‖2Hm).

Now, using Cauchy-Schwartz inequality and applying Lemma 3.2, we find that J2 and J3
satisfy the same inequality.
Estimate of I2: The proof is similar as for I3 and is omitted.

3.2 Existence in 3D without viscosity

In this section, we investigate the local existence for the inviscid SOH problem in 3
dimensions:

∂tρ+∇x · (ρΩ) = 0, (3.9)

ρ(∂tΩ + cΩ · ∇xΩ) + PΩ⊥∇x(p(ρ)) = 0, (3.10)

where the parameters and data have the same meaning as in Section 3.1. We consider
the system in the domain Π3 = [0, 1]3 with periodic boundary conditions.

For this purpose, we use the spherical coordinates associated to a fixed Cartesian basis.
In this basis, denoting by θ ∈ [0, π] the latitude and ϕ ∈ [0, 2π] the longitude, we have

Ω = (sin θ cosϕ, sin θ sinϕ, cos θ)T ,

and we let Ωθ and Ωϕ be the derivatives of Ω with respect to θ and ϕ. We note that

|Ωθ| = 1, |Ωϕ| = sin θ.

We will use the formulas

∇x · Ω = Ωθ · ∇xθ + Ωϕ · ∇xϕ,

PΩ⊥a = (Ωθ · a)Ωθ +
(Ωϕ · a)
sin2 θ

Ωϕ,

(Ω · ∇x)Ω =
(

(Ω · ∇x)θ
)

Ωθ +
(

(Ω · ∇x)ϕ
)

Ωϕ,

Ωt = Ωθ θt + Ωϕ ϕt,

where a is an arbitrary vector.
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Introduce ρ̂ and λ(ρ̂) as in (3.5). Then, system (3.9), (3.10) becomes:

ρ̂t + Ω · ∇xρ̂+ λ(ρ̂)∇x · Ω = 0,

Ωt + c (Ω · ∇x)Ω + λ(ρ̂)PΩ⊥∇xρ̂ = 0,

or,

ρ̂t + Ω · ∇xρ̂+ λ(ρ̂)(Ωθ · ∇xθ + Ωϕ · ∇xϕ) = 0, (3.11)

θt + c (Ω · ∇x)θ + λ(ρ̂) Ωθ · ∇xρ̂ = 0, (3.12)

sin2 θϕt + c sin2 θ (Ω · ∇x)ϕ+ λ(ρ̂) Ωϕ · ∇xρ̂ = 0. (3.13)

Introducing

U =





ρ̂
θ
ϕ



 ,

this system is written

A0(U)Ut + A1(U)Ux + A2(U)Uy + A3(U)Uz = 0,

in Cartesian coordinates x = (x, y, z), where Ak(U), k = 0, . . . , 4 are all symmetric
matrices and

A0 =





1 0 0
0 1 0
0 0 sin2 θ



 . (3.14)

If sin θ > 0, then this system is a symmetrizable hyperbolic system. We can apply
proposition 2.1 p. 425 of [42] and the following theorem follows immediately:

Theorem 3.4 We assume that the initial data (ρ0, θ0, ϕ0) belong to Hm(Π3) with m >
5/2 with ρ0 > 0, sin θ0 > 0. Then, there exists a time T > 0 and a unique solution
(ρ, θ, ϕ) of the system (3.9)-(3.10) in L∞([0, T ], Hm(Π3)) ∩ H1([0, T ], Hm−1(Π3)) such
that ρ remains positive.

Remark 3.1 We see from (3.14) that in 3D, the symmetrizer degenerates at sin θ = 0.
So the structure condition sin θ ≥ C > 0 is needed. In the inviscid case, if the initial
condition satisfies this condition, the solution itself satisfies it over a certain time interval
by finite speed of propagation. However, if viscosity is added, the speed of propagation be-
comes infinite and this structure condition is instantaneously lost. This is why we restrict
ourselves to the inviscid case in 3D.

4 Conclusion

In this paper, we have derived hydrodynamic systems from kinetic models of self-propelled
particles with alignment interaction and attraction-repulsion force. We have particularly
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focused on the inclusion of diffusion terms under the assumption of weakly non-local
interactions. Then, we have proved the local-in-time existence of solutions for the viscous
system in 2D and a similar result for the inviscid system in 3D. The methods rely on
a suitable symmetrization and on the energy method. Adding an attraction-repulsion
potential has greatly extended the work in [13]. The weakly nonlocal scaling allows us
to derive new macroscopic effects such as viscosity and capillary (or Korteweg) forces.
This work also provides rigorous existence results on the macroscopic models whereas [13]
contains only formal results. Future works in this direction will consist in continuing the
exploration of the mathematical structure of the system and particularly, trying to prove
local existence of the viscous system in 3D and the treatment of the geometric singularity
near sin θ = 0. Another direction of work will consist of the numerical quantification of
the viscosity as a consequence of the non-locality of the interaction.
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Goulaouic-Schwartz (1978/1979), Ecole Polytechnique, Palaiseau, 1979.

[36] C. W. Reynolds, Flocks, herds and schools: a distributed behavioral model, Comput.
Graph., 21 (1987) 25–34.

[37] A.-S. Sznitman, Topics in propagation of chaos, École d’été de probabilités de Saint-
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