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Abstract. We continue our study of one-dimensional class of Euler equations, introduced
in [ST2016], driven by a forcing with a commutator structure of the form [Lφ, u](ρ), where
u is the velocity field and Lφ belongs to a rather general class of convolution operators
depending on interaction kernels φ.

In this paper we quantify the large-time behavior of such systems in terms of fast
flocking for two prototypical sub-classes of kernels: bounded positive φ’s, and singular
φ(r) = r−(1+α) of order α ∈ [1, 2) associated with the action of the fractional Laplacian
Lφ = −(−∂xx)α/2. Specifically, we prove fast velocity alignment as the velocity u(·, t) ap-
proaches a constant state, u→ ū, with exponentially decaying slope and curvature bounds
|ux(·, t)|∞+|uxx(·, t)|∞ . e−δt. The alignment is accompanied by exponentially fast flocking
of the density towards a fixed traveling state ρ(·, t)− ρ∞(x− ūt)→ 0.
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1. Introduction and statement of main results.

1.1. Flocking hydrodynamics. In this paper we continue our study initiated in [ST2016],
of Eulerian dynamics driven by forcing with a commutator structure. In the one-dimensional
case, the dynamics of a velocity u : Ω× R+ 7→ R is governed by the system of form

(1.1)

{
ρt + (ρu)x = 0,

ut + uux = [Lφ, u](ρ),

where the commutator on the right, [Lφ, u](ρ) := Lφ(ρu) − Lφ(ρ)u, involves a convolution
kernel

(1.2) Lφ(f) :=

∫
R
φ(|x− y|)(f(y)− f(x))dy.
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The motivation for (1.1) comes from the hydrodynamic description of a large-crowd dynamics
driven by Cucker-Smale agent-based model

(1.3)


ẋi = vi,

v̇i =
1

N

N∑
j=1

φ(|xi − xj|)(vj − vi),
(xi, vi) ∈ Ω× R, i = 1, 2, . . . , N.

Here, φ is a positive, bounded influence function which models the binary interactions
among agents in Ω. We focus our attention on the periodic or open line setup, Ω = T,R.
For large crowds, N � 1, the dynamics can be encoded in terms of the empirical dis-
tribution fN = 1

N

∑N
i=1 δxi(x) ⊗ δvi(v), so that its limiting moments lead to a density,

ρ(x, t) = lim
N→∞

∫
R
fN(x, v, t)dv, and momentum, ρu(x, t) = lim

N→∞

∫
R
vfN(x, v, t)dv, governed

by (1.1), [HT2008, CCP2017].

(1.4)


ρt + (ρu)x = 0,

ut + uux =

∫
R
φ(|x− y|)(u(y, t)− u(x, t))ρ(y, t) dy

(x, t) : Ω× [0,∞).

The other important limit of such systems — their large time behavior for t � 1, is
described by the flocking phenomenon. To this end, let us introduce the set of flocking state
solutions, consisting of constant velocities, ū, and traveling density waves ρ̄ = ρ∞(x− tū),

(1.5) F = {(ū, ρ̄) : ū ≡ constant, ρ̄(x, t) = ρ∞(x− tū)}.
We say that a solution (u(·, t), ρ(·, t)) converges to a flocking state (ū, ρ̄) ∈ F in space X×Y
if

‖u(·, t)− ū‖X + ‖ρ(·, t)− ρ̄(·, t)‖Y → 0, as t→∞.
This represents the process of alignment where the diameter of velocities tends to zero

(1.6a) V (t) := max
x,y∈supp ρ(·,t)

|u(x, t)− u(y, t)| → 0, as t→∞.

In particular, there is a fast alignment if the flocking convergence rate is exponential. In the
present case of symmetric interactions, the conservation of averaged mass and momentum,

M(t) :=
1

2π

∫
T
ρ(x, t)dx ≡M0, P(t) :=

1

2π

∫
T
(ρu)(x, t)dx ≡ P0

implies that a limiting flocking velocity, provided it exists, is given by ū = P0/M0.

Remark 1.1. In the case when the dynamics of (1.4) takes place over the line Ω = R as in
[HT2008, TT2014], the flocking phenomenon assumes a compactly supported initial config-
uration with finite initial velocity variation,

D0 := max
x,y∈supp ρ0

|x− y| <∞, V0 := max
x,y∈supp ρ0

|u0(x)− u0(y)| <∞.

It requires that, in addition to (1.6a), the flow remains compactly supported

(1.6b) D(t) 6 D∞ <∞, D(t) := max
x,y∈supp ρ(·,t)

|x− y|

This reflects the corresponding flocking behavior in the agent-based Cucker-Smale model,
max

16i,j6N
|xi(t)− xj(t)| 6 D∞ and max

16i,j6N
|vi(t)− vj(t)| → 0 as t→∞, [HT2008, MT2014].
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1.2. Smooth solutions must flock. The flocking hydrodynamics of (1.4) for bounded
positive φ’s follows, as long as they admit global smooth solutions. Indeed, the statement
that “smooth solutions must flock” holds in the general setup of positive kernels whether
symmetric or not [ISV2016, Lemma 3.1], [TT2014, Theorem 2.1]. For the sake of complete-
ness we include below the proof of flocking along the lines of [MT2014, theorem 2.3] which
is stated in the following lemma for the periodic case Ω = T.

Lemma 1.2 (Smooth solutions must flock). Let (ρ, u) be a smooth solution of the one-
dimensional system

(1.7)


ρt + (ρu)x = 0,

ut + uux =

∫
R
k(x, y, t)(u(y, t)− u(x, t))ρ(y, t) dy

(x, t) : T× [0,∞),

with strictly positive kernel, ιk(t) = inf
x,y∈T

k(x, y, t) > 0. Then there is a flocking alignment

V (t) 6 V (0)exp

{
−M

∫ t

τ=0

ιk(τ)dτ

}
, V (t) = max

x,y∈T
|u(x, t)− u(y, t)|.

In particular, the case of symmetric interaction (1.4) admits fast alignment,

(1.8) V (t) 6 V (0)e−Mιφt, ιφ := min
x∈T

φ(|x|).

Proof. Let x−(t) be a point where u− = u(x−(t), t) = minu, and x+(t) be a point where
u+ = u(x+(t), t) = maxu. Then the maximal value does not exceed,

d

dt
u+ =

∫
T
k(x+, y, t)(u(y)− u+)ρ(y, t) dy 6 ιk

∫
T
(u(y)− u+)ρ(y, t) dy.

Similarly, we have the lower bound

d

dt
u− > ιk

∫
T
(u(y)− u−)ρ(y, t) dy.

Subtracting the latter implies that the velocity diameter V (t) = max
x,y∈T

|u(x, t)−u(y, t)| satisfies

d

dt
V (t) 6 −ιkMV (t), V (t) = u+(t)− u−(t)

and the result readily follows. �

We demonstrate the generality of lemma 1.2 with the following two examples.

Example 1.3 (an example on non-symmetric kernel). The Mostch-Tadmor model [MT2011]
uses an adaptive normalization, where the pre-factor 1/N on the right of (1.3) is replaced
by 1/

∑
j φ(|xi − xj|), leading to the flocking hydrodynamics with non-symmetric kernel

k(x, y, t) = φ(|x− y|)/(φ ∗ ρ)(x, t). The lower-bound

k(x, y, t) =
φ(|x− y|)

(φ ∗ ρ)(x, t)
>

ιφ
IφM

, Iφ = max
x∈T

φ(|x|).

shows that flocking holds for positive, bounded φ’s, with exponential rate dictated by the
condition number of φ but otherwise independent of the total mass, V (t) 6 V (0)e−(ιφ/Iφ)t.
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Example 1.4 (an example of unbounded kernels). The fractional Laplacian Lα := Lφα is
associated with the singular periodized kernels

(1.9) φα(x) =
∑
k∈Z

1

|x+ 2πk|1+α
, for 0 < α < 2.

Since the argument of lemma 1.2 does not use local integrability, it applies in the present
setting with ια = infx φα(|x|) > 0, leading to fast alignment (1.8).

We close this subsection by noting that the the extension of lemma 1.2 to the case of open
space Ω = R was proved in [TT2014]. To this end one restricts attention to the dynamics
over {supp ρ(·, t)}: the growth of the velocity diameter V (t) := max

x,y∈supp ρ(·,t)
|u(x, t)− u(y, t)|,

d

dt
V (t) 6 −ιkMV (t), V (t) = max

x∈supp ρ(·,t)
u(x, t)− min

y∈supp ρ(·,t)
u(y, t),

is coupled with the obvious bound on the growth of the density support, d
dt
D(t) 6 V (t)D(t).

Assume that φ is decreasing so that ιφ > φ(D(t)). It implies a decreasing free energy E(t) :=

V (t) +
∫ D(t)

τ=0
φ(τ)dτ 6 E0, and fast alignment follows with a finite diameter, D(t) 6 D∞,

dictated by

D(t) 6 D∞, M
∫ D∞

D0

φ(s)ds = V0.

Thus, in the case of open space, Ω = R, compactness of {supp ρ(·, t)} requires a finite velocity

variation V0 <

∫ ∞
D0

φ(s)ds. In particular, an unconditional flocking follows for global φ’s with

unbounded integrable tails. Of course, in the periodic settings, compactness of the support
of ρ is automatic.

1.3. Statement of main results. Lemma 1.2 tells us that for positive φ’s, the question
of flocking is reduced to the question of global regularity. The latter question — the global
regularity of (1.4), was addressed in our previous study [ST2016] in the larger context of
three classes of interaction kernels. Namely, for bounded φ’s, global regularity follows for
sub-critical initial data such that u′0(x)+φ∗ρ0(x) > 0. For singular kernels φα(x) := |x|−(1+α)
corresponding to Lφ = −(−∆)α/2, global regularity follows for α ∈ [1, 2). Finally, global
regularity also holds in the limiting case α = 2 which corresponds to the Navier-Stokes
equations with Lφ = ∆, and we recall that the global regularity for the cases α ∈ [1, 2] is
independent of a critical threshold requirement. A main feature of the forcing in all three
cases is their commutator structure in (1.1) which yields is the conservative transport of the
first-order quantity ux + Lφ(ρ), [CCTT2016, ST2016]

(1.10) et + (ue)x = 0, e := ux + Lφ(ρ).

In this paper, we complement our earlier study of global regularity with the flocking
behavior for these classes of interaction kernels. In particular, we make a more precise
flocking statement, where fast alignment max

x,y∈supp ρ(·,t)
|u(x, t)− u(y, t)| . e−δt is strengthened

to an exponential decay of slope and curvature of the velocity |ux|∞ + |uxx|∞ . e−δt, and
the flocking itself is proved in the strong sense of exponential convergence to one of the
flocking states F . We treat here the flocking behavior in the two cases of positive φ’s, and
of fractional φα, α ∈ [1, 2). The limiting case of Navier-Stokes equations Lφ = ∆ does not
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seem to satisfy fast alignment due to lack of non-local interactions. Its large-time behavior
remains open.

We begin with the case of a bounded positive kernel, and general density with a possibility
of vacuum. The result is proved in both periodic and open line domains.

Theorem 1.5 (Bounded positive kernels). Consider the system (1.4) with bounded positive
kernel φ ∈ W 2,∞(Ω), where Ω = T or R. For any initial conditions (u0, ρ0) ∈ W 2,∞ ×
(W 1,∞ ∩ L1) which satisfies the sub-criticality condition,

(1.11) u′0 + φ ∗ ρ0 > 0,

there exists a unique global solution (ρ, u) ∈ L∞([0,∞);W 2,∞ × (W 1,∞ ∩ L1)). Moreover,
for fixed β < 1 there exists C, δ > 0 (depending on β) such that the velocity satisfies the fast
alignment estimate

(1.12) |ux(t)|∞ + |uxx(t)|∞ 6 Ce−δt,

and there is an exponential convergence towards the flocking state (ū, ρ̄) ∈ F , where ū =
P0/M0 and ρ̄ = ρ∞(x− tū) ∈ W 1,∞,

(1.13) |u(t)− ū|W 2,∞ + |ρ(t)− ρ̄(t)|Cβ 6 Ce−δt, t > 0.

Next we turn to the case of singular kernels, φα(x) = |x|−(1+α), 1 6 α < 2, in the periodic
setting Ω = T, and no-vacuum condition ρ0 > 0. The latter two are necessary to maintain
uniform parabolicity of the system.

Theorem 1.6 (Singular kernels of fractional order α ∈ [1, 2)). Consider the system (1.4)
with singular kernel φα(x) = |x|−(1+α), 1 6 α < 2 on the periodic torus T. For any initial
condition (u0, ρ0) ∈ H3 ×H2+α away from the vacuum there exists a unique global solution
(ρ, u) ∈ L∞([0,∞);H3 ×H2+α). Moreover, for fixed s < 3 there exists C, δ > 0 (depending
on s) such that the velocity satisfies the fast alignment estimate,

(1.14) |ux(t)|∞ + |uxx(t)|∞ + |uxxx(t)|2 6 Ce−δt,

and there is an exponential convergence towards the flocking state (ū, ρ̄) ∈ F , where ū =
P0/M0 and ρ̄ = ρ∞(x− tū) ∈ H3,

(1.15) |u(t)− ū|H3 + |ρ(t)− ρ̄(t)|Hs 6 Ce−δt, t > 0.

Remark 1.7. (On the singular case of fractional order α ∈ (0, 1)) We recently learned that
shortly after our release of [ST2016] another approach to the regularity of (1.4) with sin-
gular kernels φα appeared in the work of T. Do et. al. [DKRT2017]. Their alternative
approach, based on the propagation of properly-tuned modulus of continuity along the lines
of [KNV2008], covers the regularity of (1.4)α which is treated as critical system for the range
α ∈ (0, 1). Although our arguments of regularity in [ST2016] can be adapted to the respec-
tive range, it is not clear whether the flocking statement in theorem Theorem 1.6 survives
for 0 < α < 1 with either one of these approaches.

2. Flocking with smooth positive kernels

Our starting point is the conservative transport (1.10). In the case of positive mollifier we
have [Lφ, u](ρ) = [φ∗, u](ρ) and (1.10) yields

(2.1) et + (ue)x = 0, e := u′(x, t) + φ ∗ ρ(x, t)
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Hence the positivity e0 > 0 propagates in time. It follows that (1.4) admits global smooth
solutions under the critical threshold condition e0(·) > 0, see [CCTT2016] for details. The
flocking of these solutions, which is guaranteed by Lemma 1.2, is quantified in the following
two lemmas in terms of constants C, δ > 0, depending on M, |φ|W 1,∞ , |u0|W 1,∞ ,minφ > 0
and min e0 > 0.

Lemma 2.1. Suppose e0 > 0 on Ω. There exist constants C, δ > 0 such that

|ux(·, t)|∞ 6 Ce−δt.

Proof. We rewrite (2.1) as a logistic equation along characteristics ẋ(t) = u(x(t), t) with
non-autonomous threshold h := φ ∗ ρ,

(2.2)
D

Dt
e = (h− e)e, h = φ ∗ ρ.

Here and below,
D

Dt
denotes differentiation along generic particle path {x(t) = x(t;x0)}

initiated at x(t = 0;x0) = x0. Hence, in view of the bound Mιφ 6 h(x, t) 6MIφ,

(MIφ − e)e >
D

Dt
e > (Mιφ − e)e.

Since e0 is uniformly bounded from above and away from zero, it follows that there exists a
time t0 > 0 such that the quantity e(t) = e(t;x0) remains likewise bounded from above and
below uniformly for all initial conditions e0 = e(t = 0;x0),

(2.3) C0 := 2MIφ > e(t) >Mιφ/2 =: c0 > 0, t > t0.

Let us now write the equation for φ∗ρ by convolving the mass equation φ∗ρt+φ∗(ρu)x = 0:

(2.4a) (φ ∗ ρ)t + u(φ ∗ ρ)x = −[φ′∗, u]ρ,

where the commutator is given by

[φ′∗, u]ρ =

∫
T
φ′(|x− y|)

(
u(x, t)− u(y, t)

)
ρ(y, t)dy.

In view of Lemma 1.2, and the fact that φ ∈ W 1,∞ we have

(2.4b) |[φ′∗, u]ρ| 6 CM|φ|W 1,∞e−δt.

In what follows we denote by E = E(t) a generic exponentially decaying quantity, so (2.4)

reads
D

Dt
h = E, uniformly over all initial conditions x0 ∈ Ω. Let us rewrite this equation for

the difference h = e− ux:
D

Dt
ux = −uxe+ E.

Recall that for large enough time, t > t0 we have the positive boundedness 0 < c0 < e < C0

uniformly over initial conditions. This readily implies

|ux(x(t;x0), t)| 6 E(t)

uniformly over x0. Since at any time t characteristics cover all Ω we arrive at the desired
bound |ux(t)|∞ 6 E(t). �



EULERIAN DYNAMICS WITH A COMMUTATOR FORCING 7

Solving the density equation along characteristics we obtain

(2.5) ρ(x(t;x0), t) = ρ0(x0) exp

{
−
∫ t

0

ux(x(s;x0), s) ds

}
.

So, in view of Lemma 2.1 the density enjoys a pointwise global bound (which is not given a
priori)

(2.6) sup
t>0
|ρ(·, t)|∞ <∞.

Next we establish a second round of estimates in higher order regularity in order to get a
control over ρx and then prove flocking of the density.

Lemma 2.2. There exist C, δ > 0 such that

|uxx(·, t)|∞ 6 Ce−δt.

Proof. Let us write the equations for ex and hx = φ′ ∗ ρ:

D

Dt
ex = −uxex + (hx − ex)e

D

Dt
hx =

∫
T
φ′′(|x− y|)

(
u(x, t)− u(y, t)

)
ρ(y, t)dy.

Clearly, the right hand side of hx-equation is exponentially decaying, = E. Subtracting the
two we obtain the equation for uxx:

(2.7)
D

Dt
uxx = −uxxe− uxex + E.

Note that clearly, hx is a bounded function, hence uxex = Euxx + E. So,

(2.8)
D

Dt
uxx = −uxxe− Euxx + E.

Once again, the positive boundedness of e in (2.3), implies that for large enough time,

(2.9)
D

Dt
uxx = −uxxe+ E, t > t0,

and the lemma follows. �

Let’s write the equation for ρx:

(2.10)
D

Dt
ρx = −2uxρx − uxxρ = Eρx + E

This shows that ρx is uniformly bounded. We are now ready to prove Theorem 1.5. We state
the last computation in a lemma as it will also be used ad verbatim in the next section.

Lemma 2.3. Let (u, ρ) ∈ W 2,∞ ×W 1,∞ be any solution pair to (1.4). For fixed β < 1 there
exist C, δ > 0 (depending on β) and a flocking pair (ū, ρ̄) ∈ F , ρ̄ ∈ W 1,∞, such that,

(2.11) |ρ(·, t)− ρ̄(·, t)|Cβ 6 Ce−δt, t > 0.

Thus, F contains all limiting states of the system (1.4).
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Proof. The velocity alignment goes to its natural limit ū = P/M. Denote ρ̃(x, t) := ρ(x +
tū, t). Then ρ̃ satisfies

ρ̃t + (u− ū)ρ̃x + uxρ̃ = 0,

where all the u’s are evaluated at x + tū. According to the established bounds we have
|ρ̃t|∞ < Ce−δt. This proves that ρ̃(t) is Cauchy as t → ∞, and hence there exists a unique
limiting state, ρ∞(x), such that

|ρ̃(·, t)− ρ∞(·)|∞ < C1e
−δt.

Shifting x this can be expressed in terms of ρ and ρ̄(·, t) = ρ∞(x− tū)

|ρ(·, t)− ρ̄(·, t)|∞ < C1e
−δt.

We also have ρ̄ ∈ W 1,∞ from weak-star compactness. The statement of the lemma follows
by interpolation of this exponential bound with the C1-bound of ρ. �

3. Flocking with singular kernels

3.1. Uniform bounds on density, and velocity alignment. The results of this section
lead towards the first step in the proof of Theorem 1.6. However, we state them in such
generality since they hold for a much broader class of kernels satisfying the following three
properties.

(i) Boundedness (away from the origin): for any r > 0,

ιφ(r) := inf
|x|<r

φ(|x|) <∞;

(ii) Positivity: ιφ(2π) = infx φ(|x|) > 0;
(iii) Singularity : lim supr→0 rιφ(r) =∞.

This class of kernels which was already identified in [ST2016, Section 3.2], includes the
singular periodized kernels associated with −(−∂xx)α/2,

(3.1) φα(x) =
∑
k∈Z

1

|x+ 2πk|1+α
for 0 < α < 2.

The case of local Laplacian L = ∂xx is not included.
We recall that due to the positivity (ii), lemma Lemma 1.2 applies — as noted in Example

1.4, fast flocking holds irrespective of (lack of) local integrability

(3.2) V (t) 6 V (0)e−Mιφt.

As before, our starting point is the conservative transport (1.10) involving Lα ≡ Lφα ,

(3.3) et + (ue)x = 0, e = ux + Lα(ρ).

Paired with the mass equation we find that the ratio q = e/ρ satisfies the transport equation

(3.4)
D

Dt
q = qt + uqx = 0.

Starting from sufficiently smooth initial condition with ρ0 away from vacuum we can assume
that

(3.5) Q = |q(t)|∞ = |q0|∞ <∞.



EULERIAN DYNAMICS WITH A COMMUTATOR FORCING 9

Lemma 3.1. Let φ be a kernel satisfying conditions (i),(ii),(iii) above. Let (u, ρ) be a smooth
solution to (1.1),(1.2) subject to initial density ρ0 away from vacuum. Then there are positive
constants c = c(M, Q, φ), C = C(M, Q, φ) such that

(3.6) 0 < c 6 ρ(x, t) 6 C, x ∈ T, t > 0.

Remark 3.2. The upper bound and the weaker lower-bound ρ(·, t) & 1/t was established for
the CS hydrodynamics (1.3) along the line of the 1D decay for commutator forcing [ST2016].
We include both cases for completeness.

Proof. Let us recall that the density equation can be rewritten as

(3.7) ρt + uρx = −qρ2 + ρLα(ρ).

Let us evaluate at a point where the maximum ρ+ is reached at x+. We obtain

d

dt
ρ+ = −q(x+, t)ρ2+ + ρ+

∫
φ(|z|)(ρ(x+ + z, t)− ρ+) dz

6 Qρ2+ + ρ+

∫
|z|<r

φ(|z|)(ρ(x+ + z, t)− ρ+) dz

6 Qρ2+ + ιφ(r)ρ+(M− rρ+) = Qρ2+ + ιφ(r)Mρ+ − rιφ(r)ρ2+.

In view of assumption (iii) we can pick r large enough to satisfy rιφ(r) > Q + 1, while
according to (i) ιφ(r) itself remains finite. We thus achieve inequality

d

dt
ρ+ 6 −ρ2+ + ιφ(r)Mρ+,

which establishes the upper bound by integration.
As to the lower bound we argue similarly. Let ρ− and x− the minimum value of ρ and a

point where such value is achieved. We have

d

dt
ρ− > −Qρ2− + ρ−

∫
T
φ(|z|)(ρ(x− + z, t)− ρ−) dz

> −Qρ2− + ιφ(2π)ρ−(M− 2πρ−) = −(Q+ 2πιφ(2π))ρ2− + ιφ(2π)Mρ−.

In view of (ii) the linear term on the right hand side has a positive coefficient. This readily
implies the uniform lower bound. �

Subsequently we focus solely on the critical case α = 1. The case 1 < α < 2 requires the
same prerequisites as established in this section, however, incorporating it into the existing
proof below would actually require fewer steps due to excess of dissipation. We will skip
those for the sake of brevity of what will already be a technical exposition.

3.2. An initial approach towards Theorem 1.6. In this section we specialize on the
case of critical singular kernel, and establish uniform control on the first order quantities
|ρx|∞, |ux|∞. We assume that we start with initial condition (u0, ρ0) ∈ H3(T). As shown in
[ST2016] there exists a global solution to (1.1) in the same space. So, we can perform all of
the computations below as classical.

First, let us recite one argument from [ST2016]. Recall that the density ρ satisfies the
following parabolic form of the density equation, expressed in terms of L1 ≡ −Λ,

(3.8) ρt + uρx + eρ = −ρΛ(ρ), , Λ(f) = p.v.

∫
R

f(x)− f(y)

|x− y|2
dy.
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Similarly, one can write the equation for the momentum m = ρu:

(3.9) mt + umx + em = −ρΛ(m).

In both cases the drift u and the forcing eρ or em are bounded a priori due to the maximum
principle and Lemma 3.1. Moreover, the diffusion operator has kernel

K(x, h, t) = ρ(x)
1

|h|2
.

Using lower bound on the density from Lemma 3.1 we conclude that the kernel falls under
the assumptions of Schwab and Silverstre [SS2016] uniformly on the time line. A direct
application of [SS2016] implies that there exists an γ > 0 such that

|ρ|Cγ(T×[t+1,t+2)) 6 C(|ρ|L∞(t,t+2) + |ρe|L∞(t,t+2))

|m|Cγ(T×[t+1,t+2)) 6 C(|m|L∞(t,t+2) + |me|L∞(t,t+2))

|u|Cγ(T×[t+1,t+2)) 6 C(|u|L∞(t,t+2), |ρ|L∞(t,t+2)),

(3.10)

holds for all t > 0. Since the right hand sides are uniformly bounded on the entire line we
have obtained uniform bounds on Cγ-norm starting from time t = 1. Since we are concerned
with long time dynamics let us reset initial time to t = 1, and allow ourselves to assume that
Cγ-norms are bounded from time t = 0.

Lemma 3.3. We make the same assumptions stated in Theorem 1.6. Then the following
uniform bound holds

(3.11) sup
t>0
|ρx(·, t)|∞ <∞.

Proof. The argument goes verbatim as presented in [ST2016, Section 6.2] with all the con-
stants involved being uniform in view of the established bounds above. We recall the penul-
timate inequality

d

dt
|ρ′|2 6 c1 + c2|ρ′|2 − c3Dρ′(x),

where all the quantities are evaluated at a point of maximum of |ρ′|, and where

Dρ′(x) =

∫
R

|ρ′(x)− ρ′(x+ z)|2

|z|2
dz.

Using the nonlinear maximum bound from [CV2012]

Dρ′(x) > c4
|ρ′|3∞
|ρ|∞

> c5|ρ′|3∞,

we can further hide the quadratic term into dissipation to obtain

(3.12)
d

dt
|ρ′|2 6 c6 − c7Dρ′(x) 6 c6 − c8|ρ′|3.

This enables us to conclude the Lemma. �

We turn to study the flocking behavior in the singular case. To this end, we first prepare
preliminary estimates on the dissipation terms to be encountered in the sequel. Below is
an improvement on nonlinear maximum principle bound of [CV2012] in the case of small
amplitudes. As a byproduct we obtain a trilinear estimate that will be used in the sequel.
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Lemma 3.4 (Enhancement of dissipation by small amplitudes). Let u ∈ C1(T) be a given
function with amplitude V = u+ − u−. There is an absolute constant c1 > 0 such that the
following pointwise estimate holds

(3.13) Du′(x) > c1
|u′(x)|3

V
.

In addition, there is an absolute constant c2 > 0 such that for all B > 0 one has

(3.14) Du′(x) > B|u′(x)|2 − c2B3V 2.

Proof. We start as in [CV2012]. Using smooth truncations in the integrals we obtain, for
every r > 0:

Du′(x) >
∫
|z|>r

|u′(x)|2 − 2u′(x+ z)u′(x)

|z|2
dz,

where we dropped the positive term with |u′(x+z)|2. Now, using that u′(x+z) = uz(x+z) =
(u(x+ z)− u(x))z we can integrate by parts in the second term to obtain

Du′(x) >
|u′(x)|2

r
+ 4u′(x)

∫
|z|>r

u(x+ z)− u(x)

|z|4
z dz >

|u′(x)|2

r
− c0|u′(x)|V 1

r2
.

By picking r = 2c0V
|u′(x)| we obtain (3.13). Picking r = 1

2B
and using Young’s inequality ,

Du′(x) > 2B|u′(x)|2 − 4c0|u′(x)|V B2 > B|u′(x)|2 − 16c0B
3V 2,

and (3.14) follows. �

We proceed to the exponential decay of ux and uxx which is quantified in the next two
lemmas, in terms of constants C, δ > 0, depending on M, |u0|H3 and additional parameters
specified below.

Lemma 3.5. We make the same assumptions stated in Theorem 1.6. There exist constants
C, δ > 0 such that for all t > 0 one has

(3.15) |ux(·, t)|∞ 6 Ce−δt.

Proof. Differentiating the u-equation and evaluating at a point of maximum we obtain

d

dt
|u′|2 6 |u′|3 + T (ρ′, u)u′ + T (ρ, u′)u′, T (ρ, u) := −Λ(ρu) + uΛ(ρ).

First, as to the dissipation term, let us fist observe

(u′(y)− u′(x))u′(x) = −1

2
|u(y)− u(x)|2 +

1

2
(|u′(y)|2 − |u′(x)|2) 6 −1

2
|u(y)− u(x)|2.

Thus, in view of Lemma 3.1,

T (ρ, u′)u′(x) 6 −c1Du′(x).

Let us turn to the remaining term T (ρ′, u)u′. We have

T (ρ′, u)u′ = |u′(x)|2Λρ+ u′(x)

∫
ρ′(x+ z)

δzu(x)− zu′(x)

|z|2
dz.

Expressing Λρ = e− ux the first term, and using uniform bound on ρx from Lemma 3.3 we
obtain the bound

|T (ρ′, u)u′| 6 c2|u′|3 + c3|u′|2 + c4|u′|
∣∣∣∣∫ ρ′(x+ z)

δzu(x)− zu′(x)

|z|2
dz

∣∣∣∣ .
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To bound the integral we split it into the long range {|z| > π} and short range {|z| 6 π}
parts. For the short range we use the bound

|δzu(x)− zu′(x)| 6
∫ z

0

|u′(x+ w)− u′(x)| dw 6 |z|3/2D1/2u′(x),

So, ∣∣∣∣∫
|z|6π

ρ′(x+ z)
δzu(x)− zu′(x)

|z|2
dz

∣∣∣∣ 6 |ρ′|∞D1/2u′(x) 6 CD1/2u′(x).

For the long range part, we apply the following argument (to be used several other times in
the sequel). We have∫

|z|>π

ρ′(x+ z)δzu(x)

|z|2
dz =

∑
k 6=0

∫
|z|6π

ρ′(x+ z)δzu(x)

|z + 2πk|2
dz

6 c6
∑
k 6=0

1

k2

∫
|z|6π
|ρ′(x+ z)||z||u′|∞ dz 6 c7|u′|∞|ρ′|1 6 C|u′|∞.

(3.16)

Proceeding to the second part,∫
|z|>π

ρ′(x+ z)u′(x)

z
dz =

∑
k 6=0

∫
|z|6π

ρ′(x+ z)u′(x)

z + 2πk
dz

=
∑
k>0

∫
|z|6π

ρ′(x+ z)u′(x)
2z

|z|2 − 4π2k2
dz 6 |u′|∞|ρ′|1 6 C|u′|∞.

(3.17)

Putting the estimates together we obtain

|T (ρ′, u)u′| 6 c2|u′|3 + c4|u′|2 + c5|u′|D1/2u′(x) 6 c2|u′|3 + c6|u′|2 +
1

2
c1Du

′(x).

Altogether we have obtained, resetting the constant counter,

d

dt
|u′|2 6 c2|u′|3 + c6|u′|2 − c7Du′(x).

In view of Lemma 3.4, we have

d

dt
|u′|2 6 c8V − c9|u′|2∞,

Integrating we discover that |u′| → 0 at an exponential rate of at least 1
2

min{c9, cIφ}, the
latter being the rate of decay of V . This finishes the proof. �

The estimates established so far are sufficient to prove an initial version of Theorem 1.6
as stated in Lemma 2.3. The proof the lemma goes ad verbatim in the present case.

3.3. Completing the proof of Theorem 1.6. In this section we perform computations
with the goal to show that the flocking proved in Lemma 2.3 takes place in all spaces up to
H3, and that the limiting profile ρ̄ itself belongs to H3. We prove exponential flattening of u
in terms of curvature |u′′|∞ and third derivative u′′′ in L2. This complements the statement
of Lemma 2.3 to the full extent of Theorem 1.6.
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We start by showing exponential decay of |u′′|∞. As before we denote by E = E(t)
any quantity with an exponential decay, e.g. |u′|∞ = E, or V = E. Thus, according to
Lemma 3.4, we have pointwise bounds

Du′′(x) >
|u′′(x)|3

E
,

Du′′(x) > B|u′′(x)|2 − C(B)E.
(3.18)

Due to these bounds the dissipation term absorbs all cubic and quadratic terms with bounded
coefficients. It does the latter at the cost of adding a free E-term unattached to either u
or ρ. Finally, let us recall from [ST2016] that the quantity Q = (e/ρ)x/ρ is transported:
Qt + uQx = 0. As such, it remains bounded uniformly for all times. Expressing e′ from Q,
we see that e′ is controlled by ρ′ and ρ, which in view of Lemma 3.3 implies uniform bound
on e′:

(3.19) sup
t
|e′(·, t)|∞ <∞.

Using this additional piece of information we are in a position to prove control of the curva-
ture.

Lemma 3.6. We make the same assumptions stated in Theorem 1.6. There are constants
C, δ > 0 such that for all t > 0 one has

(3.20) |uxx(·, t)|∞ 6 Ce−δt.

Proof. Evaluating the u-equation at a point of maximum and performing the same initial
steps as in Lemma 3.5 we obtain

(3.21)
d

dt
|u′′|2 6 E|u′′|2 − c0Du′′(x) + T (ρ′′, u)u′′ + 2T (ρ′, u′)u′′.

We have

T (ρ′′, u)u′′(x) =

∫
R

ρ′′(x+ z)(δzu(x)− zu′(x))u′′(x)

|z|2
dz + Λρ′(x)u′(x)u′′(x).

For the Λρ′ term, in view of (3.19), we argue that |Λρ′| = |e′ − u′′| 6 c1 + |u′′|. Thus,

(3.22) |Λρ′(x)u′(x)u′′(x)| 6 E(|u′′|+ |u′′|2).
As to the integral term, first, we handle the short range part as usual:∫

|z|6π

ρ′′(x+ z)(δzu(x)− zu′(x))u′′(x)

|z|2
dz 6 |u′′|2∞

∫
|z|6π
|ρ′′(x+ z)| dz 6 |u′′|2∞|ρ′′|1.

However, note that |ρ′′|1 6 |ρ′′|2 6 |Λρ′|2 6 |e′|2 + |u′′|2 6 c2 + c3|u′′|∞. Putting all estimates
together we obtain

(3.23) |T (ρ′′, u)u′′| 6 E|u′′|+ c4|u′′|2 + c5|u′′|3 +

∫
|z|>π

ρ′′(x+ z)(δzu(x)− zu′(x))u′′(x)

|z|2
dz.

As the for long range integral extra care is needed due to periodicity of functions, and we
have to avoid having first degree term |u′′| appearing without exponentially decaying weight.
So, performing exactly the same computation as in (3.16) - (3.17), with ρ′ replaced by ρ′′ we
get ∣∣∣∣∫

|z|>π

ρ′′(x+ z)(δzu(x) + zu′(x))

|z|2
dz

∣∣∣∣ 6 c6|u′|∞|ρ′′|1 6 E(1 + |u′′|∞).



14 ROMAN SHVYDKOY AND EITAN TADMOR

Collecting the estimates we obtain

|T (ρ′′, u)u′′| 6 E|u′′|+ c8|u′′|2 + c9|u′′|3.
To bound the remaining term T (ρ′, u′)u′′ we will make use of the dissipation.

T (ρ′, u′)u′′ =

∫
R

ρ′(x+ z)(δzu
′(x)− zu′′(x))u′′(x)

|z|2
dz + Λρ(x)|u′′(x)|2.

We have
|Λρ(x)||u′′(x)|2 = |e− u′||u′′|2 6 c|u′′|2.

For the small scale part we have∣∣∣∣∫
|z|<π

ρ′(x+ z)(δzu
′(x)− zu′′(x))u′′(x)

|z|2
dz

∣∣∣∣ 6 |u′′| ∫
|z|<π

|ρ′|∞D1/2u′′(x)

|z|1/2
dz

6 c10|u′′|D1/2u′′(x) 6 c11|u′′|2 +
c0
4

Du′′(x).

For the large scale part we have∣∣∣∣∫
|z|>π

ρ′(x+ z)(δzu
′(x)− zu′′(x))u′′(x)

|z|2
dz

∣∣∣∣ 6 |ρ′||u′′|2.
Thus,

|T (ρ′, u′)u′′| 6 E|u′′|∞ + c14|u′′|2∞ +
c0
4

Du′′(x).

Gathering the obtained estimates into (3.21) we obtain

(3.24)
d

dt
|u′′|2 6 E|u′′|∞ + c15|u′′|2∞ + c16|u′′|3∞ − c17Du′′(x).

Furthermore, E|u′′|∞ . E2 + |u′′|2∞. In view of (3.18) the dissipation term absorbs the
quadratic and cubic terms, and we are left with

(3.25)
d

dt
|u′′|2 6 E − c18Du′′(x) . E − |u′′(x)|2.

This finishes the proof. �

Corollary 3.7. We have, for every 1 6 p <∞,

sup
t
|Hρ′′(·, t)|∞ <∞.

We have |Hρ′′|∞ = |Λρ′|∞ 6 |e′|∞+ |u′′|∞. So, the corllary simply follows from Lemma 3.6
and (3.19). Since we are in the torus settings, this automatically implies uniform bound for
all Lp-norms of ρ′′, for 1 6 p <∞:

(3.26) sup
t
|ρ′′(·, t)|p <∞.

In what follows we tacitly use these bounds by simply replacing uniformly bounded quantity
such as above by constants.

We are now in a position to perform final estimates in the top regularity class H3.

Lemma 3.8. We make the same assumptions stated in Theorem 1.6. There are constants
C, δ > 0 such that for all t > 0 one has

|uxxx(·, t)|2 6 Ce−δt

|ρxxx(·, t)|2 6 C.
(3.27)
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First we need a universal bound on the large scale of a triple product, similar in spirit to
(3.16)-(3.17) which we recast more generally to suit the context of Lemma 3.8.

Lemma 3.9. For any three 2π-periodic function f, g, h we have the following bound

(3.28)

∣∣∣∣∫
T

∫
|z|>π

f(x+ z)(δzg(x)− zg′(x))h(x)

|z|2
dz dx

∣∣∣∣ 6 C|f |p1|g′|p2|h|p3 ,

for any conjugate triple 1
p1

+ 1
p2

+ 1
p3

= 1.

Proof.∫
T

∫
|z|>π

f(x+ z)(δzg(x)− zg′(x))h(x)

|z|2
dz dx =

∑
k 6=0

∫
T

∫
|z|6π

f(x+ z)δzg(x)

|z + 2πk|2
dzh(x) dx

+

∫
T

∫
|z|6π

f(x+ z)

z + 2πk
dz g′(x)h(x) dx

6
∫ 1

0

∫
T2

|f(x+ z)g′(x+ θz)h(x)| dx dz dθ +

∫
T

∫
|z|6π

f(x+ z)g′(x)h(x)
∑
k>0

2z

|z|2 − 4π2k2
dx dz

6
∫ 1

0

∫
T2

|f(x+ z)g′(x+ θz)h(x)| dx dz dθ +

∫
T2

|f(x+ z)g′(x)h(x)| dx dz

6 C|f |p1|g′|p2|h|p3
for any conjugate triple 1

p1
+ 1

p2
+ 1

p3
= 1. �

Proof of Lemma 3.8. Once we establish exponential decay of |u′′′|2, it would imply control
over |ρ′′′|2 via e as follows. Note that e′′ satisfies

d

dt
e′′ + ue′′′ + 2u′e′′ + 2u′′e′ + u′′′e = 0.

Testing with e′′ we obtain

(3.29)
d

dt
|e′′|22 6 3u′e′′e′′ + 2u′′e′e′′ + u′′′ee′′ 6 E(|e′′|22 + |e′′|2).

This readily implies global uniform bound on |e′′|2, and hence on |ρ′′′|2.
Let us write the equation for u′′′:

(3.30) u′′′t + uu′′′x + 4u′u′′′ + 3u′′u′′ = T (ρ′′′, u) + 3T (ρ′′, u′) + 3T (ρ′, u′′) + T (ρ, u′′′).

Testing with u′′′ we obtain (we suppress integral signs and note that
∫
u′′u′′u′′′ = 0)

d

dt
|u′′′|22 = −7u′(u′′′)2 + 2T (ρ′′′, u)u′′′ + 6T (ρ′′, u′)u′′′ + 6T (ρ′, u′′))u′′′ + 2T (ρ, u′′′)u′′′

6 E|u′′′|22 − c0
∫

Du′′′ dx+ 2T (ρ′′′, u)u′′′ + 6T (ρ′′, u′)u′′′ + 6T (ρ′, u′′)u′′′.
(3.31)

Note that
∫

Du′′′ dx = |u′′′|2
H1/2 . As follows from Lemma 3.4 we have the lower bound

(3.32)

∫
T

Du′′′ dx > B|u′′′|22 − C(B)E, for any B > 0.

Again, the dissipation absorbs all quadratic terms. Let us note that we cannot rely on
the pointwise inequality |e′′| . |ρ′′| since it requires regularity higher than H3. Hence, the
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argument has to be genuinely L2 based. We also point out that the argument of [ST2016] is
rough for the purposes of long time asymptotics.

We have

|T (ρ′′′, u)u′′′| =
∫
Hρ′′′u′u′′′ dx+

∫
T2

ρ′′′(x+ z)(δzu(x)− zu′(x))u′′′(x)

|z|2
dz dx.

Clearly, |
∫
Hρ′′′u′u′′′ dx| 6 E|ρ′′′|2|u′′′|2. In view of (3.28), the last integral in the range

|z| > π is bounded by the same |ρ′′′|2|u′′′|2|u′|∞ 6 E|ρ′′′|2|u′′′|2. In the range |z| 6 π we
simply use |δzu(x) − zu′(x)| 6 |z|2|u′′|∞. Thus, this part is also bounded by E|ρ′′′|2|u′′′|2.
We have proved

|T (ρ′′′, u)u′′′| 6 E|ρ′′′|2|u′′′|2.
Next,

T (ρ′′, u′)u′′′ =

∫
T
Hρ′′u′′u′′′ dx+

∫
T2

ρ′′(x+ z)(δzu
′(x)− zu′′(x))u′′′(x)

|z|2
dz dx.

In view of Corollary 3.7,
∫
THρ

′′u′′u′′′ dx 6 E|u′′′|2 6 E2 + |u′′′|22. Using (3.28), we estimate
the large scale of the integral by |ρ′′|2|u′′|∞|u′′′|2 6 E|u′′′|2. As to the small scale, we first
observe

|δzu′(x)− zu′′(x)| =
∣∣∣∣∫ z

0

(u′′(x+ w)− u′′(x)) dx

∣∣∣∣ 6 (∫ z

0

|u′′(x+ w)− u′′(x)|4

|w|4
dw

)1/4

|z|7/4.

Thus, ∣∣∣∣∫
T

∫
|z|<π

ρ′′(x+ z)(δzu
′(x)− zu′′(x))u′′′(x)

|z|2
dz dx

∣∣∣∣
6
∫
T

∫
|z|<π
|ρ′′(x+ z)|

(∫
|u′′(x+ w)− u′′(x)|4

|w|4
dw

)1/4

|u′′′(x)| dx|z|−1/4 dz

6 |ρ′′|4|u′′|W 3/4,4|u′′′|2 6 C|u′′′|1/2
H1/2|u′′|1/2∞ |u′′′|2 6 E4 + c1|u′′′|22 +

1

2
c0|u′′′|2H1/2 ,

where in the last steps we used Gagliardo-Nirenberg inequality and Corollary 3.7. All in all,
we obtain

|T (ρ′′, u′)u′′′| 6 E + c2|u′′′|22 +
1

4
c0|u′′′|2H1/2 .

Lastly, in the remaining the term T (ρ′, u′′)u′′′ we make one preparatory step in which we
first move one derivative from u’s over onto ρ′. To this end, we use symmetrization as follows

T (ρ′, u′′)u′′′ =

∫
ρ′(y)u′′′(x)(u′′(y)− u′′(x))

dy dx

|x− y|2

=
1

2

∫∫
(ρ′(y)u′′′(x)− ρ′(x)u′′′(y))(u′′(y)− u′′(x))

dy dx

|x− y|2

=
1

2

∫∫
(ρ′(y)− ρ′(x))u′′′(x)(u′′(y)− u′′(x))

dy dx

|x− y|2

+
1

2

∫∫
ρ′(x)(u′′′(x)− u′′′(y))(u′′(y)− u′′(x))

dy dx

|x− y|2

=
1

2

∫∫
δzρ
′(x)u′′′(x)δzu

′′(x)
dz dx

|z|2
+

1

2

∫∫
ρ′(x)δzu

′′′(x)δzu
′′(x)

dz dx

|z|2
.
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Thus, in the second term we have a full derivative δzu
′′′(x)δzu

′′(x) = ((δzu
′′(x))2)′. So,

integrating by parts, we obtain∫∫
ρ′(x)δzu

′′′(x)δzu
′′(x)

dz dx

|z|2
= −1

2

∫∫
ρ′′(x)|δzu′′(x)|2 dz dx

|z|2
6 c3|ρ′′|2|u′′|2W 3/4,4

6 c4|u′′′|H1/2|u′′|∞ 6 E +
1

4
c0|u′′′|2H1/2 .

In the first term, we estimate, by (3.28),∫∫
δzρ
′(x)u′′′(x)δzu

′′(x)
dz dx

|z|2
=

∫
Λρ|u′′′|2 +

∫∫
δzρ
′(x)u′′′(x)(δzu

′′(x)− zu′′′(x))
dz dx

|z|2

6 |Λρ|∞|u′′′|22 + |ρ′|∞|u′′′|22

+

∫∫
|z|<π

δzρ
′(x)u′′′(x)(δzu

′′(x)− zu′′′(x))
dz dx

|z|2

6 c5|u′′′|22 + |u′′′|H1/2|u′′′|2 6 c6|u′′′|22 +
1

4
c0|u′′′|2H1/2 .

Thus,

|T (ρ′, u′′)u′′′| 6 E + c7|u′′′|22 +
1

2
c0|u′′′|2H1/2 .

In view of (3.32) the dissipation term absorbs all quadratic terms, and we arrive at

(3.33)
d

dt
|u′′′|22 6 C(B)E −B|u′′′|22 + E|ρ′′′|22.

Extra care is needed due to the last term since we don’t know yet how fast |ρ′′′|2 can grow.
Let us get back to the “e” term. As before we have

d

dt
|e′′|22 6 3u′e′′e′′ + 2u′′e′e′′ + u′′′ee′′ 6 E|e′′|22 + E + |u′′′|2|e′′|2

6 E|e′′|22 + E + C(ε)|u′′′|22 + ε|e′′|22,
(3.34)

for every ε > 0. Fix an arbitrarily small ε > 0, and a pick large B > 4C(ε). Add the two
equations (3.33), (3.34) together. Noting that X = |u′′′|22+|ρ′′′|22 ∼ |u′′′|22+|e′′|22 ∼ |ρ′′′|22+|e′′|22,
we obtain

d

dt
X 6 C(B)E + EX + εX . E + εX.

This shows that X, and in particular |ρ′′′|2, grows at an arbitrarily small exponential rate ε.
Using it back into (3.33), we see that in the product E|ρ′′′|22 the rate of exponential decay
of E is fixed and positive, yet that of |ρ′′′|2 is arbitrarily small. Hence the product decays
exponentially, and we arrive at

(3.35)
d

dt
|u′′′|22 6 E −B|u′′′|22.

This proves the lemma. �

As a consequence we readily obtain the full statement of Theorem 1.6. Namely, (1.14)
follows directly from Lemma 3.8, and the convergence for densities stated in (1.15) follows
by interpolation between exponential decay in L∞ and uniform boundedness in H3. The
fact that ρ̄ ∈ H3 is simple consequence of uniform boundedness of ρ(t) in H3 and weak
compactness.
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